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Abstract: In this paper, under symmetric properties of multivalued operators, the existence of
mild solutions as well as optimal control for the nonlocal problem of fractional semilinear evolution
inclusions are investigated in abstract spaces. At first, the existence results are proved by applying
the theory of operator semigroups and the fixed-point theorem of multivalued mapping. Then
the existence theorem on the optimal state-control pair is proved by constructing the minimizing
sequence twice. An example is given in the last section as an application of the obtained conclusions.
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1. Introduction

As an important branch of the nonlinear analysis theory, fractional differential in-
clusions have gained a lot of attention in recent years, because it has wide applications
in fluid mechanics, economics, control theory, and so forth (see [1–4] and the references
therein). In 2011, Du et al. [5] pointed out that Riemann-Liouville fractional derivatives
are more suitable to describe certain characteristics of viscoelastic materials than Caputo
ones. Therefore, it is more significant to study Riemann-Liouville fractional differential
systems. In 2013, Zhou et al. [6], applying probability density functions and the Laplace
transform technique, presented a suitable concept of mild solutions of Riemann-Liouville
fractional evolution equations. Additionally, when the C0-semigroup generated by the
linear part is noncompact or compact, Zhou et al. proved existence theorems of mild solu-
tions for Riemann-Liouville fractional Cauchy problems. Pan et al. [7] demonstrated the
existence theorems on mild solutions as well as optimal control of the semilinear fractional
differential equation

LDαx(t) = Ax(t) + f (t, x(t)) + Bu(t), t ∈ J
′

:= (0, b], α ∈ (0, 1),

I1−αx(t)|t=0 = x0,

u ∈ Uad,

(1)

where LDα represents the fractional derivative operator of order α in the Riemann-Liouville
sense, and I1−α is the (1− α)-order Riemann-Liouville fractional integral operator, A :
D(A) ⊂ X → X generates a compact C0-semigroup {T(t), t ≥ 0} and X is a reflexive
Banach space. Denote by Y another separable reflexive Banach space, in which u takes
its values. B : Y → X is a linear bounded operator and f : [0, b]× X → X is Lipschitz-
continuous. By utilizing the Schaefer fixed-point theorem and the fractional calculus theory,
Pan et al. proved the existence and uniqueness of mild solutions of (1). The existence of
optimal state-control pairs was also investigated in the case where the mild solution of (1)
is unique.
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Kumar in the Ref. [8] demonstrated the existence theorems of mild solutions and
optimal control of the semilinear fractional system with fixed delay{

CDαx(t) = Ax(t) + f (t, x(t− h)) + B(t)u(t), t ∈ J := [0, b],

x(t) = ϕ(t), t ∈ [−h, 0],
(2)

where CDα is the fractional derivative operator of order α ∈ (0, 1) in the Caputo sense. A
generates a compact C0-semigroup {T(t), t ≥ 0} in X. For fixed t ≥ 0, B(t) : Y → X is
a linear operator. X, Y, and u are defined as above. f : [0, b]× X → X is the nonlinear
term and ϕ ∈ C([−h, 0], X). When f is locally Lipschitz-continuous, Kumar studied the
existence and uniqueness of mild solutions of (2) by applying the Weissinger fixed-point
theorem. Under the case that the mild solution of Equation (2) is unique, he also discussed
the existence of optimal control.

In the Ref. [9], Lian et al. were concerned with the existence of mild solutions for the
nonlinear fractional differential system in Banach space X

LDαx(t) = Ax(t) + f (t, x(t)) + B(t)u(t), t ∈ J
′
,

I1−αx(t)|t=0 = x0,
u ∈ Uad.

(3)

They firstly proved the existence results of mild solutions of Equation (3) by using the
Schauder fixed-point theorem and the semigroup theory. Then, when f is not Lipschitz-
continuous, a new approach was established to investigate the existence of time-optimal
pairs without the uniqueness of mild solutions. It is worth noting that all these works
consider the case of single-valued mapping. As far as we know, the existence of optimal
state-control pairs for Riemann-Liouville fractional evolution inclusions is still rare.

Inspired by the above-mentioned literature, we deal with the existence of mild solu-
tions as well as optimal state-control pairs for fractional evolution inclusions with nonlocal
conditions 

LDαx(t) ∈ Ax(t) + F(t, x(t)) + B(t)u(t), t ∈ J
′
, α ∈ (0, 1),

I1−α
0+ x(0) + g(x) = x0,

u ∈ Uad,

(4)

where LDα is the α-order Riemann-Liouville fractional derivative operator. A : D(A) ⊂
X → X is a densely defined and linear closed operator. It generates a C0-semigroup
{T(t), t ≥ 0} in X. X and Y are (separable) reflexive Banach spaces. u takes values in
Y. For fixed t ≥ 0, B(t) : Y → X is a linear operator. g denotes the nonlocal function.
F : J × X → 2X \ {∅} is a u.s.c. multi-valued mapping with compact values which satisfies
some appropriate conditions. The control u ∈ Uad, Uad will be introduced in Section 2.

The main contributions of this work can be listed as follows:
(i) Under the case that the nonlocal function g is Lipschitz-continuous or completely

continuous, the existence of mild solutions of the fractional evolution inclusion (4) is proved
by using a fixed-point theorem of multi-valued operators.

(ii) Under the case that the nonlinearity f is not Lipschitz-continuous, the existence of
an optimal state-control pair of (4) is obtained by utilizing an approach established in the
Ref. [9] when the mild solution is not unique.

