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Abstract: A model of nonperturbative vacuum in SU(2) Yang–Mills theory coupled to a nonlinear
spinor field is suggested. By analogy with Abelian magnetic monopole dominance in quantum
chromodynamics, it is assumed that the dominant contribution to such a vacuum comes from
dipole-like field configurations existing in this theory. Using an assumption of the behavior of the
number density of dipole-like field configurations whose energy approaches infinity, we derive an
approximate expression for the energy density of such nonperturbative vacuum symmetrical under
translation that turns out to be finite, unlike the infinite energy density of perturbative vacuum.
Using characteristic values of the parameters appearing in the expression for the nonperturbative
energy density, it is shown that this density may be of the order of the energy density associated with
Einstein’s cosmological constant. The physical interpretation of the spinor field self-coupling constant
as a characteristic distance between dipole-like field configurations is suggested. The questions
of experimental verification of the nonperturbative vacuum model under consideration and of
determining its pressure are briefly discussed.

Keywords: nonperturbative vacuum; dipole-like field configurations; dipole solutions; energy density

1. Introduction

Vacuum is a well-defined concept in quantum theories, with free or weakly interacting
fields. It consists of virtual particles that are created and annihilated in accordance with the
Heisenberg uncertainty relation. One of the basic problems in considering such perturbative
vacuum is the presence of infinite vacuum or zero-point energy, which, in the case of
theories that do not involve gravity, is artificially removed by subtraction.

In performing lattice calculations within quantum chromodynamics (QCD), one uses
the idea of the Abelian magnetic monopole dominance, according to which a significant
contribution to the path integral in QCD comes from particle-like objects such as monopoles
(see, e.g., [1,2]). Consistent with this, one may assume that in nonperturbative vacuum,
similar objects (in our case, these will be dipole-like field configurations (DLFCs); for
brevity, we also refer to them as “dipoles”) might also play a quite essential role. In this
connection, the questions can be asked: How may such objects appear in nonperturbative
vacuum? How can one describe them?

An attempt to answer these questions is made in the present paper. We consider here
a hypothesis according to which, among all possible fluctuations of a quantum field in
vacuum, there are such profiles that satisfy field equations, and they yield a considerable
contribution to the corresponding path integral in quantizing such a field. Physically, this
means that the properties of such nonperturbative vacuum would be basically described by
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the aforementioned virtual DLFCs. Such DLFCs appear in accordance with the Heisenberg
uncertainty principle and exist over the time ∆t ≈ h̄/∆E determined by this principle.
This idea is analogous to the long-familiar concept that in QCD there exists the so-called
Abelian magnetic monopole dominance. The latter implies that magnetic monopoles, as
topologically nontrivial configurations, yield a considerable contribution to the functional
integral. Abelian and monopole dominance [3,4] have been confirmed by lattice calculations
in QCD (see, e.g., [5,6]).

In the present paper, we suggest a model of nonperturbative vacuum where the
spherically symmetric monopole-like objects found in [7,8] are regarded as virtual DLFCs
in nonperturbative vacuum of SU(2) Yang–Mills theory possessing translation symmetry
that includes a nonlinear spinor field. As pointed out above, such virtual DLFCs are created
according to the Heisenberg uncertainty principle, and their lifetimes are determined by
this principle. Then, if one regards such DLFCs as making the main contribution to the
nonperturbative vacuum, it is possible to determine such properties of the nonperturbative
vacuum such as, for example, its energy density.

In order to obtain regular solutions in SU(2) Yang–Mills gauge theory, which we use in
modeling DLFCs in the nonperturbative vacuum, we employ the monopole Ansatz taken in
the form suggested in the pioneering works of ’t Hooft [9] and Polyakov [10]. As a source
of a SU(2) gauge field for these field solutions, we take a doublet of a nonlinear spinor field
for which an Ansatz is taken from [11,12]. The solutions obtained in the present paper are
based on the regular solutions found for the nonlinear spinor field in [13,14].

Notice also that in constructing vacuum models in QCD, such particle-like objects
such as instantons [15], calorons [16,17], dyons [18], and many others were used.

