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Abstract: We apply the original semiclassical approach to the kinetic ionization equation with the
nonlocal cubic nonlinearity in order to construct the family of its asymptotic solutions. The approach
proposed relies on an auxiliary dynamical system of moments of the desired solution to the kinetic
equation and the associated linear partial differential equation. The family of asymptotic solutions to
the kinetic equation is constructed using the symmetry operators acting on functions concentrated
in a neighborhood of a point determined by the dynamical system. Based on these solutions, we
introduce the nonlinear superposition principle for the nonlinear kinetic equation. Our formalism
based on the Maslov germ method is applied to the Cauchy problem for the specific two-dimensional
kinetic equation. The evolution of the ion distribution in the kinetically enhanced metal vapor active
medium is obtained as the nonlinear superposition using the numerical–analytical calculations.

Keywords: kinetic model; symmetry operators; Maslov germ; nonlinear superposition principle;
dense plasma; active media; semiclassical approximation; WKB–Maslov method
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1. Introduction

Kinetic equations are the theoretical footing for the dynamic phenomena of various
nature that occur in physical systems of many interacting elements (particles). Examples
of such system are diluted gases, gas discharges, a plasma, processes of coagulation [1],
and biological systems such as, e.g., population systems [2–4]. In some systems, nonlo-
cal collective (averaged) interactions of elements substantially contribute to dynamics.
Such interactions are modeled by integral terms in kinetic equations that become integro-
differential. In spatially heterogeneous kinetic phenomena, the interelement interactions
occur along with the diffusion. Then, the model kinetic equation belongs to the class of
reaction-diffusion (RD) equations. The study of RD equations with both local and nonlocal
terms have formed an independent branch of mathematical physics.

Due to the mathematical complexity of the study of RD equation with nonlocal
interactions, methods of computer modeling prevail here. However, the demand for
the analytical methods stimulates the development of approximate and asymptotically
exact solutions. For a number of RD kinetic equations with nonlocal interactions, one
can succeed using the WKB–Maslov theory of semiclassical approximation or the Maslov
complex germ method [5–7]. Based on the WKB–Maslov theory, the method of semiclassical
asymptotics was developed for a generalized Fisher–Kolmogorov–Petrovskii–Piskunov
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equation (Fisher–KPP) with a quadratic nonlocal term in [8,9] and for the nonlocal Gross–
Pitaevskii equation in [10,11].

In this work, using the results of [9,12], we construct semiclassical asymptotics for the
model kinetic equation with the nonlocal cubic nonlinearity of the form

∂tu(~x, t) = DD̃a(t)∆xu(~x, t) + a(~x, t)u(~x, t)

−κu(~x, t)
∫
Rn

d~y
∫
Rn

d~z b(~x,~y,~z, t)u(~y, t)u(~z, t). (1)

Here, t is a time, u(~x, t) is a distribution function (e.g., the particle density in a system),

∂t =
∂

∂t
. In a general case, the method under consideration is applicable for n-dimensional

space, ~x = (x1, x2, . . . , xn) = (xi) ∈ Rn. The nonlinearity parameter κ and the small diffu-
sion parameter D are introduced explicitly for the sake of convenience. The n-dimensional
Laplace operator in the Cartesian space ~x ∈ Rn is denoted by ∆x. The coefficients a(~x, t)
and b(~x,~y,~z, t) are smooth functions of their spatial arguments that grow not faster than
polynomially at each point t.

In the physical two-dimensional or three-dimensional space, Equation (1) is consid-
ered as a model of the optical metal vapor active medium (MVAM) excited by an electrical
discharge [12]. The MVAM is a mixture of a buffer inert gas and metal vapors in a gas
discharge tube (GDT) (see [13,14] and references therein). In the active medium excited
by an electrical discharge, the ionization and recombination processes are mainly caused
by the inelastic electron impact. For typical pressures of a buffer gas and metal vapors,
preferentially metal atoms are ionized in the mixture. The process of triple recombination
of an ion with two electrons is responsible for the deionization (see, e.g., [15]). Such dense
plasma formed by metal ions and electrons can be considered as quasineutral. The con-
tracted electrical discharge generates ions and electrons localized in the neighborhood
of the GDT center. It means that the concentration of the charges rapidly decreases with
the distance from the GDT center. In [12,16], the description of the plasma kinetics under
assumptions made was based on the following equation:

∂tni = Da(t)∆xni + qinenneut − qtrni(ne)
2, (2)

where ~x are Cartesian coordinates of a point in R2 or R3 depending on the problem
statement. The quantity qi = qi(~x, t) is the kinetic coefficient for the electron impact
ionization of neutral atoms with a concentration nneut = nneut(~x, t) (ne = ne(~x, t) is an
electron concentration). In the same sense, the coefficient qtr = qtr(~x, t) meets the process
of triple recombination of ions with a concentration ni = ni(~x, t). We assume the plasma to
be dense so that the triple recombination dominates over the dielectronic recombination.
The coefficient Da(t) is an ambipolar diffusion coefficient. The dependence of qi, nneut, qtr,
and Da on ~x and t is due to their dependence on electron temperature that substantially
depends on ~x and t.

Assuming the quasineutrality of plasma, the concentrations of ions and electrons are
the same, i.e.,

ne(~x, t) = ni(~x, t). (3)

Then, for given a(~x, t) = qi(~x, t)nneut(~x, t) and qtr(~x, t), Equation (2) becomes closed and
determines the concentration ni(~x, t) for the given initial and boundary conditions.

To apply the method of semiclassical asymptotics borrowed from papers [9,12], we
write Equation (2) in the nonlocal form (1). For the space R2 or R3, the function b(~x,~y,~z, t)
is the probability density of a triple recombination due to the collision of an ion with two
electrons. The ambipolar diffusion coefficient Da(t) in Equation (2) is written as DD̃a(t)
where D is the asymptotic small parameter.

In this work, following the method of semiclassical asymptotics [8,9], we have con-
structed approximate solutions of Equation (1) in an explicit analytical form for the special
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set of equation coefficients. The obtained expressions are leading terms of semiclassical
expansion for the solutions of Equation (1) within the accuracy of O(D3/2) in the following
class P t

D of trajectory concentrated functions (TCF):

P t
D =

{
Φ : Φ(~x, t, D) = ϕ

( ∆~x√
D

, t, D
)

exp
[1
D

S(t, D)
]}

, (4)

where Φ(~x, t, D) is a generic element of the class P t
D; ∆~x = ~x − ~X(t, D); the real func-

tion ϕ(~η, t, D) belongs to the Schwartz space S in variables ~η, smoothly depends on t,
and regularly depends on

√
D as D → 0. The real smooth functions S(t, D) and ~X(t, D),

characterizing the class P t
D, regularly depend on

√
D as D → 0 and are to be determined.

Note that the approach proposed can be useful for other models based on nonlin-
ear equations similar to (2). Nonlinear kinetic equations arise in various areas such as
cosmology models (see review [17]), superfluidity models [18], etc.

In the next section, we expound the main ideas of the our approach and basic notations,
and we introduce the linear equation associated with the original kinetic equation whose
solutions include the asymptotic solutions to the original kinetic equation. In Section 3,
we obtain the particular solution to the associated linear equation for the special choice
of equation coefficients in the two-dimensional case. In Section 4, the main object of
Maslov theory, the germ, is obtained. Here, we present the symmetry operators to the
associated linear equation and construct the family of its solutions. In Section 5, we
apply the algebraic conditions on the solutions to the associated linear equation that
allow us to obtain the countable set of new asymptotic solutions to the nonlinear kinetic
equation. Moreover, the new method for constructing asymptotic solutions to the Cauchy
problem for the kinetic equation based on the nonlinear superposition principle is proposed.
In Section 6, the specific physically motivated example of the two-dimensional kinetic
equation is considered. We illustrate the general formalism of our semiclassical approach
by constructing the evolution of the initial ion distribution in the relaxing kinetically
enhanced active medium. In Section 7, we conclude with some remarks.

2. Leading Term of Semiclassical Asymptotics for the Cauchy Problem Solution

In this section, we recapitulate the general scheme for the method of constructing the
leading term of semiclassical asymptotics for Equation (1). The detailed description of this
method can be found in [12].