It is emphasized that the symmetry of operators plays a key role in the present work.
The Lipschitz continuity of the nonlinearity f is not needed in our work. Then, results
obtained in this paper extend some existing research, such as that by the Refs. [6–9], and
so forth.
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2. Preliminaries

Let X be a reflexive Banach space equipped with the norm ‖ · ‖. We denote by C(J, X)
the continuous function space whose norm is defined by ‖x‖C = sup

t∈J
‖x(t)‖. Let Lp(J, X)

be the p-order Bochner integrable function space with the norm ‖x‖Lp = (
∫ b

0 ‖x(t)‖
pdt)

1
p

for 1 ≤ p < +∞. Let

C1−α(J, X) = {x ∈ C(J′, X)|t1−αx(t) ∈ C(J, X), 0 < α < 1, t ∈ J}.

Then C1−α(J, X) constitutes a Banach space whose norm is given by ‖x‖C1−α
= sup

t∈J
{t1−α

‖x(t)‖}. Throughout this paper, we assume that the C0-semigroup {T(t), t ≥ 0}, generated
by linear operator A, is uniformly bounded in X, which means that there is M > 0 such
that sup

t∈J
‖T(t)‖ ≤ M. For a Banach space X, let

P(X) = {D ⊆ 2X |D 6= ∅},
Pb(X) = {D ⊆ P(X)|D is a bounded set},
Pc(X) = {D ⊆ P(X)|D is a closed set},
Pcv(X) = {D ⊆ P(X)|D is a convex set}, and
Pcp(X) = {D ⊆ P(X)|D is a compact set}.

If a set, belonging to X, is nonempty convex and closed, then denote it by Pc,cv(X), and the
other cases are the same. Let (Y, ‖ · ‖) be another separable reflexive Banach space. Denote
L(Y, X) = {B|Y → X as a bounded linear operator}. Then L(Y, X) is a Banach space with
an operator norm. Let E be a bounded subset of Y. Assume that the multi-valued mapping
U : J → Pc,cv(Y) is graph-measurable and U(·) ⊂ E. Then, Uad is defined by

Uad = {u ∈ Lp(J, E)|u(t) ∈ U(t), a.e.t ∈ J}, p >
1
α

.

Clearly, (see [10]), Uad ⊂ Lp(J, Y)(p > 1
α ) is nonempty convex, closed, and bounded.

In this work, we introduce the definition of a mild solution of (4) in the following way
(see [6] for more details).

Definition 1. x ∈ C1−α(J, X) is said to be a mild solution of (4) if

(i) I1−α
0+ x(0) + g(x) = x0.

(ii) there exists f (t) ∈ F(t, x(t)) such that

x(t) = tα−1Tα(t)(x0 − g(x)) +
∫ t

0
(t− s)α−1Tα(t− s)[ f (s) + B(s)u(s)]ds, t ∈ J′, (5)

where
Tα(t) =

∫ ∞

0
αθξα(θ)T(tαθ)dθ,

ξα(θ) =
1
α

θ
−1−

1
α vα(θ

−
1
α ) ≥ 0,

vα(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−αn−1 Γ(nα + 1)
n!

sin(nπα), θ ∈ (0, ∞).

ξα(θ), θ ∈ (0, ∞) denotes the probability density function, which satisfies∫ ∞

0
ξα(θ)dθ = 1,

∫ ∞

0
θυξα(θ)dθ =

Γ(1 + υ)

Γ(1 + αυ)
, υ ∈ [0, 1].

Lemma 1 ([11]). The linear operator family Tα(t)(t ≥ 0) has properties:

(i) for every t ≥ 0 and any x ∈ X,
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‖Tα(t)x‖ ≤ M
Γ(α)

‖x‖.

(ii) for t ≥ 0, the operator Tα(t) is strongly continuous.
(iii) for t > 0, if the operator T(t) is compact, Tα(t) is a compact operator.

Next, some definitions and basic results of multi-valued mapping are listed (refer
to [11,12] for more details).

Definition 2 ([12]). Let X and Z be two topological spaces, and F : X → P(Z) be a multi-
valued mapping.

(1) If F(x) is convex (closed) in Z for all x ∈ X, then F is said to be convex (closed)-valued.
(2) If F(D) is relatively compact for every bounded subset D of X, then F is said to be completely

continuous.
(3) If F−1(V) = {x ∈ X | F(x) ⊆ V} is an open subset of X for every open subset V of Z, then

F is said to be upper semi-continuous(u.s.c.) on X.
(4) If the graph GF = {(x, y) ∈ X × Z | y ∈ F(x)} is a closed subset of X × Z, then F is said

to be closed.
(5) If there is an element x ∈ X satisfying x ∈ F(x), then F is said to have a fixed point in X.

Lemma 2 ([11]). If the multi-valued mapping F is completely continuous with nonempty compact
values, then F is u.s.c. if, and only if F has a closed graph.

Lemma 3 ([11]). Let J be a compact real interval. Suppose that
(i) for each x ∈ X, F(·, x) : J → Pb,c,cv(X) is measurable and for every t ∈ J, F(t, ·) : X →

Pb,c,cv(X) is u.s.c.
(ii) for each x ∈ C(J, X), the set SF,x = { f ∈ L1(J, X) | f (t) ∈ F(t, x(t)), a.e. t ∈ J} is

nonempty.
If F is a linear continuous operator from L1(J, X) to C(J, X), then

F ◦ SF : C(J, X)→ Pb,c,cv(C(J, X)), x 7→ (F ◦ SF)(x) = FSF,x

is a closed graph operator in C(J, X)× C(J, X).

Definition 3 ([13]). A sequence { fn}n≥1 ⊂ L1(J, X) is said to be semi-compact if

(i) there exists a function ω ∈ L1(J,R+) such that

‖ fn(t)‖ ≤ ω(t), a.e. t ∈ J;

(ii) for a.e. t ∈ J, the set { fn(t) | n ∈ N} is relatively compact in X.

