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Abstract: In recent years, the modification of general relativity (GR) through f (R) gravity is widely
used to study gravity in a variety of scenarios. In this article, we study various physical properties
of a black hole (BH) that emerged in the linear Maxwell f (R) gravity to constrain the values of
different BH parameters, i.e., c and α. In particular, we study those values of the defining α and c for
which the particles around the above-mentioned BH behave like other astrophysical BH in GR. The
main motivation of the present research is to study the geodesics equations and discuss the possible
orbits for c = 0.5 in detail. Furthermore, the frequency shift of a photon emitted by a timelike particle
orbiting around the BH is studied given different values of α and c. The stability of both timelike and
null geodesics is discussed via Lyapunov’s exponent.

Keywords: black hole in f (R); geodesic equation

1. Introduction

The most tested theory, GR, has proven to be the most successful in the explanation
of gravity time and time again. However, one of the significant limitations of GR is that
it cannot be renormalized, which further suggests that it cannot be quantized. However,
to achieve the renormalization at one loop, the required Einstein–Hilbert action should
comprise higher-order curvature terms [1]. Consequently, a modification in the Einstein–
Hilbert action is required, so that it comprises higher-order curvature invariants compared
to the Ricci scalar [2]. However, these higher-order terms that are required in the action are
limited to the strong gravity regimes and, also, are expected to be strongly suppressed by
small couplings. The corrections to the GR in this case, therefore, have significance at the
Plank scales [3]. Another, more general motivation from cosmology to study the modified
theories of gravity is due to the proper explanation of aspects, such as the accelerated
expansion of the universe, that cannot be directly interpreted through GR [4]. There is an
attempt to explain dark energy, which is believed to be responsible for this accelerated rate
of expansion, as some form of modification in GR [5–14]. To address the issues in GR that
arise in high-energy physics to include higher-order invariants into the gravitational action,
or from cosmology and astrophysics to obtain a theory more generalized than GR, the f (R)
gravity is introduced. It is considered to be one of the simplest modifications in GR [3].
The main feature of f (R) gravity is that an arbitrary Ricci scalar describes the Lagrangian
density. The model that is based on f (R) gravity is one of the most elementary theories
among several modified theories of gravity used to explain it [15–26]. Furthermore, to
generalize these theories, another important parameter that should be studied is the impact
of electric charge. Therefore, it is necessary to consider electrodynamics field in f (R). The
non-linear electrodynamics discussed by Born and Infeld [27] explains very significant
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aspects, such as the existence of an upper limit on the electric field at the origin of point-like
particles. Furthermore, the self-energy is finite for charges [28–30]. In this particular study,
we have used the linear electrodynamics model.

The observation of the mathematical correspondence between gravitation and electric
fields is known since the eighteenth century, where Coulomb built his inverse square law to
construct the force between two charges at a radial distance [31]. Therefore, Coulomb’s law
is in a complete analog with the gravitational law [32], for which, the force is acting on two
masses separated by the same radial distance. The correspondence between this expression
of two forces leads scientists to conclude that the gravitational force effected by the sun on
the planets could be associated by a magnetic force yielding to the precession of their orbits
and, thus, from this point, the gap discovered by Newton in the precession of Mercury’s
orbit could be explained. In fact, Mercury’s perihelion precession was exactly explained
by Einstein’s GR. Additionally, it is known that gravitation contains a gravitomagnetic
field due to the mass current [33–36]. Moreover, Einstein GR predicts a gravitomagnetic
field because of the proper rotation of the Sun that acts on the planetary orbits [37–39].
All of the above are known facts that show the importance of the linear, as well as the
non-linear, electrodynamics in the frame of Einstein GR and its modifications, including
the f (R) theory. It is the aim of the present study to study the geodesic of the black hole
presented in [40] and to discuss its physics.