According to [12], the following asymptotic estimates hold for functions u(~x, t, D)
from the class P t

D:

1
||u|| || p̂

k∆xlu|| = O(D(k+1)/2),
1
||u||

∥∥∥T̂
(
~X(t, D), t

)
u
∥∥∥ = O(D), (5)

where ∆~x = ~x− ~X(t, D), ~̂p = D∇,∇ is the gradient operator with respect to~x, T̂
(
~X(t, D), t

)
=

D∂t + 〈~̇X(t, D), ~̂p〉 − Ṡ(t, D), Ṡ(t, D) =
dS(t, D)

dt
, ‖ · ‖ is the L2-norm, 〈·, ·〉 is the scalar

product of vectors, and k is the non-negative integer. In particular, (5) yields ~̂p = Ô(
√

D),

∆~x = Ô(
√

D). Here, F̂ = Ô(Dµ) means that
‖F̂ϕ‖
‖ϕ‖ = O(Dµ), ϕ ∈ P t

D.

For simplicity, we will omit the parameter D in expressions where it does not
cause confusion.

In view of the estimates (5), the asymptotic expansion of the coefficient in Equation (1)
in powers of ∆~x in a neighborhood of the trajectory ~x = ~X(t, D) allows us to transform
Equation (1) to the approximate one with the given accuracy. The residual of the approx-
imate equation has the estimate O

(
D

1+M
2
)

in the class P t
D, where M ≥ 2 is the highest

power of ∆xi accounted in the expansion. The leading term of asymptotics of the solution
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to (1) is determined by the expansion of up to O(D3/2). Following [12], the respective
expansions in matrix notations can be written as

a(~x, t) = a(~X, t) + ax∆~x +
1
2

∆~x>axx∆~x + Ô(D3/2),

b(~x,~y,~z, t) = b(~X, ~X, ~X, t) + bx∆~x + by∆~y + bz∆~z

+
1
2

∆~x>bxx∆~x +
1
2

∆~y>byy∆~y +
1
2

∆~z>bzz∆~z

+∆~x>bxy∆~y + ∆~x>bxz∆~z + ∆~y>byz∆~z + Ô(D3/2).

(6)

Here, ~X = ~X(t) = ~X(t, D), ∆~x = ~x− ~X(t), ∆~y = ~y− ~X(t), and~z = ~z− ~X(t) are column vec-

tors; (·)> is a transposed matrix; ax, bx, by, and bz are row vectors of the form
(

ax =
∂a
∂xi

∣∣∣
~x=~X(t)

)
,(

bx =
∂b
∂xi

∣∣∣
~x=~y=~z=~X(t)

)
, row vectors by, bz have the analogous form; axx and bxx are symmetric

matrices of the form axx =
( ∂2a

∂xi∂xj

∣∣∣
~x=~X(t)

)
, bxx =

( ∂2b
∂xi∂xj

∣∣∣
~x=~y=~z=~X(t)

)
, matrices byy, bzz, bxy,

byx, bzy,byz, and bxz have the analogous form.
The key point of the considered approach [12] is that the nonlocal nonlinearity enters

into the approximate kinetic equation obtained with the help of an asymptotic expansion
of (1) in the form of the moments of the solution u(~x, t, D), and dynamical equations that
determine the evolution of these moments can be solved separately.

In order to construct the leading term of asymptotics, we need corresponding moments
of up to the second order that are defined as follows

σu(t, D) =
∫
Rn

u(~x, t, D)d~x, ~xu(t, D) =
1

σu(t, D)

∫
Rn

~xu(~x, t, D)d~x,

(
α
(2)
u,ij(t, D)

)
=

1
σu(t, D)

∫
Rn

∆~xi∆~xju(~x, t, D)d~x.
(7)

Here, α
(2)
u (t, D) =

(
α
(2)
u,ij(t, D)

)
is the symmetric matrix of the central second-order moments

of the function u(~x, t, D). The first-order moment will determine the functional parameter
~X(t, D) of the class P t

D (4) as
~xu(t, D) = ~X(t, D). (8)

Dynamical equations for the moments (7) are obtained by differentiation with re-
spect to t, from the definitions (7), and using ∂tu(~x, t) from (1). Taking into consideration
expansions (6) and estimates (5) with accuracy of O(D3/2), we arrive at the following
moment equations:

σ̇u = σu

(
a(~xu, t) +

1
2

Sp
[
axxα

(2)
u
])

−κσ3
u

(
b(~xu,~xu,~xu, t) +

1
2

Sp
[
(bxx + byy + bzz)α

(2)
u
])

,

~̇xu = (ax −κσ2
ubx)α

(2)
u , α̇

(2)
u = 2DD̃a(t)In,

(9)

where In is the identity matrix of size n, and the expression axxα
(2)
u implies a product of

matrices axx and a(2)u .
Let us consider Equation (9) as the system where the aggregate of moments

gu(t) =
(
σu(t),~xu(t), α

(2)
u (t)

)
(10)
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is substituted for the set of independent variables
(
σ(t),~x(t), α(2)(t)

)
, and α(2) =

(
α
(2)
ij (t)

)
that are not related to the function u(~x, t) in the general case. Thus, the resulting system can
be treated as an independent dynamical system. According to [12], this system is termed
the Einstein–Ehrenfest (EE) system of the second order for the nonlocal kinetic Equation (1)
in the class of TCF (4). The second order of the system implies that we preserve the terms

of order not higher than O(
√

D
2
).

Let the general solution of this system be

g(t, C) =
(
σ(t, C),~x(t, C), α(2)(t, C)

)
, (11)

where C is a set of arbitrary integration constants. Then, the substitution of the expansion (6)
into Equation (1) with the replacement of moments (10) by the general solution (11) yields
the following linear equation:

L̂(~x, t, C)v(~x, t) = 0, (12)

where the linear operator L̂(~x, t, C) is given by

L̂(~x, t, C) = −∂t + DD̃a(t)∆x + L(t, C) + Lx(t, C)∆~x +
1
2

∆~x>Lxx(t, C)∆~x,

L(t, C) = a
(
~x(t, C), t

)
−κσ2(t, C)

(
b
(
~x(t, C),~x(t, C),~x(t, C), t

)
+

1
2

Sp
[(

byy
(
~x(t, C),~x(t, C),~x(t, C), t

)
+ bzz

(
~x(t, C),~x(t, C),~x(t, C), t

))
α(2)(t, C)

])
,

Lx(t, C) = ax
(
~x(t, C), t

)
−κσ2(t, C)bx

(
~x(t, C),~x(t, C),~x(t, C), t

)
,

Lxx(t, C) = axx
(
~x(t, C), t

)
−κσ2(t, C)bxx

(
~x(t, C),~x(t, C),~x(t, C), t

)
.

(13)

Equations (12) and (13) in [12] are termed the associated linear equation for Equation (1).
Let us pose the Cauchy problem for Equation (1) in the class of TCF (4):

u(~x, t, D)
∣∣
t=0 = ϕ(~x, D) ∈ PD

0 , PD
0 = PD

t
∣∣
t=0. (14)

Next, we impose a restriction on the integration constants C involved in the general
solutions (11). The restriction is given by the following algebraic condition:

g(0, C) = gϕ, (15)

which yields C = Cϕ. Here, gϕ is the aggregate of the moments (10) that is determined by
the initial condition ϕ(~x, D) as

σϕ =
∫
Rn

ϕ(~x, D)d~x, ~xϕ =
1

σϕ

∫
Rn

~xϕ(~x, D)d~x,

(
α
(2)
ϕ,ij
)
=

1
σϕ

∫
Rn

(xi − xϕ,i)(xj − xϕ,j)ϕ(~x, D)d~x.
(16)

Let us consider the Cauchy problem for the associated linear Equations (12) and (13) with
the initial condition

v(~x, t)
∣∣
t=0 = ϕ(~x, D). (17)

According to [9,12], the solution of the Cauchy problem for Equation (1) with the initial
condition (14) and the solutions of the Cauchy problems (12), (17) in the class of TCF are
related as follows:

u(~x, t, D) = v(~x, t, Cϕ) + O(D3/2), (18)

where Cϕ is given by the algebraic condition (15).
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3. Semiclassical Asymptotics in a Two-Dimensional Plane-Parallel Case

In this section, based on the method proposed in the previous section, we will obtain
an explicit expression for a family of asymptotic solutions for the special case of Equation (1)
analogous to the one considered in [12].