Lemma 4 ([12]). If a sequence in L1(J, X) is semi-compact, then it is weakly compact in L1(J, X).

Lemma 5 ([14]). Let X be a Banach space and D be a compact subset of X. Then conv(D) is
compact, where conv(D) denotes the convex closure of D.

Lemma 6 ([14]). In a normed space, the closure and weak closure of a convex subset are the same.

Lemma 7 ([11]). Let 0 < a ≤ b and θ ∈ (0, 1], where we have

| aθ − bθ |≤ (b− a)θ .

To prove our main results, the following two fixed-point theorems concerning multi-
valued operators play an important role.
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Lemma 8 ([15]). Let W be a nonempty closed, convex and bounded subset in the Banach space X,
and Ψ : W → 2W \ {∅} be a u.s.c. condensing multi-valued mapping. If for every x ∈W, Ψ(x)
is convex and closed in W and Ψ(W) ⊆W, then Ψ has one fixed point in W.

Lemma 9 ([16]). Let W be a nonempty subset of X, which is convex, closed and bounded. Suppose
that Ψ : W → 2W \ {∅} is u.s.c. with convex and closed values, Ψ(W) ⊆ W and Ψ(W) is a
compact set, then Ψ has one fixed-point in W.

3. Existence of Mild Solutions

In order to prove the main conclusions on the existence of mild solutions of (4), we
make the following hypotheses.
(H1) The semigroup {T(t), t ≥ 0} is a compact semigroup in X.
(H2) The multi-valued mapping F : J × X → Pcv,cp(X) satisfies the following hypotheses:

(i) for each x ∈ X, F(t, x) is measurable to t and for every t ∈ J, F(t, x) is u.s.c. to x. For
every x ∈ X,

SF,x = { f ∈ L1(J, X) | f (t) ∈ F(t, x), a.e. t ∈ J}

is nonempty.
(ii) There exists a continuous nondecreasing function ψ : [0, ∞) → (0, ∞) satisfying

Λ := lim
r→∞

ψ(r)
r < +∞ and m ∈ Lp(J,R+)(p > 1

α ) such that

‖F(t, x(t))‖ := sup{‖ f (t)‖ | f (t) ∈ F(t, x(t)), t ∈ J} ≤ m(t)ψ(‖x‖C1−α
).

(H3) The function g : C1−α(J, X)→ X and there is a constant Mg > 0 such that

‖g(x)− g(y)‖ ≤ Mg‖x− y‖C1−α
, ∀ x, y ∈ C1−α(J, X).

(H4) B ∈ L∞(J,L(Y, X)), where L∞(J,L(Y, X)) is a Banach space with norm ‖ · ‖∞.

Remark 1. Combining the definition of Uad with the assumption (H4), we easily verify that, for
all u ∈ Uad, Bu ∈ Lp(J, X) with p > 1

α .

Lemma 10 ([9]). Let the assumption (H1) be fulfilled. Then for each h ∈ Lp(J, X) with p > 1
α ,

the operator B : Lp(J, X)→ C1−α(J, X), given by

(Bh)(·) =
∫ ·

0
(· − s)α−1Tα(· − s)h(·)ds,

is compact.

Theorem 1. Assume that (H1)–(H4) hold. Then the fractional evolution system (4) possesses one
mild solution provided that

M∗ :=
M

Γ(α)

(
Mg + (

p− 1
pα− 1

b)
p−1

p ‖m‖Lp Λ
)
< 1. (6)

Proof of Theorem 1. For x ∈ C1−α(J, X), wedefineanoperator Ψ : C1−α(J, X)→ 2C1−α(J,X) by

Ψ(x) =
{

ϕ | ϕ(t) = tα−1Tα(t)(x0 − g(x)) +
∫ t

0
(t− s)α−1Tα(t− s)[ f (s) + B(s)u(s)]ds, f ∈ SF,x , t ∈ J

′}
.

By means of Definition 1, the fixed point of the operator Ψ is equivalent to the mild solution
of the system (4). We will prove that Ψ has one fixed point in C1−α(J, X) by applying
Lemma 8. The proof will be divided into four steps.

Step 1. We will prove that, for each x ∈ C1−α(J, X), Ψ(x) is convex.
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In fact, if ϕ1, ϕ2 ∈ Ψ(x), there are f1, f2 ∈ SF,x such that

ϕi(t) = tα−1Tα(t)(x0− g(x))+
∫ t

0
(t− s)α−1Tα(t− s)[ fi(s)+ B(s)u(s)]ds, t ∈ J

′
, (i = 1, 2).

For any λ ∈ [0, 1], we have

λϕ1(t) + (1− λ)ϕ2(t) = tα−1Tα(t)(x0 − g(x)) +
∫ t

0
(t− s)α−1Tα(t− s)[λ f1(s) + (1− λ) f2(s)]ds

+
∫ t

0
(t− s)α−1Tα(t− s)B(s)u(s)ds.

Since F has convex values, it follows that SF,x is convex and λ f1 + (1− λ) f2 ∈ SF,x. Then

λϕ1 + (1− λ)ϕ2 ∈ Ψ(x).

This fact means that Ψ(x) is convex.
Step 2. We will show that, for each x ∈ C1−α(J, X), Ψ(x) is closed.
Let {zn}n≥1 be a sequence in Ψ(x) satisfying zn → z as n→ ∞. We show that z ∈ Ψ(x).

By the definition of Ψ, there is { fn}n≥1 ⊂ SF,x such that

zn(t) = tα−1Tα(t)(x0 − g(x)) +
∫ t

0
(t− s)α−1Tα(t− s)[ fn(s) + B(s)u(s)]ds, t ∈ J′. (7)

By (H2)(ii), we deduce that the sequence { fn}n≥1 is integral-bounded. Moreover, since
{ fn(t)}n≥1 ⊂ F(t, x(t)), it implies that, for a.e. t ∈ J

′
, { fn(t)}n≥1 is relatively compact in X.