The study of null geodesics helps to investigate many physical properties around
the BH spacetime, and in particular, the study of the frequency shift can be useful in
understanding the strength of a gravitational field around a given spacetime. The investigation
for the motion of photons around a Kerr–Sen BH that surfaced from the heterotic string
theory has recently been performed through the study of null geodesics (see [41]). The
study frequency shift can unveil the gravitational field strength of a distant object and can
be very useful in understanding the nature of spacetime around any compact object. A
similar type of investigation as in [41] is also performed in [42,43], where the investigation
of null geodesics and different types of orbits in the equatorial plane are discussed, along
with the study of the frequency shift performed around a magnetically charged BH in
dilaton-Maxwell gravity. The method to investigate the properties of these spacetimes
are now used to explore the properties of a charged BH in non-linear f (R) gravity in the
forthcoming sections.

2. Null Geodesics for Static Solution in Non-Linear MAXWELL f (R) Gravity

The total action for the static solution of a charged BH in the nonlinear electrodynamics
in f (R) gravity is given by [44],

St =
1

2κ

∫ √
−g f (R)d4x +

∫ √
−gL(F)d4x, (1)

where
√−g is the determinant of the metric tensor gµν, κ is the gravitational constant, L(F)

is the Lagrangian of a non-linear electromagnetic, and F in action (1) is the antisymmetric
Faraday tensor. In particular, the gauge invariant Lagrangian is written as L = 4F for
the case of linear Maxwell electrodynamics. However, to obtain a corresponding BH
spacetime in non-linear Maxwell f (R) gravity, an auxiliary field Pαβ is considered to embed
electromagnetism in the framework of GR (In this study, we will consider the linear case of
the Maxwell equations of Equation (1) in order to make the discussion of the physics more
clear, and will leave the non-linear case of the Maxwell field to a separate case in the near
future). For this purpose, we impose the Legendre transformation,

H = 2FLF − L . (2)

Here, LF = ∂L
∂F . The auxiliary field, however, is defined as

Pµν = LFFµν, (3)
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therefore,

P =
1
4

PµνPµν = L2
FF. (4)

The Lagrangian for the case of this nonlinear electrodynamics model may then be
written as [44]

L = 2PHP − H , (5)

with Fµν = HPPµν, here HP = ∂H
∂P .

The field equations of the action (1) acquire the forms [45–47]:

ξµν = Rµν fR −
1
2

gµν f (R)− 2gµνΛ + gµν2 fR −∇µ∇ν fR − 8πT
nlem

µν ≡ 0, (6)

∂ν

(√
−gPµν

)
= 0, (7)

and the corresponding energy-momentum tensor is given as

T
nlem ν

µ ≡ 2(HPPµαPνα − δν
µ[2PHP − H]). (8)

Using the spherically symmetrical solution corresponding to the action in (1) obtained
(with κ = 1), the action can be written as [44],

ds2 = −
(

c
2
− 2M

r
+

q2

r2

)
dt2 +

dr2
(

c
2 − 2M

r + q2

r2

) + r2dΩ2 . (9)

Here, dΩ2 = dθ2 + sin2(θ)dφ2, M = 1
6α . The above equation shows that α 6= 0, which

ensures that this solution cannot coincide with the BH of GR, which means that it is a novel
solution in f (R) gravity. The above equation given by Equation (9) is a solution to the class
R + α

√
R [40] and for the vanishing magnetic field. The parameter c is the one responsible

for making the Ricci scalar not vanish. The variation of the event horizon with concerned
parameters for the above metric is represented pictorially in Figure 1.

c=0.5

c=1.0

c=1.5

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

α

r

Figure 1. Variation of event horizon for different values with α for different values of c; here, dashed
line represents the negative root and solid line represents the positive root.
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The Lagrangian appropriate to the motion in the equatorial plane is [48–51],

2Leq = −
(

c
2
− 2M

r
+

q2

r2

)
ṫ2 +

ṙ2

( c
2 − 2M

r + q2

r2 )
+ r2φ̇2. (10)

The generalized momenta can be shown as

pt =
∂L
∂ṫ

=⇒ −pt = (
c
2
− 2M

r
+

q2

r2 )ṫ = E = constant , (11)

pφ = r2φ̇ = L = constant , (12)

pr =
ṙ

( c
2 − 2M

r + q2

r2 )
. (13)