Let us consider the problem in the plane orthogonal to the GDT axis. Let~x = (x1, x2) ∈ R2

be Cartesian coordinates in this plane and the coefficients in (1) be given by

a(~x, t) = a(t), b(~x,~y,~z, t) = b(t)p(~x−~y,~x−~z, µ),

p(~r1,~r2, µ) = exp
[
−
~r2

1 +~r2
2

2µ2

]
,

(19)

where the functions a(t) and b(t) are assumed to be monotone decreasing and increasing,
respectively, and the parameter µ characterizes the nonlocality of the nonlinearity kernel
p(~r1,~r2, µ), ~x2 = 〈~x,~x〉.

For functions (19), Equations (8) and (9) yield ~̇X(t) = 0. The identity ~̇X = 0 also
holds in a more general case for the problem with the symmetric configuration of a GDT.
We choose the origin of coordinates so that ~X(t)

∣∣
t=0 = 0. It leads to ~X(t) = 0. Ions are

usually localized on the GDT axis, which is taken as the origin of coordinates in our case.
Then, ∆~x = ~x.

In the case under consideration, Equation (9) reads

σ̇(t) = a(t)σ(t)−κβ(t)σ3(t), ~x(t) = ~X(t) = 0, α(2)(t) = 2Dd(t). (20)

Here, we denoted

β(t) = b(t)
(

1− 4
µ2 D · Sp [d(t)]

)
, d(t) = d + I2

t∫
0

D̃a(τ)dτ, d(0) = d, (21)

where d is a diagonal 2× 2-matrix, diagonal elements of the matrix 2Dd characterize the
degree of localization (dispersion) of the initial axial ion distribution with respect to x1,
and x2, I2 is the identity 2× 2-matrix.

The general solution of Equation (20) is given by

σ(t) = z−2(t), z(t) = c−1v(t, 0) + 2κ
t∫

0

β(τ)v(t, τ)dτ, (22)

where v(t, τ) = exp
(
− 2

t∫
τ

a(ζ)dζ
)

and c is an arbitrary integration constant, σ(0) = c2.

Note that
∂v(t, τ)

∂t
= −2a(t)v(t, τ) and v(t, t) = 1.

Thus, the relation (20) for α(2)(t) = α(2)(t, C) with ~x(t) = 0 and the relation (22)
for σ(t) = σ(t, C) yield the general solution of the EE system with arbitrary integration
constant C:

g(t, C) =
(
σ(t, C),~x(t, C) = 0, α(2)(t, C)

)
, (23)

where the set of integration constants reads

C = (c2, 0, 2Dd). (24)
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Let us proceed to the construction of the family of particular solutions for the kinetic
equation. For the two-dimensional case under consideration, ~x ∈ R2, with the coeffi-
cients (19), Equation (1) can be written as

∂tu(~x, t) = DD̃a(t)∆xu(~x, t) + a(t)u(~x, t)

−κb(t)u(~x, t)
∫
R2

d~y
∫
R2

d~zp(~x−~y,~x−~z)u(~y, t)u(~z, t), (25)

where ∆x is a two-dimensional Laplace operator. In view of (5) and (6), Equation (25) reads

∂tu(~x, t) = DD̃a(t)∆xu(~x, t) + a(t)u(~x, t)−

− κ
µ2 σ2

u(t)
[
µ2 − Sp α

(2)
u (t)−~x2

]
+ O(D3/2).

(26)

Next, we obtain the associated linear Equation (12) from Equation (26) by the replace-
ment of moments σu(t), α

(2)
u (t) of the required solution u(~x, t) by the general solutions of

the dynamical EE system (23).
In view of (20), the relation (13) reads

L(t, C) = a(t)− κ
µ2 σ2(t)

(
µ2 − 2D · Sp [d(t)]

)
,

Lx(t, C) = 0,

Lxx(t, C) = 2
κ
µ2 σ2(t, C)b(t)I2,

(27)

which allows us to write the associated linear Equation (12) as

L̂(~x, t, C)v(~x, t) =
(
− ∂t + DD̃a(t)∆x + a(t)

− κ
µ2 b(t)σ2(t, C)

(
µ2 − 2D · Sp [d(t)]−~x2

))
v(~x, t) = 0.