2. Dipole-like Solutions in SU(2) Yang–Mills Theory

In this section, we briefly describe dipole-like solutions in SU(2) Yang–Mills theory
with a source of gauge field in the form of a nonlinear spinor field described by the nonlinear
Dirac equation. The Lagrangian of such a theory is (here, we follow [8])

L =− 1
4

Fa
µνFaµν + ih̄cψ̄γµDµψ−m f c2ψ̄ψ +

l2
0
2

h̄c(ψ̄ψ)2. (1)

Here, m f is the mass of the spinor field; Dµ = ∂µ − i g
2 σa Aa

µ is the gauge-covariant
derivative, where g is the coupling constant and σa are the SU(2) generators (the Pauli matri-
ces); Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ + gεabc Ab
µ Ac

ν is the field strength tensor for the SU(2) field, where
εabc (the completely antisymmetric Levi–Civita symbol) are the SU(2) structure constants;
l0 is a constant; γµ are the Dirac matrices in the standard representation; a, b, c = 1, 2, 3 are
color indices; and µ, ν = 0, 1, 2, 3 are spacetime indices. The fermionic part of the above
Lagrangian coincides with the Nambu–Jona–Lasinio Lagrangian, with the one important
difference being that Lagrangian (1) contains the mass term m f . In the absence of this term,
it is impossible to get regular solutions with finite energy, as can be easily seen from the
asymptotic behavior of the spinor fields given by Equation (12).

Unlike [7,8,19], we use the term “dipole” below for the configurations under con-
sideration. This is because the radial component of the color magnetic field behaves
asymptotically as Ha

r ∼ D/r3, as it takes place in Maxwell’s magnetostatic, and the con-
stant D may be called the color magnetic moment of the dipole. However, unlike usual
dipole solutions, the solution obtained in [7,8,19] also has a nonvanishing component of the
color magnetic field Ha

ϕ; for this reason, we have enclosed the word “dipole” in quotation
marks. Below, we discuss a vector field created by the color current jaµ.

Using the Lagrangian (1), one can find the corresponding field equations,

DνFaµν = jaµ =
gh̄c
2

ψ̄γµσaψ, (2)

ih̄γµDµψ−m f cψ + l2
0 h̄ψ(ψ̄ψ) = 0. (3)
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Here, jaµ is a color current created by the spinor field ψ. “Dipole” solutions are sought
in the form of the standard Ansatz used in describing the ’t Hooft–Polyakov monopole,
written in spherical coordinates,

Aa
t = 0, Aa

i =
1
g
[1− f (r)]

0 sin ϕ sin θ cos θ cos ϕ
0 − cos ϕ sin θ cos θ sin ϕ

0 0 − sin2 θ

,

i = r, θ, ϕ (in spherical coordinates), (4)

where the spatial index a labels the rows and the color index i, the columns; the Ansatz for
the spinor field doublet is taken to be [11,12]

ψT =
e−i Et

h̄

gr
√

2

{(
0
−u

)
,
(

u
0

)
,
(

iv sin θe−iϕ

−iv cos θ

)
,
(
−iv cos θ

−iv sin θeiϕ

)}
, (5)

where E/h̄ is the spinor frequency and the functions u and v depend on the radial coordinate
r only. We use the spinor field doublet since it interacts with the SU(2) gauge field. Note
that in the Nambu–Jona–Lasinio model, a nonzero chiral condensate in the vacuum occurs.
In our case, the mass m f breaks chiral symmetry explicitly, and it is seen at once from
Expression (5) that the condensate ψ̄ψ = (u2 − v2)/(g2r2) is nonzero. Substituting the
Expressions (4) and (5) in field Equations (2) and (3), one can obtain equations for the
unknown functions f , u, and v:

− f ′′ +
f
(

f 2 − 1
)

x2 + g̃2
Λ

ũṽ
x

= 0, (6)

ṽ′ +
f ṽ
x

= ũ
(
−1 + Ẽ +

ũ2 − ṽ2

x2

)
, (7)

ũ′ − f ũ
x

= ṽ
(
−1− Ẽ +

ũ2 − ṽ2

x2

)
, (8)

written in terms of the following dimensionless variables: x = r/λc, ũ = u
√

l2
0/λcg2, ṽ =

v
√

l2
0/λcg2, Ẽ = λcE/(h̄c), g̃2

Λ = (g′λc/l0)
2, where λc = h̄/(m f c) is the Compton wave-

length and g′2 = g2h̄c is a dimensionless coupling constant. The prime denotes differentia-
tion with respect to x.