Here, the dot represents the differentiation with respect to an affine parameter τ.
Furthermore, the Hamiltonian is shown by Leq:

H = pt ṫ + pφφ̇ + pr ṙ− Leq . (14)

The Hamiltonian is independent of coordinate t and φ; further,

− Eṫ + Lφ̇ +
ṙ2

( c
2 − 2M

r + q2

r2 )
= δ1 = constant . (15)

Here, δ1 = 0 for null geodesics. From Equations (11) and (12), one can obtain φ̇ and ṫ,
which can be given by

φ̇ =
L
r2 , (16)

ṫ =
E

( c
2 − 2M

r + q2

r2 )
. (17)

Moreover, we can solve the Equations (14), (16) and (17) to obtain ṙ:

ṙ2 = E2 −

(
c
2 − 2M

r + q2

r2

)

r2 L2 . (18)

The effective potential can be defined as

Ve f f = E2 − ṙ2 , (19)

and from Equations (18) and (19), the effective potential for null geodesics in the case of
the above metric can be given by

Ve f f =
L
r2

(
c
2
− 2M

r
+

q2

r2

)
. (20)

The nature of the effective potential for the static solution is depicted in Figure 2 which
describes the nature of geodesics for particular values of α and c. The different values
of α and the parameter c lie in the range 0.4 ≤ α ≤ 0.6 and 0.5 ≤ c ≤ 1.5. It can be easily
observed that the value of the effective potential is the same as the BH solution of GR when
the value of c = 0.5. Therefore, these values of α and c will be considered in order to study
the trajectories of photons around this BH solution in this research.
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Figure 2. Effective potential for various values of (i) α (left panel) and (ii) c (right panel).

III. PHOTON ORBIT

The photon orbits define the trajectories of photons around a BH and to obtain the unstable equation for photon
orbits, we solve ṙ = 0. Therefore, from (18) the following equations are obtained:

E2 −

(
c
2 − 2M

r + q2

r2

)

r2
L2 = 0 , (21)

dṙ

dr
= 0 , (22)

6Mr − 4q2 − cr2
r5

= 0 . (23)

Solving (23), one can obtain the radius of critical photon orbit as,

rc =
3M ±

√
9M2 − 4q2c

c
. (24)

The critical value of the photon orbit is depicted in Figure 4 and it signifies the radius of circular orbit around the
BH spacetime. It can be easily noticed that the radius decreases as c and α increases.

IV. THE FREQUENCY SHIFT OF PHOTON EMITTED BY TIMELIKE PARTICLES

The frequency shift of a photon is an important parameter to determine the degree of curvature in spacetime. The
frequency shift of a photon emitted by a timelike particle passing by a BH depends on the BH parameters. The
frequency of emitted photon when shifts toward a smaller value then it indicates a redshifted photon. The property
of frequency shift can be also useful to evaluate in more detail the role of parameters like α and c. To evaluate the
redshift or blue shift emitted by a massive particle orbiting in a circular geodesic around the static BH, one needs
to investigate the effective potential for timelike particles [54]. Using Equation (15), with the value of δ1 = −1
representing the timelike geodesics, Equation (15) along with Equation (16) and (17) can be rewritten as,

− E2

c
2 − 2M

r + q2

r2

+
L2

r2
+

ṙ2

( c2 − 2M
r + q2

r2 )
= −1. (25)

The expression for the effective potential for a massive particle, therefore, reads

Veff = 1− E2

( c2 − 2M
r + q2

r2 )
+
L2

r2
. (26)

Figure 2. Effective potential for various values of (i) α ((a) panel) and (ii) c ((b) panel).

The various types of possible orbits for different values of parameters α and c are
visually presented in Figure 3; the observations can be useful to constrain the values of α
and c for astrophysical BHs in GR case. Further, from the trajectories in Figure 3, one can
observe that, when the values α = 0.6 and c = 0.5 are considered, the trajectories obtained
are like astrophysical BHs [52]. 6
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Figure 3. The trajectory of photon and shape of effective potential for α = 0.6 and c = 0.5, (i) top panel - plunge orbit at
b = 6.5, (ii) middle panel - flyby orbit with b = 10 and (iii) bottom panel - circular orbit with b = 9.28952.