Hence, the sequence { fn}n≥1 is semi-compact in L1(J, X). According to Lemma 4, { fn}n≥1
is weakly compact in L1(J, X). Assume that the sequence { fn}n≥1 converges weakly
to some f ∈ L1(J, X). Then by virtue of Lemma 6, there is a subsequence {gn}n≥1 ⊆
co{ fn}n≥1 and gn converges to f in strong topology. Since SF,x is convex, we obtain that

{gn}n≥1 ⊆ SF,x, and f ∈ SF,x.

For fixed n ≥ 1 and every t ∈ J
′
, we obtain that

‖(t− s)α−1Tα(t− s) fn(s)‖ ≤ (t− s)α−1 M
Γ(α)

m(s)ψ(‖x‖C1−α
)

and ∫ t

0
(t− s)α−1m(s)ds ≤ (

p− 1
pα− 1

)
p−1

p b
pα−1

p ‖m‖Lp < +∞.

Taking n→ ∞ on both sides of (7), the Lebesgue-dominated convergence theorem guarantees
that

z(t) = tα−1Tα(t)(x0 − g(x)) +
∫ t

0
(t− s)α−1Tα(t− s)[ f (s) + B(s)u(s)]ds.

Then z ∈ Ψ(x).
Step 3. For each r > 0, let

Br = {x ∈ C1−α(J, X)|‖x‖C1−α
≤ r}.

Then, Br is clearly a nonempty convex, closed and bounded subset in C1−α(J, X). We will
prove that Ψ(Br) ⊆ Br for some r > 0.



Symmetry 2022, 14, 248 7 of 16

If it is not true, for any r > 0, there is xr ∈ Br such that ‖Ψxr‖C1−α
> r. By assumptions

(H2)–(H4) and Lemma 1, there is f r ∈ SF,xr such that

r < sup
t∈J
{t1−α‖Ψ(xr)(t)‖}

= sup
t∈J
{t1−α‖tα−1Tα(t)(x0 − g(xr)) +

∫ t

0
(t− s)α−1Tα(t− s)[ f r(s) + B(s)u(s)]ds‖}

≤ M
Γ(α)

(‖x0‖+ Mgr + ‖g(0)‖) + b1−α Mψ(r)
Γ(α)

(
p− 1

pα− 1
)

p−1
p b

pα−1
p ‖m‖Lp

+
b1−α M

Γ(α)
(

p− 1
pα− 1

)
p−1

p b
pα−1

p ‖Bu‖Lp .

According to the above inequality, we obtain that M∗ ≥ 1, which is a contradiction to (6).
Thus, Ψ(Br) ⊆ Br for some r > 0.

Step 4. We claim that the operator Ψ is u.s.c. and condensing.
Let Ψ = Ψ1 + Ψ2, where the operators Ψ1 and Ψ2 are defined by

(Ψ1x)(t) = tα−1Tα(t)(x0 − g(x)),

(Ψ2x) ={y ∈ C1−α(J, X) | y(t) =
∫ t

0
(t− s)α−1Tα(t− s)[ f (s) + B(s)u(s)]ds, f ∈ SF,x, t ∈ J}.

By Corollary 2.2.1 of [12], we will show that Ψ1 is a contraction operator and Ψ2 is com-
pletely continuous.

It is easy to check that Ψ1 is a contraction operator. Since for any x, y ∈ Br, by (6),
we have

‖Ψ1x−Ψ1y‖C1−α
= sup

t∈J
{t1−α‖tα−1Tα(t)(g(x)− g(y))‖}

≤
MMg

Γ(α)
‖x− y‖C1−α

< ‖x− y‖C1−α
.

Next, we will show that Ψ2 is completely continuous. By assumptions (H2), (H4),
and Remark 1, we obtain that f + Bu ∈ Lp(J, X). Thus, in view of the assumption (H1)
and Lemma 10, we deduce the relative compactness of Ψ2(Br). Thus, Ψ2 is completely
continuous.

Hence, Ψ is a condensing operator due to Corollary 2.2.1 of [12]. Now, it remains to
prove that Ψ2 has a closed graph.

Suppose {xn}n≥1 ⊂ Br with xn → x∗ as n→ ∞, yn ∈ Ψ2(xn) and yn → y∗ as n→ ∞.
We shall show that y∗ ∈ Ψ2(x∗). It follows from yn ∈ Ψ2(xn) that there is fn ∈ SF,xn such
that

yn(t) =
∫ t

0
(t− s)α−1Tα(t− s)[ fn(s) + B(s)u(s)]ds.

We will show that there is f∗ ∈ SF,x∗ such that

y∗(t) =
∫ t

0
(t− s)α−1Tα(t− s)[ f∗(s) + B(s)u(s)]ds.

When t ∈ J
′
, we have

‖yn(t)−
∫ t

0
(t− s)α−1Tα(t− s)B(s)u(s)ds− [y∗(t)−

∫ t

0
(t− s)α−1Tα(t− s)B(s)u(s)ds]‖

→ 0, (n→ ∞).
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Consider an operator F : L1(J, X)→ C1−α(J, X) defined by

(F f )(t) =
∫ t

0
(t− s)α−1Tα(t− s) f (s)ds.

Then F is a continuous linear operator and F ◦ SF is a closed-graph operator via Lemma 3.
Owing to the definition of F , we know that

yn(t)−
∫ t

0
(t− s)α−1Tα(t− s)B(s)u(s)ds ∈ F (SF,xn).