The color current jaµ for the spinor (5) has the following components:

~j1 =
h̄ c
g

uv
r3 {0,− sin ϕ,− cot θ cos ϕ}, ~j2 =

h̄ c
g

uv
r3 {0, cos ϕ,− cot θ sin ϕ},

~j3 =
h̄ c
g

uv
r3 {0, 0, 1},

where the superscripts 1, 2, 3 denote color indices. The current~j3 has only the ϕ component;
this means that this is a circular current creating a dipole with the color index 3. The currents
~j1,2 are shown in Figure 1. It is seen that these currents also form dipoles; this suggests that
the solution under consideration can be called a “dipole” solution, enclosed in quotation
marks because it also contains a nonvanishing component of the color magnetic field Ha

ϕ.
Further note that for the gauge (4) and spinor (5) fields, the zeroth component of the current
ja0 is equal to zero; this implies that, in our case, there is no source of a color electric field.

The total energy density of the “dipole” under consideration is

ε̃ = ε̃m + ε̃s =
1

g̃2
Λ

[
f ′2

x2 +

(
f 2 − 1

)2

2x4

]
+

[
Ẽ

ũ2 + ṽ2

x2 +

(
ũ2 − ṽ2)2

2x4

]
. (9)
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Figure 1. Sketches of the force lines of the components of the color current g~j1r3/(h̄ c uv) (left
panel) and g~j2r3/(h̄ c uv) (right panel) on the surface r = const. The plots are given in Cartesian
coordinates {x, y, z}.

Here the expressions in the square brackets correspond to the dimensionless en-

ergy densities of the non-Abelian gauge fields, ε̃m ≡ (l0λc)
2

h̄c εm, and of the spinor field,

ε̃s ≡ (l0λc)
2

h̄c εs.
Correspondingly, the total energy of the “dipole” is calculated as

W̃t ≡
m f l2

0

h̄2 Wt = 4π

∞∫
0

x2ε̃dx =
(
W̃t
)

m +
(
W̃t
)

s, (10)

where the energy density ε̃ is taken from Equation (9). In the right-hand side of Equation (10),
the first term is the energy of the magnetic field and the second term corresponds to the energy
of the nonlinear spinor field.

The typical behavior of W̃t as a function of the spinor frequency Ẽ is sketched in
Figure 2. It is seen that there exists an absolute minimum of the dimensionless energy
(mass gap); call it ∆̃(g2

Λ). Moreover, as demonstrated in [7,8], for Ẽ → 0, 1, the energy of
the “dipole” goes to infinity.

The asymptotic behavior of the functions f , ṽ, and ũ is as follows:

f (x) ≈1− f∞

x
, (11)

ũ(x) ≈ũ∞e−x
√

1−Ẽ2
, ṽ(x) ≈ ṽ∞e−x

√
1−Ẽ2

, (12)

where f∞, ũ∞, and ṽ∞ are integration constants.
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Figure 2. A sketch of the energy spectrum of the total energy from Equation (10) as a function of the
spinor frequency Ẽ (for details, see [7]).

Consider the question of a linear size of the “dipole” under investigation. It consists of
two fields—the non-Abelian field Aa

µ and the spinor field ψ—whose asymptotic behavior is
fundamentally different. As follows from Equation (11), the color field decreases according
to the power law, Ha

r,θ,ϕ ∼ r−3 [7], whereas the spinor field decreases exponentially with
distance according to Equation (12). In this connection, it is difficult to introduce the notion
of the size of the “dipole”. However, one may introduce the notion of the core of the
“dipole”, which represents the region where the spinor field (which is a source of the color
Yang–Mills field) is concentrated. Then, in accordance with Equation (12), one may define
a characteristic size of the core of the “dipole” as

lcr ≈
λc√

1− Ẽ2
. (13)

This implies that for Ẽ → 1, the size of the core lcr → ∞. In turn, for Ẽ → 0, it is
estimated as lcr ≈ λc, i.e., it remains unchanged. Unfortunately, the power-law asymptotic
behavior of the magnetic field (11) does not permit one to define a quantity that adequately
represents the size of the “dipole” itself and not just the size of the core.