Figure 3. The trajectory of photon and shape of effective potential for α = 0.6 and c = 0.5,
(a,b) (top) panel—plunge orbit at b = 6.5, (ii) (c,d) (middle) panel—flyby orbit with b = 10 (e,f) (iii)
(bottom) panel—circular orbit with b = 9.28952.



Symmetry 2022, 14, 309 6 of 15

3. Photon Orbit

The photon orbits define the trajectories of photons around a BH and, to obtain the
unstable equation for photon orbits, we solve ṙ = 0. Therefore, from (18), the following
equations are obtained:

E2 −

(
c
2 − 2M

r + q2

r2

)

r2 L2 = 0 , (21)

dṙ
dr

= 0 , (22)

6Mr− 4q2 − cr2

r5 = 0 . (23)

Solving (23), one can obtain the radius of the critical photon orbit as

rc =
3M±

√
9M2 − 4q2c
c

. (24)

The critical value of the photon orbit is depicted in Figure 4 and it signifies the radius
of the circular orbit around the BH spacetime. It can be easily noticed that the radius
decreases as c and α increases. 7
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Figure 4. The variation of radius of critical photon orbit with (i) α for different values of c and with (ii) c for different values
of α.

For circular orbits, the conditions required are Veff = 0 and
dVeff

dr = 0. Therefore, the expression for constants E
and L can be obtained after solving both conditions simultaneously as below,

E2 =

[
q2 + rc

(
c
2rc − 2M

)]2

r2c
[
2q2 + rc

(
c
2rc − 3M

)] , (27)

L2 =
r2c
(
Mrc − q2

)
[
2q2 + rc

(
c
2rc − 3M

)] . (28)

The expressions for E and L are only valid if c
2r

2
c − 3Mrc + 2q2 > 0 and Mrc − q2 > 0. Further in order to study the

stability of circular geodesics at equatorial plane the condition d2V eff
dr2 > 0 should also be satisfied.

The four-velocity components for the present case can further be defined as:

U t = − E

( c2 − 2M
r + q2

r2 )
, (29)

Uφ =
L

r2
. (30)

Using Equations (27), (28), (29) and (30), the above expression for U t and Uφ can be rewritten as,

U t = −
√

2r2c
(cr2c − 6Mrc + 4q2)

, (31)

Uφ =

√
2Mr − 2q2

r2c (cr2c − 6Mrc + 4q2)
. (32)

The angular frequency for the circular geodesic in case of a static solution can be defined as

Ω =
Uφ

U t
. (33)

Therefore, using Equations (31) and (32), it can further be expressed as,

Ω =

√
Mr − q2
r2

, (34)

Figure 4. The variation of radius of critical photon orbit with (a) α for different values of c and with
(b) c for different values of α.

4. The Frequency Shift of Photon Emitted by Timelike Particles

The frequency shift of a photon is an important parameter to determine the degree
of curvature in spacetime. The frequency shift of a photon emitted by a timelike particle
passing by a BH depends on the BH parameters. If the frequency of an emitted photon
shifts toward a smaller value, then it indicates a redshifted photon. The property of the
frequency shift can also be useful in evaluating the role of parameters such as α and c in
more detail. To evaluate the redshift or blueshift emitted by a massive particle orbiting in
a circular geodesic around the static BH, one needs to investigate the effective potential
for timelike particles [53]. Using Equation (15), with the value of δ1 = −1 representing the
timelike geodesics, Equation (15), along with Equations (16) and (17), can be rewritten as,

− E2

c
2 − 2M

r + q2

r2

+
L2

r2 +
ṙ2

( c
2 − 2M

r + q2

r2 )
= −1. (25)

The expression for the effective potential for a massive particle, therefore, reads as

Ve f f = 1− E2

( c
2 − 2M

r + q2

r2 )
+

L2

r2 . (26)
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For circular orbits, the conditions required are Ve f f = 0 and
dVe f f

dr = 0. Therefore, the
expression for constants E and L can be obtained after solving both conditions simultaneously
as below:

E2 =

[
q2 + rc

( c
2 rc − 2M

)]2

r2
c
[
2q2 + rc

( c
2 rc − 3M

)] , (27)

L2 =
r2

c
(

Mrc − q2)
[
2q2 + rc

( c
2 rc − 3M

)] . (28)

The expressions for E and L are only valid if c
2 r2

c − 3Mrc + 2q2 > 0 and Mrc − q2 > 0.
Further, in order to study the stability of circular geodesics at the equatorial plane, the

condition d2Ve f f
dr2 > 0 should also be satisfied.