By means of xn → x∗, yn → y∗ as n→ ∞ and using Lemma 3 again, we obtain that

y∗(t)−
∫ t

0
(t− s)α−1Tα(t− s)B(s)u(s)ds ∈ F (SF,x∗).

That is, there is f∗ ∈ SF,x∗ such that

y∗(t)−
∫ t

0
(t− s)α−1Tα(t− s)B(s)u(s)ds =

∫ t

0
(t− s)α−1Tα(t− s) f∗(s)ds.

This fact implies that y∗ ∈ Ψ2(x∗).
Hence, Ψ2 has a closed graph. Therefore, Ψ2 is u.s.c.
Thus, Ψ = Ψ1 + Ψ2 is condensing and u.s.c. Consequently, Ψ has one fixed point x in

Br due to Lemma 8, and the control system (4) has at least one mild solution.

Under the case that g is completely continuous in C1−α(J, X), we can also prove an
existence theorem of (4).
(H3)

′ g : C1−α(J, X)→ X is completely continuous.

Remark 2. According to (H3)
′, {g(x) : x ∈ Br} is completely bounded. Thus, sup

x∈Br

‖g(x)‖ exists

and lim
r→∞

sup
x∈Br
‖g(x)‖

r = 0.

Theorem 2. Let assumptions (H1), (H2), (H3)
′, and (H4) hold. If

M
Γ(α)

(
p− 1

pα− 1
b)

p−1
p ‖m‖Lp Λ < 1,

then the fractional evolution system (4) has one mild solution in Br.

Proof of Theorem 2. We only prove that Ψ : Br → 2Br \ {∅} is u.s.c. Because g : C1−α(J, X)
→ X is completely continuous, we easily obtain that Ψ1 is completely continuous. Com-
bining this fact with the complete continuity of Ψ2, Ψ is completely continuous. By using
the similar proof of Theorem 1, we deduce that Ψ has a closed graph. Furthermore, Ψ is
u.s.c. owing to the fact that Ψ has compact values. Therefore, by applying Lemma 9, we
conclude that Ψ has one fixed point x in Br. This x is the mild solution of (4).

Let the following condition is satisfied:
(H2)

′ F : J × X → Pcv,cp(X) satisfies the following conditions:
(i) For each x ∈ X, F(t, x) is measurable to t and for every t ∈ J, F(t, x) is u.s.c. to x.

For every x ∈ X,
SF,x = { f ∈ L1(J, X) | f (t) ∈ F(t, x), a.e. t ∈ J}

is nonempty.
(ii) There exists a function m ∈ Lp(J,R+)(p > 1

α ) and a constant ρ > 0 such that

‖F(t, x)‖ := sup{‖ f (t)‖ | f (t) ∈ F(t, x), t ∈ J} ≤ m(t) + ρt1−α‖x‖.
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Then it is obvious that the assumption (H2) is fulfilled. Hence, by Theorems 1 and 2, we
can obtain the following corollaries.

Corollary 1. Let (H1), (H2)
′, (H3) and (H4) hold. If

ρ <
Γ(1 + α)− αMMg

Mb
, (8)

then the fractional evolution system (4) has one mild solution.

Corollary 2. Let (H1), (H2)
′, (H3)

′ and (H4) hold. If

ρ <
Γ(1 + α)

Mb
, (9)

then the fractional evolution system (4) has one mild solution.

Remark 3. In our existence results, we apply the fixed-point theorems of multi-valued mapping
to prove existence theorems of the considered system when the nonlinearity f is not Lipschitz-
continuous. Hence, our results partly extend [7–9].

4. Existence of Optimal Control

In this part, we will demonstrate the existence of the optimal state-control pair of
(4). Under the assumption that g is completely continuous or Lipschitz-continuous in
C1−α(J, X), we will utilize the technique established in the Ref. [9] to study the existence of
optimal state-control pair of (4). By constructing minimizing sequences twice, we delete
the Lipschitz continuity of the nonlinear term f , which is extensively used as an essential
assumption in existing papers (see [7,8]), and without the uniqueness of mild solutions,
we prove the existence of optimal state-control pair of (4). Hence, our results improve and
generalize some related works.

Lemma 11. Let the assumptions of Corollary 1 be fulfilled, and there is k > 0 such that ‖g(x)‖ ≤ k
for every x ∈ C1−α(J, X). Then, for fixed u ∈ Uad, there is R > 0 such that ‖xu‖C1−α

≤ R, where
xu is the mild solution of (4) associated with u ∈ Uad.

Proof of Lemma 11. Since xu is the mild solution of (4) corresponding to u ∈ Uad, then
there exists fxu ∈ SF,xu such that

xu(t) = tα−1Tα(t)(x0 − g(xu)) +
∫ t

0
(t− s)α−1Tα(t− s)[ fxu(s) + B(s)u(s)]ds, t ∈ J

′
.

For any t ∈ J
′
, by (H2)

′, (H4) and Lemma 1, we have

t1−α‖xu(t)‖ = t1−α‖tα−1Tα(t)(x0 − g(xu)) +
∫ t

0
(t− s)α−1Tα(t− s)[ fxu(s) + B(s)u(s)]ds‖

≤ ‖Tα(t)(x0 − g(xu))‖+ t1−α
∫ t

0
(t− s)α−1‖Tα(t− s)[ fxu(s) + B(s)u(s)]‖ds

≤ M
Γ(α)

[‖x0‖+ k + (
(p− 1)b
pα− 1

)
p−1

p (‖m‖Lp + ‖Bu‖Lp)]

+
Mρb1−α

Γ(α)

∫ t

0
(t− s)α−1s1−α‖xu(s)‖ds.