(28)

We are looking for the particular solutions of Equation (28) in the form of the Gaus-
sian function:

v0(~x, t, C) = N0
1
D

exp
{

1
D

(
S(t, D) +

1
2
~x>Q(t)~x

)
+ φ(t, D)

}
, (29)

where N0 is a normalization constant that is related to the initial number of ions. The mul-

tiplier
1
D

is introduced for convenience. Note that this multiplier does not contradict

the ansatz (4) since it can be included in the function S(t, D) as the summand (−D ln D).
The term (−D ln D) → 0 as D → 0, so it does not violate the regularity of S(t, D) with
respect to

√
D as D → 0.

The substitution of (29) into (28) yields

Ṡ = D
[

a(t)−κb(t)σ2(t)
(

1− 2D
µ2 Sp [d(t)]

)]
, φ(t, D) =

t∫
0

D̃a(τ) Sp Q(τ)dτ,

1
2

Q̇ = D̃a(t)Q2 + D
κ
µ2 b(t)σ2(t)I2.

(30)
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Equation (30) determines the functions S(t, D) and φ(t, D) through quadratures:

S(t, D) = D
t∫

0

dτ

[
a(τ)−κb(t)σ2(t)

(
1− 2D

µ2 Sp [d(t)]
)]

,

φ(t, D) =

t∫
0

dτD̃a Sp Q(τ).

(31)

The matrix Riccati equation in (30) can be represented as the linear system by
the substitution:

Q(t) = B(t)C−1(t), (32)

where B(t) and C(t) are nondegenerate matrices that satisfy the following matrix linear
system of differential equations: Ċ(t) = −2D̃a(t)B(t),

Ḃ(t) = 2
κ
µ2 Db(t)σ2(t)C(t). (33)

4. Countable Set of Solutions to the Associated Linear Equation

In this section, we describe the approach to constructing the family of solutions of the
associated linear Equation (28) based on solutions of the system (33).

Denote b̃(t) =
κ
µ2 Db(t)σ2(t). Since the coefficients in the system (33) are scalar,

the matrices B(t) and C(t) can be sought in the diagonal form:

B(t) = diag
{

W1(t), W2(t)
}

, C(t) = diag
{

Z1(t), Z2(t)
}

, (34)

where Wi(t) and Zi(t), i, j = 1, 2, are scalar functions.
Note that the matrix Q(t) is also diagonal is this case:

Q(t) = diag
{W1(t)

Z1(t)
,

W2(t)
Z2(t)

}
(35)

For the functions in (34), the system (33) reads

Żi(t) = −2D̃a(t)Wi(t), Ẇi(t) = 2b̃(t)Zi(t). (36)

The equations for functions
(
W1(t), Z1(t)

)
and

(
W2(t), Z2(t)

)
are identical. Hence,

these functions can differ only due to their different initial condition. Let us consider the
system of equations for the functions W(t) and Z(t),

Ż(t) = −2D̃a(t)W(t), Ẇ(t) = 2b̃(t)Z(t), (37)

whose solutions for different initial conditions determine the matrices B(t) and C(t) and,
correspondingly, the matrix Q(t). The system (37) was coined “the variational system”
in [9].

The system (37) has two linearly independent solutions. Let us denote them by the
following formulae: (

W(±)(t), Z(±)(t)
)

. (38)

These solutions are determined by the following initial conditions:

W(+)(0) = β > 0, W(−)(0) = −β, Z(±)(0) = 1. (39)
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For the functions
(

W±i (t), Z±i (t)
)

, i, j = 1, 2, the numbers βi that determine the initial
conditions by

W(+)
i (0) = βi > 0, W(−)

i (0) = −βi, Z(±)
i (0) = 1 (40)

can be different in a general case.
Now, we can construct the family of solutions to Equation (28) based on the particular

solution (29). For this purpose, we use the well-known quantum mechanics method widely
used in various problems [19–21].