The four-velocity components for the present case can further be defined as:

Ut = − E

( c
2 − 2M

r + q2

r2 )
, (29)

Uφ =
L
r2 . (30)

Using Equations (27)–(30), the above expression for Ut and Uφ can be rewritten as,

Ut = −
√

2r2
c

(cr2
c − 6Mrc + 4q2)

, (31)

Uφ =

√
2Mr− 2q2

r2
c (cr2

c − 6Mrc + 4q2)
. (32)

The angular frequency for the circular geodesic in rgw case of a static solution can be
defined as

Ω =
Uφ

Ut . (33)

Therefore, using Equations (31) and (32), it can be further expressed as

Ω =

√
Mr− q2

r2 , (34)

Furthermore, the four-momentum for photons is defined as kµ = (kt, kr, kθ , kφ), which
follows the null geodesics, i.e., kµ

µ = 0. Therefore, via the Lagrangian, which was defined in
(10), the two conserved quantities can be further written as

− Eγ = gttkt, (35)

and
Lγ = gφφkφ. (36)

The general expression for the frequency of a photon measured by an observer with
Uµ

c at a point Pc in spacetime reads as

wc = −kµUµ
c |Pc , (37)

where the index c indicates the emission (e) and/or detection (d) at a particular point
Pc. Therefore, the frequency of the photon observed by the comoving observer at some
emission point (e) can be written as
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we = −(kµUµ)|e, (38)

However, if the observer is far away from the emitter, then the frequency detected is

wd = −(kµUµ)|d, (39)

The four velocities in the four-dimensional spacetime of the emitter orbiting around
BH and the distant detector are defined as below:

Uµ
e = (Ut, Ur, Uθ , Uφ)|e, (40)

Uµ
d = (Ut, Ur, Uθ , Uφ)|d. (41)

The four-velocity when the distance between the observer and source is extremely
large (i.e., r → ∞ ) can be written as

Uµ
d = (1, 0, 0, 0). (42)

The frequency shift of the photon emitted by a source moving around BH and detected
by a observer can, however, be described as

1 + z =
we

wd
=

(Eγ Ut − Lγ Uφ − grr Ur kr − gθθ Uθ kθ)|e
(Eγ Ut − Lγ Uφ − grr Ur kr − gθθ Uθ kθ)|d

.

After, considering the condition that the emitter is in a circular orbit and lies in the
equatorial plane (Ur = Uθ = 0), the red/blueshift can be written as

1 + z =
(Eγ Ut − Lγ Uφ)|e
(Eγ Ut − Lγ Uφ)|d

=
Ut

e − De Uφ
e

Ut
d − Dd Uφ

d

,

where D(≡ Lγ/Eγ) is the impact parameter, which can be described by the expression below:

D± = ±
√√√√ r2
(

c
2 − 2M

r + q2

r2

) . (43)

Since there are two different values of D, they correspond to two different values of
frequency shifts, which correspond to a photon that is emitted by either a receding object
(z1) or an approaching object (z2), in the case of a non-rotating BH, z1 = −z2. Thus, the
redshift is denoted by z1 and the blue-shift is denoted by (z2), which are equal but have
opposite signs. The expression for the redshift can be further reduced to the following if
the observer is at a very large distance (i.e., r → ∞).

z1 = UφDe+. (44)

Further, the expression for the frequency shift can be obtained as

z1 =

√√√√ r2(rM− q2)(
cr2

2 − 2rM + q2
)(

cr2

2 − 3rM + 2q2
) . (45)

The frequency shift of the photon emitted by a massive body moving around the BH
depends on its parameters. It can easily be observed in Figure 5: as the α increases, the
value of the redshift decreases with a particular value of the radius (rc) of circular geodesics.
Furthermore, the blueshift tends toward a lesser negative value as α increases. Further, a
similar type of trend can be observed as c increases, where the red frequency shifts toward
a lower value for a particular value of rc and the blue frequency shifts toward the lower
negative value for a particular value of rc.
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Figure 5. The variation of red shift (left panel) and blue shift (right panel) for different values of (i) α (upper panel) and (ii) c
(lower panel).