By employing Corollary 2 of [17], we get that

t1−α‖xu(t)‖ ≤ M
Γ(α)

[‖x0‖+ k + (
(p− 1)b
pα− 1

)
p−1

p (‖m‖Lp + ‖Bu‖Lp)]Eα(Mbρ) := R, (10)
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where Eα(κ) =
∞
∑

n=0

κn

Γ(nα+1) is the Mittag-Leffler function. Taking the supremum on both

sides of (10), we have
‖xu‖C1−α

= sup
t∈J
{t1−α‖xu(t)‖} ≤ R.

This completes the proof of Lemma 11.

When g is not Lipschitz-continuous, by Corollary 2, similarly to Lemma 11, we deduce
the following lemma.

Lemma 12. Let the assumptions of Corollary 2 be fulfilled, and there is k > 0 such that ‖g(x)‖ ≤ k
for every x ∈ C1−α(J, X). Then, for fixed u ∈ Uad, there is R > 0 such that ‖xu‖C1−α

≤ R, where
xu is the mild solution of (4) associated with u ∈ Uad.

Denote S(u) := {xu ∈ BR : xu ∈ Ψ(xu) as the mild solution of (4) associated with
u ∈ Uad in BR} and Aad := {(xu, u) : u ∈ Uad, xu ∈ S(u)}. We call Aad the set of
admissible state-control pairs.

To consider the optimal control problem of (4), we investigate the limited Lagrange
problem (P):

Seek a pair (x̄u0 , u0) ∈ Aad such that

J (x̄u0 , u0) := inf{J (xu, u)|(xu, u) ∈ Aad}, ∀u ∈ Uad, (11)

where J (xu, u) is the integral cost function given by

J (xu, u) =
∫ b

0
L(t, xu(t), u(t))dt.

If a pair (x̄u0 , u0) ∈ Aad satisfies the formula (11), then the limited Lagrange problem (P)
is solvable. In this case, we call the pair (x̄u0 , u0) ∈ Aad the optimal state-control pair of (4).

To study the limited Lagrange problem (P), let L : J × X×Y → R∪ {∞} satisfy the
following condition:
(HL): (i) L : J × X×Y → R∪ {∞} is Borel measurable;

(ii) For each x ∈ X and a.e.t ∈ J, L(t, x, ·) is convex on Y;
(iii) For a.e.t ∈ J, L(t, ·, ·) is sequentially lower semi-continuous on X×Y;
(iv) There are constants c1 ≥ 0, c2 > 0 and a function η ∈ L1(J,R+) such that

L(t, x, u) ≥ η(t) + c1‖x‖+ c2‖u‖
p
Y, ∀t ∈ J, x ∈ X, u ∈ Y.

Theorem 3. Let (H1), (H2)
′, (H3), (H4) and (HL) hold. Moreover, the inequality (8) is satisfied

and there is k > 0 such that ‖g(x)‖ ≤ k for every x ∈ C1−α(J, X). Then the limited Lagrange
problem (P) has one optimal state-control pair. That is, there is one pair (x̄u0 , u0) ∈ Aad such that

J (x̄u0 , u0) ≤ J (xu, u), (xu, u) ∈ Aad.

Proof of Theorem 3. For fixed u ∈ Uad, let J (u) := inf
xu∈S(u)

J (xu, u). The proof is com-

pleted in two steps.
Step 1. We will show that there is x̄u ∈ S(u) such that

J (x̄u, u) = inf
xu∈S(u)

J (xu, u) = J (u).

We suppose that S(u) has infinite elements. if inf
xu∈S(u)

J (xu, u) = +∞, there is nothing

to prove. Thus, let J (u) = inf
xu∈S(u)

J (xu, u) < +∞. Owing to (HL)(iv), we have J (u) >
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−∞. Employing the definition of the infimum, we get a sequence {xu
n}n≥1 ⊆ S(u) such

that
lim

n→∞
J (xu

n, u) = J (u).

We will first prove that for fixed u ∈ Uad, {xu
n}n≥1 is relatively compact in C1−α(J, X).

For fixed n ≥ 1, since (xu
n, u) ∈ Aad, there exists fxu

n ∈ SF,xu
n such that

xu
n(t) = tα−1Tα(t)(x0 − g(xu

n)) +
∫ t

0
(t− s)α−1Tα(t− s)[ fxu

n (s) + B(s)u(s)]ds

:= I1xu
n(t) + I2xu

n(t), ∀t ∈ J
′
.

(12)

From Lemma 10, {I2xu
n}n≥1 is relatively compact in C1−α(J, X).

In the following, the relative compactness of {I1xu
n}n≥1 in C1−α(J, X) is proved.

(i) We verify that {·1−αI1xu
n}n≥1 is uniformly bounded for every n ≥ 1. In view of

Lemma 1, we have

‖Tα(t)(x0 − g(xu
n))‖ ≤

M
Γ(α)

(‖x0‖+ k),

that is,

‖ ·1−α I1xu
n‖ ≤

M
Γ(α)

(‖x0‖+ k).

Therefore, {·1−αI1xu
n}n≥1 is uniformly bounded.

(ii) We show that {·1−αI1xu
n}n≥1 is equi-continuous for every n ≥ 1.

When t1 ≡ 0 and 0 < t2 ≤ b, by the strong continuity of Tα(t) for t ≥ 0 (see Lemma 1),
we have

‖Tα(t2)(x0 − g(xu
n))− Tα(0)(x0 − g(xu

n))‖ → 0 (t2 → 0).

When 0 < t1 < t2 ≤ b, by using the strong continuity of Tα(t)(t ≥ 0) again, we have

‖Tα(t2)(x0 − g(xu
n))− Tα(t1)(x0 − g(xu

n))‖ → 0 (t2 − t1 → 0).