Denote the two-dimensional symplectic identity matrix as J =
(

0 −1
1 0

)
. Introduce

the two-dimensional column vectors

a(±)(t) =
(

W(±)(t), Z(±)(t)
)>

(41)

and the skew scalar product{
a(−)(t), a(+)(t)

}
=
(
a(−)(t)

)> Ja(+)(t) = Z(−)(t)W(+)(t)− Z(+)(t)W(−)(t), (42)

which is a conserved quantity in view of (37):

d
dt
{

a(−)(t), a(+)(t)
}
= Ż(−)(t)W(+)(t) + Z(−)Ẇ(+)(t)− Ż(+)(t)W(−)(t)

−Z(+)(t)Ẇ(−)(t) = −2D̃a(t)W(−)(t)W(+)(t) + Z(−)(t)2b̃(t)Z(+)(t)

+2D̃a(t)W(+)(t)W(−)(t)− Z(+)(t)2b̃(t)Z(+)(t) = 0.

(43)

Therefore, for t = 0, we have{
a(−)(0), a(+)(0)

}
= Z(−)(0)W(+)(0)− Z(+)(0)W(−)(0) = 2β, (44)

i.e., {
a(−)(t), a(+)(t)

}
= 2β. (45)

Following the general Maslov complex germ method, the linear two-dimensional
space with the basis vectors a(−)1 (t) and a(−)2 (t) is called the germ r2

t . In our case, the germ
is chosen to be real, since we seek the real solutions to (25). The pair

(
Λ0

t , r2
t
)
, where Λ0

t is
the trajectory (the time-dependent 0-dimensional manifold) ~x = ~X(t), determines the set
of asymptotic solutions to Equation (25). In order to construct such solutions, we present
the symmetry operators associated with the vectors a(−)1 (t), a(−)2 (t) and with the vectors

a(+)
1 (t), a(+)

2 (t).
Define the operators

â(−)(t) = −Na

(
Z(−)(t)D∂x −W(−)(t)x

)
,

â(+)(t) = Na

(
Z(+)(t)D∂x −W(+)(t)x

)
.

(46)

These operators satisfy the following commutation relations:[
â(−)(t), â(−)(t)

]
=
[
â(+)(t), â(+)(t)

]
= 0,[

â(−)(t), â(+)(t)
]
= N2

a

[
− Z(−)(t)D∂x + W(−)(t)x, Z(+)(t)D∂x −W(+)(t)x

]
= N2

a D
(

Z(−)(t)W(+)(t)− Z(+)(t)W(−)(t)
)
= N2

a D · 2β.

(47)
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We define the normalization multiplier as Na =
1√
2βD

. Then, we have

â(−)(t) = − 1√
2βD

(
Z(−)(t)D∂x −W(−)(t)x

)
,

â(+)(t) = − 1√
2βD

(
Z(+)(t)D∂x −W(+)(t)x

)
,

(48)

and [
â(−)(t), â(+)(t)

]
= 1. (49)

For the diagonal matrix Q(t) (35), the solution (29) can be written as

v0(~x, t, C) = N0
1
D

exp
{

1
D

[
S(t, D) +

1
2
(
Q1(t)x2

1 + Q2(t)x2
2
)]

+ φ(t, D)

}
. (50)

Here, Qi(t) =
W(−)

i (t)

Z(−)
i (t)

, and the functions
(
W(±)

i , Z(±)
i
)

are solutions of the system (37)

with initial conditions (40).
For the two-dimensional case, the operators (48) read

â(−)i (t) = − 1√
2βiD

(
Z(−)

i (t)D∂xi −W(−)
i (t)xi

)
,

â(+)
i (t) = − 1√

2βiD

(
Z(+)

i (t)D∂xi −W(+)
i (t)xi

)
,

(51)

and the commutators are as follows:[
â(−)i (t), â(+)

j (t)
]
= δij. (52)

It can be shown that the operators â(−)i (t) nullify the function v0(~x, t, C) of the
form (50)

â(−)i (t)v0(~x, t, C) = 0, (53)

and that operators â(±)(t) commute with the operator L̂(~x, t, C) of Equation (28):[
L̂(~x, t, C), â(±)i (t)

]
= 0. (54)

It means that the operators â(±)i (t) are the symmetry operators for Equation (28).