V. STABILITY ANALYSIS OF GEODESICS VIA LYAPUNOV EXPONENTS

In this section, we analyze the stability of circular geodesics around the spacetime specified above by calculating
Lyapunov exponents as followed by Cardoso et al. [55]. In general, the Lyapunov exponent is the measure of the
average rate of separation between two nearby geodesics in phase space. The positive value of the Lyapunov exponent
implies divergence while the negative value implies convergence of two neighboring geodesics. [55–60].
The existence of unstable circular geodesics in any gravitational field of BH spacetime consequently verify the non-
linearity of GR and has a positive value of Lyapunov exponent quantitatively. The non-linearity in GR provides
non-integrability of such a system due to which the unstable circular geodesics may show chaotic nature. [61–64].
Cardoso et al. [55] defined a simple relationship between the second-order derivative of the effective potential and the
Lyapunov exponent for the motion of non-spinning test particle in the background of any static, spherically symmetric
spacetime as follows

λp = ±

√
(Veff )

′′

2
, (46)

λc = ±

√
(Veff )

′′

2ṫ2
, (47)

popularly known as the proper time and the coordinate time Lyapunov exponent respectively. Throughout the
calculations, a dot represents a derivative with respect to proper time, and (′) stands for differentiation w.r.t. r.

Figure 5. The variation of redshift ((left) panel) and blueshift ((right) panel) for different values of
(a) α (upper panel) and (b) c (lower panel).

5. Stability Analysis of Geodesics via Lyapunov Exponents

In this section, we analyze the stability of circular geodesics around the spacetime
specified above by calculating Lyapunov exponents, as followed by Cardoso et al. [54]. In
general, the Lyapunov exponent is the measure of the average rate of separation between
two nearby geodesics in phase space. The positive value of the Lyapunov exponent
implies divergence, whereas the negative value implies a convergence of two neighboring
geodesics [54–59].

The existence of unstable circular geodesics in any gravitational field of BH spacetime
consequently verifies the non-linearity of GR and has a positive value of the Lyapunov
exponent quantitatively. The non-linearity in GR provides a non-integrability of such a
system, due to which, the unstable circular geodesics may show a chaotic nature [60–63].

Cardoso et al. [54] defined a simple relationship between the second-order derivative
of the effective potential and the Lyapunov exponent for the motion of non-spinning test
particles in the background of any static, spherically symmetric spacetime as follows:

λp = ±

√√√√
(

Ve f f

)′′

2
, (46)

λc = ±

√√√√
(

Ve f f

)′′

2ṫ2 , (47)

which are popularly known as the proper time and the coordinate time Lyapunov exponent,
respectively. Throughout the calculations, a dot represents a derivative with respect to
proper time, and (′) stands for differentiation w.r.t. r.

The circular geodesics are found unstable, stable, and marginally stable for the
real, imaginary, and zero value of the Lyapunov exponents, respectively, as shown in
Figure 6 [54].
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Figure 6. The variation of “λ2
c ” for “r0” for a massive test particle with different values of c and for

the fixed value of α = 0.7.