These facts imply that {·1−αI1xu
n}n≥1 is equi-continuous for every n ≥ 1.

(iii) For each n ≥ 1, we prove that V(t) = {ω(t) | ω(t) = t1−αI1xu
n(t)}n≥1 is relatively

compact in X.
The relative compactness of V(0) in X is obvious. Next, we prove the case of t > 0.
Let 0 < t ≤ b, for any δ > 0, define Vδ(t) = {ωδ(t)}n≥1, where

ωδ(t) = α
∫ ∞

δ
θξα(θ)T(tαθ)(x0 − g(xu

n))dθ

= αT(tαδ)
∫ ∞

δ
θξα(θ)T(tαθ − tαδ)(x0 − g(xu

n))dθ.

Owing to the compactness of T(tαδ) for tαδ > 0, the set Vδ(t) is relatively compact in X.
Moreover, we get that

‖ω(t)−ωδ(t)‖ = ‖α
∫ δ

0
θξα(θ)T(tαθ)(x0 − g(xu

n))dθ‖

≤ αM(‖x0‖+ k)
∫ δ

0
θξα(θ)dθ

→ 0 (δ→ 0).

Hence, for t ∈ J′, the set V(t) is relatively compact in X due to the fact that the relatively
compact set Vδ(t) is arbitrarily close to it in X. Thanks to the Arzela-Ascoli theorem,
{·1−αI1xu

n}n≥1 is a relatively compact subset in C(J, X), which means that {I1xu
n}n≥1 is a

relatively compact subset in C1−α(J, X), Thus, {xu
n}n≥1 is a relatively compact subset in
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C1−α(J, X) for fixed u ∈ Uad. Without loss of generality, for fixed u ∈ Uad, let lim
n→∞

xu
n → x̄u.

The assumption (H2)
′ and Lemma 1 yield that

‖(t− s)α−1Tα(t− s)[ fxu
n (s) + B(s)u(s)]‖ ≤ M

Γ(α)
(t− s)α−1[m(s) + ρR + ‖B(s)u(s)‖]

and ∫ t

0
(t− s)α−1[m(s) + B(s)u(s)]ds ≤ (

p− 1
pα− 1

)
p−1

p b
pα−1

p [‖m‖Lp + ‖Bu‖Lp ] < +∞.

Since the operator Ψ has a closed graph, taking n → ∞ on both sides of (12), by the
continuity of g, we deduce that

x̄u(t) = tα−1Tα(t)(x0 − g(x̄u)) +
∫ t

0
(t− s)α−1Tα(t− s)[ f x̄u(s) + B(s)u(s)]ds,

where f x̄u ∈ SF,x̄u . This fact yields that x̄u ∈ S(u).
It follows from (HL) and the Balder theorem [18] that

J (u) = lim
n→∞

J (xu
n, u)

= lim
n→∞

∫ b

0
L(t, xu

n(t), u(t))dt

≥
∫ b

0
L(t, x̄u(t), u(t))dt

= J (x̄u, u)

≥ J (u).

Therefore, J (x̄u, u) = J (u) = inf
xu∈S(u)

J (xu, u), which implies that, for each u ∈ Uad,

J (xu, u) attains its minimum at x̄u ∈ S(u).
Step 2. We will prove that there is u0 ∈ Uad, satisfying J (u0) = inf

u∈Uad
J (u).

Let inf
u∈Uad

J (u) < +∞. By Step 1, we have inf
u∈Uad

J (u) > −∞. According to the

definition of infimum, there is {un}n≥1 ⊆ Uad satisfying lim
n→∞

J (un) = inf
u∈Uad

J (u). Since

{un}n≥1 ⊆ Uad ⊂ Lp(J, Y) (p >
1
α
)

is bounded and Lp(J, Y) (p > 1
α ) is a reflexive Banach space, it follows that there is a

subsequence, still denoted by {un}n≥1, such that

un
w−→ u0 (n→ ∞),

for some u0 ∈ Lp(J, Y). By utilizing the closedness and convexity of Uad, we obtain that
u0 ∈ Uad.

For every n ≥ 1, by Step 1, we can find x̄un ∈ S(un) satisfying J (x̄un , un) = J (un).
Therefore, (x̄un , un) ∈ Aad and satisfies

x̄un(t) = tα−1Tα(t)(x0 − g(x̄un)) +
∫ t

0
(t− s)α−1Tα(t− s)[ f x̄un (s) + B(s)un(s)]ds

= P1 x̄un(t) + P2 x̄un(t),
(13)
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where f x̄un ∈ SF,x̄un . By employing the technique used in Step 1, we know that {P1 x̄un(·)}n≥1
is relatively compact in C1−α(J, X). By Lemma 10, {P2 x̄un(·)}n≥1 is relatively compact in
C1−α(J, X). Consequently, {x̄un}n≥1 is relatively compact in C1−α(J, X).

Without loss of generality, we suppose that there is a subsequence of {x̄un}n≥1, labeled
by itself, satisfying lim

n→∞
x̄un = x̄u0 . Hence, taking n→ ∞ in (13), since the operator Ψ has a

closed graph, it follows from the continuity of g that

x̄u0(t) = tα−1Tα(t)(x0 − g(x̄u0)) +
∫ t

0
(t− s)α−1Tα(t− s)[ f x̄u0 (s) + B(s)u0(s)]ds,

where f x̄u0 ∈ SF,x̄u0 . This fact implies that (x̄u0 , u0) ∈ Aad is an admissible state-control pair.
According to the Balder theorem [18] and (HL), we obtain that

inf
u∈Uad

J (u) = lim
n→∞

J (un) = lim
n→∞

J (xun , un)

= lim
n→∞

∫ b

0
L(t, x̄un(t), un(t))dt

≥
∫ b

0
L(t, x̄u0(t), u0(t))dt

=J (x̄u0 , u0) = J (u0)

≥ inf
u∈Uad

J (u).