Taking into account that the linear size of the core is estimated according to Expres-
sion (13), a maximal number of DLFCs (“dipoles”) per unit volume can be estimated as[

nDLFC
(
Ẽ
)]

max ≈
[
lcr
(
Ẽ
)]−3.

Perhaps such concentration of the DLFCs is not attainable in vacuum, but it may be
reached in a quark–gluon plasma at high temperatures.

3. “Dipoles” in Nonperturbative Vacuum

In this section, we describe a scenario within which “dipoles” found in [7,8] may be
regarded as DLFCs in the nonperturbative vacuum of SU(2) Yang–Mills theory coupled to
a nonlinear spinor field.

The main idea is the same as that used in Abelian magnetic monopole dominance:
among all possible fluctuations of a gauge field, there are some that satisfy Equations (6)–(8).
Thus, we suppose that, within the nonperturbative vacuum model under consideration,
such configurations give the dominant contribution to the path integral in the theory
with the Lagrangian (1). Since we consider vacuum, the mean vacuum values of all color
potentials and of the spinor field are zero,〈

Âa
µ

〉
= 0,

〈
ψ̂
〉
= 0,
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whereas the dispersions of these fields are nonvanishing,〈(
Âa

µ

)2
〉
6= 0,

〈(
ψ̂
)2
〉
6= 0.

In the nonperturbative vacuum model under consideration, the dominant contribution
to the nonvanishing magnitudes of the dispersions, as well as to higher-order Green’s
functions, is given by DLFCs, whose averaged spatial distribution is sketched in Figure 3.

The system under consideration contains two parameters, λc and l0, having dimen-
sions of length. The first determines the size of the core of the “dipole” created by the
spinor field, and the second is the spinor field self-coupling constant, which characterizes
the distance between DLFCs (see Figure 3). Thus, the theory contains two constants with
the dimensions of length that determine the properties of the nonperturbative vacuum: the
size of the core of DLFCs and the distance between them.

Figure 3. A sketch of the averaged spatial distribution of DLFCs in the nonperturbative vacuum; their
location in space is randomly changed, and this leads to nonzero values of the dispersions and of
higher-order Green’s functions. The size of the core lcr is characterized by the Compton wavelength
of a fermion λc with mass m f (cf. Equation (13)). The average distance between DLFCs is determined
by the spinor field self-coupling constant l0.

Let nDLFC
(
Ẽ
)

be the average density of DLFCs per unit volume, which depends on
the spinor frequency Ẽ; then, the average energy density of the nonperturbative vacuum
can be defined as

ε0 ≈
h̄2

m f l2
0

〈
nDLFC

(
Ẽ
)
W̃t
(
Ẽ
)〉

, (14)

where the dimensionless energy W̃t is given by theExpression (10) and 〈· · · 〉 denotes the
quantum averaging over all possible values of Ẽ.

The lifetime of a virtual DLFC with energy Wt
(
Ẽ
)

is determined according to the
Heisenberg uncertainty principle,

∆t ≈ h̄
Wt(Ẽ)

=
m f l2

0

h̄
1

W̃t(Ẽ)
. (15)

This expression implies that the maximum lifetime is for a DLFC with energy equal to
the energy of the mass gap W̃t

(
Ẽ
)
= ∆̃

(
g2

Λ
)
.