5.1. Stability of Timelike Geodesics

The second-order derivative of effective potential Ve f f for timelike case from (26) is
calculated as

V
′′
e f f =

12(−q2 + Mr)
r2(4q2 − 6Mr + cr2)

−

(−2q2

r3 + 2M
r2

)2
(2q2 − 4Mr + cr2)2

(
c
2 − 2M

r + q2

r2

)3
r2(4q2 − 6Mr + cr2)

+

(
6q2

r4 − 4M
r3

)
(2q2 − 4Mr + cr2)2

2
(

c
2 − 2M

r + q2

r2

)2
r2(4q2 − 6Mr + cr2)

. (48)

Considering the second order derivative of the effective potential, i.e., V
′′
e f f from

Equation (48) in order to discuss the stability of the circular geodesics of massive particles
in non-linear Maxwell f (R) gravity, the coordinate time Lyapunov exponent by using
Equations (27), (28) and (47) is evaluated as

λc =

√√√√
(

Ve f f

)′′

2ṫ2 =

√√√√√√√√
12(−q2 + Mr0)

(2q2 − 4Mr0 + cr2
0)

2

(
c
2
− 2M

r0
+

q2

r2
0

)2

−

(
−2q2

r3
0

+ 2M
r2

0

)2

(
c
2 − 2M

r0
+ q2

r2
0

) +

(
3q2

r4
0
− 2M

r3
0

)
, (49)

and the proper time Lyapunov exponent by using Equation (46) is calculated as

λp =

√√√√
(

Ve f f

)′′

2

=

√√√√√√√√
6(−q2 + Mr0)

r2
0(4q2 − 6Mr0 + cr2

0)
− 2

(
−q2

r3
0
+ M

r2
0

)2
(2q2 − 4Mr0 + cr2

0)
2

(
c
2 − 2M

r0
+ q2

r2
0

)3
r2

0(4q2 − 6Mr0 + cr2
0)

+

(
3q2

r4
0
− 2M

r3
0

)
(2q2 − 4Mr0 + cr2

0)
2

2
(

c
2 − 2M

r0
+ q2

r2
0

)3
r2

0(4q2 − 6Mr0 + cr2
0)

. (50)

The stability or instability of the timelike circular geodesics can be illustrated by
Lyapunov exponents calculated above. For (Ve f f )

′′
< 0, the timelike circular geodesics are

stable due to the complex nature (i.e., imaginary) of λc or λp. For (Ve f f )
′′
> 0, the unstable

circular geodesics exist due to the real value of λc or λp. On the other hand, for (Ve f f )
′′
= 0,
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the timelike circular geodesics are marginally stable because both the exponents vanish
there. The variation of the coordinate time Lyapunov exponent λ2

c with a radius of a circular
orbit (r0) for various values of parameter c is depicted in Figure 6. It is observed that, for
c = 0.5, λ2

c decreases to a minimum negative value and then increases to zero and becomes
constant after a certain value of the radius of circular orbits r0, but, for other values of c, it
exponentially decreases to zero.

The ratio of the proper time Lyapunov exponent (λp) to the coordinate time Lyapunov
exponent (λc) is given as

λp

λc
=

√√√√√√
(2q2 − 4Mr0 + cr2

0)
2

2
(

c
2 − 2M

r0
+ q2

r2
0

)2
r2

0(4q2 − 6Mr0 + cr2
0)

. (51)

5.2. Stability of Null Geodesics

In the case of massless test particles, only the coordinate time Lyapunov exponent is
considered, because there is no proper time for such particles.

The effective potential for massless test particles can again be written as

We f f =
L2

r2

(
c
2
− 2M

r
+

q2

r2

)
. (52)

The null circular orbits are possible when ṙ2 = 0 from (18) at constant radius r = rc,
which provides the angular momentum to energy ratio (i.e., impact parameter), which is
given as

Dc =
Lc

Ec
=

√√√√ r2
c(

c
2 − 2M

rc
+ q2

r2
c

) . (53)

The angular frequency at r = rc is deduced as

Ωc =
φ̇

ṫ
=

√√√√
(

c
2 − 2M

rc
+ q2

r2
c

)

r2
c

=
1

Dc
. (54)

By deriving the second order derivative of We f f with respect to r, i.e., (We f f )
′′
, and

using Equation (53), the coordinate time Lyapunov exponent for null circular orbits by
using Equation (47) is derived as