Thus,
J (u0) = inf

u∈Uad
J (u).

Therefore, we have

J (x̄u0 , u0) = inf
u∈Uad

J (u) = inf
u∈Uad

inf
x∈S(u)

J (xu, u).

That is, the limited Lagrange problem (P) has one optimal state-control pair (x̄u0 , u0) in
Aad.

Similarly, we can prove the following theorem when g is completely continuous.

Theorem 4. Let (H1), (H2)
′, (H3)

′, (H4) and (HL) hold. Moreover, the inequality (9) is
satisfied, and there is k > 0 such that ‖g(x)‖ ≤ k for every x ∈ C1−α(J, X). Then the limited
Lagrange problem (P) has one optimal state-control pair.

Remark 4. In Theorems 3 and 4, we demonstrate the existence of optimal state-control pair of (4)
when the nonlinearity f is not Lipschitz-continuous. By constructing the minimizing sequence
twice, we prove that the limited Lagrange problem (P) has one optimal state-control pair without the
uniqueness of mild solutions of (4). The obtained theorems extend the main results of [7,8].

Remark 5. In the present work, by using the fixed-point theorems of multivalued mapping, the
existence theorem on mild solutions as well as optimal controls are investigated for (4) under the
assumption that g is completely continuous or Lipschitz-continuous. The obtained results are
natural improvements of [9,14].
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5. An Application

Example 1. We consider the fractional partial differential inclusion
LD

2
3 x(t, y) ∈ ∂2

yx(t, y) + F̂(t, x(t, y)) +
∫ π

0
q(y, τ)u(τ, t)dτ, t ∈ (0, 1], y ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ (0, 1],

I
1
3 x(t, y)|t=0 +

n
∑

i=0
kgx(ti, y) = x0(y), y ∈ [0, π],

(14)
where LD

2
3 stands for the 2

3 -order fractional derivative operator in a Riemann-Liouville sense,

and I
1
3 represents the 1

3 -order Riemann-Liouville fractional integral operator, q ∈ C([0, π] ×

[0, π],R), kgµ(y) =
∫ π

0
k(y, τ)µ(τ)dτ, µ ∈ L2([0, π],R), 0 < t0 < t1 < · · · < tn ≤ 1.

Let X = Y = L2([0, π],R). We define A : D(A) ⊂ X → X as follows:

Ax =
∂2x
∂y2 ,

where D(A) = {x ∈ X | x′′ ∈ X, x(0) = x(π) = 0, x and x′ are absolutely continuous}.
From [9], A generates a compact analytic semigroup {T(t), t ≥ 0} in X. This means that
(H1) holds. Let

J (x, u) =
∫ 1

0

∫ π

0
|x(t, y)|2dydt +

∫ 1

0

∫ π

0
|u(t, y)|2dydt.

For any t ∈ [0, 1], let
x(t)(y) := x(t, y),

B(t)u(t)(y) :=
∫ π

0
q(y, τ)u(τ, t)dτ,

F(t, x(t))(y) := F̂(t, x(t, y)),

g(x)(y) :=
n

∑
i=0

kgx(ti, y).

Then the differential inclusion (14) can be transformed into the form of abstract fractional
evolution inclusion (4) and

J (x, u) =
∫ 1

0
(‖u(t)‖2 + ‖x(t)‖2)dt.

Now we take
Mg = (n + 1)(

∫ π

0

∫ π

0
k2(y, τ)dτdy)

1
2 .

Then, the assumption (H3) is satisfied. Let multi-valued mapping F̂(t, x(t, y)) satisfy the
following condition:
(P) The multivalued mapping F̂(t, ϑ) : [0, 1]× X → Pcv,cp(X) is satisfied:

(i) For every ϑ ∈ X, F̂ is measurable to t and for each t ∈ [0, 1], F̂ is u.s.c. to ϑ. For
every ϑ ∈ X,

SF,ϑ = { f ∈ L1([0, 1], X)| f (t) ∈ F̂(t, ϑ), t ∈ [0, 1]}

is nonempty.
(ii) There are m ∈ L2([0, 1],R+) and 0 < ρ < Γ( 5

3 )−
2
3 Mg such that

‖F̂(t, x(t, y))‖ ≤ m(t) + ρt1−α‖x‖.
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Thus, the assumption (H2)
′ is satisfied. According to Theorem 3, let (HL) hold, then

the fractional partial differential inclusion (14) has at least one mild solution, and the
corresponding Lagrange problem (P) has one optimal state-control pair.

Remark 6. Clearly, if we take g(x)(y) :=
n
∑

i=0
Cix(ti, y) where Ci > 0 are constants for i =

1, 2, · · · , n, then the assumption (H3) is satisfied with Mg =
n
∑

i=0
Ci.

Remark 7. In applications, we can give the multi-valued mapping F̂(t, x(t, y)) the specific expression,
which satisfies the assumption (P). Then the assumption (H2)

′ can be satisfied.

6. Conclusions

In this work, we first proved the existence theorem on mild solutions of (4) by using
the theory of operator semigroups and fixed-point theorems of multi-valued mapping.
Then, by constructing the minimizing sequence twice, the existence theorem on optimal
state-control pairs is also obtained. It is worth emphasizing that we delete the uniqueness
of mild solutions, which is an essential assumption in some existing papers. Hence, our
work improves some of the existing literature. If the Riemann-Liouville fractional evolution
inclusions involve time delays, it is difficult to prove the existence of mild solutions as well
as the optimal control because the Riemann-Liouville fractional derivative is singular at
t = 0. It is a valuable topic which we will study in the future.
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