Consider next the behavior of the concentration of DLFCs nDLFC
(
Ẽ
)

for Ẽ→ 0, 1. For
Ẽ→ 1, according to Equation (13), the linear size of the region occupied by the core of the
“dipole” created by the spinor field approaches infinity, lcr → ∞. This actually means that
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the size of a DLFC approaches infinity as well; that is, one DLFC occupies all the space.
This, in turn, means that

nDLFC
(
Ẽ→ 1

)
→ 0. (16)

As we pointed out above, for Ẽ → 0, the size of the core is estimated as lcr ≈ λc,
whereas the value of the non-Abelian magnetic field goes to infinity and the field fills all
the space. As in the case with Ẽ→ 1, this means that

nDLFC
(
Ẽ→ 0

)
→ 0. (17)

Both Conditions (16) and (17) can be written as

nDLFC
(
Ẽ
)
→ 0 when Ẽ→ 0, 1 or, equivalently, when W̃t

(
Ẽ
)
→ ∞. (18)

Thus, the function nDLFC
(
Ẽ
)

is equal to zero at the boundaries of the interval 0 6
Ẽ 6 1; this suggests that for some Ẽ0 lying in this interval, the concentration nDLFC

(
Ẽ0
)

has a maximum.
The expression for the energy density (14) is the product of two functions: the density

of DLFCs and the dimensionless energy of a DLFC. For Ẽ → 0, 1, the first function,
according to Equation (18), goes to zero, whereas the second one—to infinity. Consequently,
their product in Equation (14) goes either to zero, or to a constant, or to infinity. In order
for the energy density to be finite, it is necessary to choose the first option. This permits
one to estimate the quantity (14) as the product of the characteristic value of the density of
DLFCs nDLFC

(
Ẽ0
)

and the characteristic value of the energy—the mass gap ∆̃(g2
Λ):

ε0 ≈
h̄2

m f l2
0

nDLFC
(
Ẽ0
)
∆̃(g2

Λ). (19)

This expression indicates that, in the model under consideration, the energy density
of nonperturbative vacuum ε0 is a finite quantity, in contrast to the energy of perturbative
vacuum, which is infinite. Notice that in these calculations, the presence of a mass gap
plays a crucial role. In the absence of the mass gap, the computation procedure is changed
considerably and Expression (19) would already be incorrect.

One of the undetermined quantities in Expression (19) is the concentration of DLFCs
nDLFC

(
Ẽ0
)

with dimensions (length)−3. In the initial Equations (2) and (3), there are
two quantities with dimensions of length: the Compton wavelength λc and the spinor
field coupling constant l0. Therefore, one can assume that, in order of magnitude, the
concentration might be estimated as

nDLFC
(
Ẽ0
)
≈ 1

l3−α
0 λα

c
. (20)

The quantity
(

l3−α
0 λα

c

)1/3
characterizes the distance between DLFCs. The simplest

case of α = 0 is sketched in Figure 3.
It is of interest to estimate characteristic quantities of the nonperturbative vacuum

under consideration. To do so, we start from the assumption that its energy density (19)
is of the order of the energy density associated with Einstein’s cosmological constant ΛE,
i.e., ε0 = εΛE ≈ 5.4× 10−9erg cm−3. As an example, take the following set of parameters:
(i) let α = 0 in Equation (20); (ii) choose m f equal to, say, the mass of the strange quark
ms ≈ 95 MeV; (iii) take the magnitude of the dimensionless mass gap to be ∆̃

(
g2

Λ
)
≈ 50 [8];

and (iv) let g′2 ≈ 10 (typical value in QCD). Then, we have the following estimates:

g̃2
Λ ≈ 2.09× 10−17, ∆

(
g2

Λ

)
≈ 1.59× 10−20erg, m∆ ≡ ∆

(
g2

Λ

)
/c2 ≈ 1.77× 10−41g,

λc ≈ 2.08× 10−13cm, l0 ≈ 1.44× 10−4cm, nDLFC ≈ 3.38× 1011cm−3.
(21)
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For some reason, this does not allow us to regard the energy density of the non-
perturbative vacuum as that associated with Einstein’s cosmological constant. One of
these reasons is that the equation of state corresponding to the cosmological constant is
pΛE = −εΛE . The determination of the pressure of the nonperturbative vacuum (or its
equation of state) is a challenging problem, and we will not address it here. The point is
that the virtual DLFCs under consideration are extended objects, and for this reason , the
following problems occur: (a) it is, in particular, unclear how they interact with a reflecting
wall; (b) since the DLFCs under consideration are field objects, in order to consider their
interactions, it is necessary to take into account corrections to the corresponding solutions;
and (c) if the DLFCs are packed so closely that they begin to “touch” each other, then
instead of a gas of DLFCs, there occurs some extended and continuous substance; this
should be taken into account when performing calculations.