λNull =

√√√√
(

We f f

)′′

2ṫ2 =

√(
c
2
− 2M

rc
+

q2

r2
c

)[
3q2

r4
c
− 2M

r3
c

+
3
r2

c

(
c
2
− 2M

rc
+

q2

r2
c

)
+

2
rc

(
2q2

r3
c
− 2M

r2
c

)]
. (55)

The behavior of the Lyapunov exponent (λ2
Null) with the radius of null circular orbits

(rc) by a varying parameter (α) is visualized in Figure 7, and we observed that the stability of
circular orbits become constant when the radius of circular orbits is larger. The instability of
circular orbits near the horizon increases when α = 0.5. However, the instability decreases
with an increase in the radius of the circular orbit (rc ) and with an increase in the value of
α for c = 0.5.
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Figure 7. The behavior of “λ2
Null” with radius “rc” for massless particles with different values of

parameter α and fixed value of c = 0.5.

The null circular orbits are unstable at the radius rc, as determined above for real
values of the Lyapunov exponent λNull , i.e., for (We f f )

′′
> 0. The instability of unstable null

circular orbits can be determined by a quantity known as the instability exponent, which is
defined as the ratio of the Lyapunov exponent to the angular frequency (λNull/Ωc), and is
evaluated as follows:

λNull
Ωc

=

√
3c
2
− 12M

rc
+

10q2

r2
c

. (56)

The variation of the instability exponent with respect to radius rc for the fixed value of
parameter c = 0.5 is presented in Figure 8. It is clearly observed that the instability of null
circular orbits first decreases to a minimum and then increases with rc.

c= 0.5

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

rc

λ
n
u
ll

Ω
c

Figure 8. The variation of “( λNull
Ωc

)” with radius “rc” for massless particles with parameter c = 0.5
and fixed value of α = 0.5.

The variation of the instability exponent with respect to radius rc is presented in
Figure 8. It is found that the instability of null circular orbits first decreases sharply to the
minimum and then gradually increases with rc.

6. Discussion and Conclusions

The study of null geodesics can provide us with information about the structure of
spacetime around BHs in the regime of f (R) gravity, which is a generalizing modification
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to GR. This investigation may be further useful for the study of the physical properties of
the BHs, given the effect of BH parameters on the trajectories of the photons passing by a
BH. The main results drawn from our investigations are as follows.

The variation of the effective potential in the case of the static solution suggests that,
when the value of α is larger than 0.4, the effective potential behaves like the various BH
solutions in GR. However, it can be noted that the peak of the effective potential shifted
towards lower values as α increased. When the effective potential is studied given c, it can
be noted that the effective potential also shows a behavior similar to the BH solutions in GR
when c ≈ 0.5. Furthermore, the peak of the effective potential increases when c increases
within the range of 0.5 < c < 1.5. The possible orbits studied for the BH parameters are
set as α = 0.6 and c = 0.5; three types of orbits are observed for different values of impact
parameter (b). For b = 6.5, the photon coming from the distant source tends to plunge
into the BH. The value of b = 10, however, indicates that the photon, when passing the
BH, follows a flyby orbit. Further, the photon follows circular geodesics for the value
of b = 9.28952. The condition for an unstable circular orbit (rc), in the case of the static
solution, is also obtained, and its variation with α and c is depicted. It is observed that the
value of (rc) decreases with an increase in the value of α and value of c.

The study of redshift, which is considered as a direct indicator of gravitational strength,
is investigated given different values of BH parameters. The variation of redshift and
blueshift is depicted with the radial distance r, which is larger than the radius of the
innermost stable circular orbit. It is noticed that, with an increase in α, the value of redshift
decreases significantly when α lies between 0.1 to 0.6. The value of redshift also decreases
as c increases when the value of c lies between 0.5 to 1.5.

The stability of timelike and null geodesics is also studied with the help of the
Lyapunov exponent with different values of α and c. It is observed that the depth of
the coordinate time Lyapunov exponent λc decreases as the value of c increases. Further,
an expression for the ratio for the proper time Lyapunov exponent λp with λc for timelike
geodesics with parameter c is also obtained. The nature of λNull for null geodesics is also
studied with α, and it is observed that the depth of the instability decreases as α increases.
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