4. Discussion and Conclusions

In the present paper, we suggested a speculative model of nonperturbative vacuum in
SU(2) Yang–Mills theory coupled to a nonlinear spinor field. Within this model, by analogy
with Abelian magnetic monopole dominance, it is assumed that the main contribution to
the energy of the nonperturbative vacuum comes from DLFCs, which are represented here
by “dipoles” constructed in [7,8]. The remarkable feature of such nonperturbative vacuum
is that its energy density is finite.

We summarize the results:

• The model of nonperturbative vacuum in SU(2) Yang–Mills theory coupled to a nonlin-
ear spinor field is suggested, assuming that the main contribution to its characteristics
comes from DLFCs that are described by the corresponding “dipole” solutions.

• We present arguments to claim that the number density of DLFCs whose energy
approaches infinity goes to zero.

• We derive the expression for the energy density of the nonperturbative vacuum, which,
being a sum of energies of DLFCs, is finite.

• Starting from the assumption that the magnitude of the nonperturbative vacuum
energy density is of the order of the energy density associated with Einstein’s cos-
mological constant, we estimate the characteristic quantities of the nonperturbative
vacuum under consideration.

• We suggest the physical interpretation of the spinor field self-coupling constant, having
dimensions of length, as a quantity characterizing the distance between DLFCs in the
nonperturbative vacuum.

We have pointed out that, although the energy density of the nonperturbative vacuum
may be of the order of that associated with Einstein’s cosmological constant, for some reason
it is difficult to identify these two quantities. For example, for the cosmological constant, it
is necessary to have a strictly defined relationship between its energy density and pressure.
In further studies on this subject, it will be necessary to determine an expression for the
pressure of the nonperturbative vacuum, which amounts to obtaining an equation of state
for such a vacuum. The principle problem one faces here is that the DLFCs are (i) quantum
and virtual and (ii) extended objects.

Notice that the SU(2) Yang–Mills theory coupled to a nonlinear spinor field under
consideration is a non-QCD theory. The principle difference is that in QCD, a spinor field
is described by the linear Dirac equation, while here we deal with the nonlinear Dirac
equation. At first glance, the linear and nonlinear Dirac equations are in no way related
to each other. However, it is worth mentioning here that there is a possibility of obtaining
the nonlinear Dirac equation as a consequence of nonpertubative quantization in QCD, as
discussed in [7,8,19].

In conclusion, we wish to note that the model of nonperturbative vacuum under
consideration is an experimentally testable model, at least in principle. The lifetime of
a virtual DLFC is determined by Equation (15); then, e.g., for the parameters used in
obtaining the estimates (21), one has ∆t ≈ 6.6× 10−8 s. In turn, one cubic centimeter
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contains only ∼1011 virtual DLFCs. Since this concentration and the lifetimes are quite
large quantities, one may expect that experimental verification of the existence of such
virtual DLFCs might be possible.

Two other characteristics of nonperturbative vacuum in the model considered here
are the parameters λc and l0 with dimensions of length. The first one determines the size of
a charge created by the spinor field, and the second one is the self-coupling constant of the
nonlinear spinor field, which, as we assumed above, characterizes the distance between
DLFCs. Thus, in the present model of the nonpertubative vacuum, there are two constants
with dimensions of length that determine the properties of the nonpertubative vacuum:
the size of the central part of a DLFC and the distance between them. To test the model,
these parameters may, in principle, be experimentally measured as well.

In conclusion, we would like to note that the nonperturbative vacuum is a very
complex object, and its properties can differ in principle from the properties of perturbative
vacuums, which are described in detail in standard textbooks on quantum field theory.
Here, we suggested an approximate model of nonperturbative vacuum based on the
existence of DLFCs populating such a vacuum. However, there may exist field theories in
which such particle-like solutions are absent. In that case, an investigation of the properties
of nonperturbative vacuum becomes even more complicated. One might expect that this
can be done using an infinite set of differential Schwinger–Dyson equations written in
a nonperturbative form (as done, for example, in [19]). Such a set of equations should
describe both excited states and a vacuum.
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