Hence, the action of the operators â(+)
i (t) on v0(~x, t, C) generates the family of new solutions

to Equation (28). Let us define this family of solutions by

vn(~x, t, C) =
Nn

N0

1
n!
(
â(+)

1 (t)
)n1
(
â(+)

2 (t)
)n2 v0(~x, t, C). (55)

Here, n = (n1, n2) is the two-dimensional multi-index, ni ∈ {0, 1, 2, . . .}, |n| = n1 + n2,
n! = n1!n2!, Nn are normalization coefficients.

The solutions to (55) can be written in the explicit form. Define

ξi =

√
βi

DZ(−)
i (t)Z(+)

i (t)
xi. (56)

In view of the formula for the Hermitian polynomials [22]

Hni (ξi) = (−1)ni exp(ξ2
i )(∂ξi )

ni exp(−ξ2
i ), (57)
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the relation (55) reads

vn(~x, t, C) =
Nn

N0

(−1)|n|√
2|n|n!

(
Z(+)

1 (t)

Z(−)
1 (t)

) n1
2
(

Z(+)
2 (t)

Z(−)
2 (t)

) n2
2

Hn1(ξ1)Hn2(ξ2)v0(~x, t, C). (58)

The set (58) is the parametric family of solutions to the associated linear Equation (28).
Our next task is to find a countable set of asymptotic solutions to the kinetic Equation (25)
among these solutions with the free parameter C.

5. Algebraic Conditions and Solutions of the Kinetic Equation

In this section, we construct solutions un(~x, t) to Equation (26) with help of the solu-
tions vn(~x, t, C) (58) to the associated linear equation (28). For this, we impose the algebraic
conditions (15) and (16) on arbitrary integration constants C = (c2, 0, 2Dd) that are included
in the solution of the EE system. Then, we have

un(~x, t) = vn(~x, t, Cn), (59)

where
Cn = (c2

n, 0, 2Ddn), n = (n1, n2). (60)

The functions un(~x, t) are the leading terms of asymptotics for solutions to the original
nonlocal kinetic Equation (25) with accuracy of O(D3/2).

Next, we obtain the constants (60) in an explicit form. Let us write the solutions to (58)
in the form

vn(~x, t, C) = Υn(t)Hn1(ξ1)Hn2(ξ2)
1
D

exp
{ 1

2D
(
Q1(t)x2

1 + Q2(t)x2
2
)}

,

Υn(t) =
(−1)|n|√

2|n|n!

(
Z(+)

1 (t)

Z(−)
1 (t)

) n1
2
(

Z(+)
2 (t)

Z(−)
2 (t)

) n2
2

Nn exp
{ 1

D
S(t, D) + φ(t, D)

}
,

Qi(t) =
W(−)

i

Z(−)
i (t)

, ξi =

√
βi

DZ(−)
i (t)Z(+)

i (t)
xi.

(61)

In order to obtain the moments for the whole set of solutions vn(~x, t, C), we use the
representation of the Hermitian polynomial through the generating function [22]:

exp[2xt− t2] =
∞

∑
k=0

Hk(x)
tk

k!
. (62)

Then, the generating function V(~x, t, t1, t2, C) for solutions (61) is given as follows,

V(~x, t, t1, t2, C) = exp
{

2

√
β1

DZ(−)
1 (t)Z(+)

1 (t)
t1x1 + 2

√
β2

DZ(−)
2 (t)Z(+)

2 (t)
t2x2

}

× 1
D

exp
{

1
2D

(
W(−)

1 (t)

Z(−)
1 (t)

x2
1 +

W(−)
2 (t)

Z(−)
2 (t)

x2
2

)}
,

V(~x, t, t1, t2, C) =
∞

∑
n1=0

∞

∑
n2=0

Υ−1
n (t)vn(~x, t, C)

tn1
1 tn2

2
n!

.

(63)

From (7), one can see that σu(t) and α
(2)
u (t) · σu(t) are linear functionals with respect to

u(~x, t). This property allows us to obtain moments σn(t) and α
(2)
n (t) · σn(t) of the functions
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vn(~x, t, C) (61) with the help of respective generating functions derived from (63). Introduce
the following functions:

Ω(t, t1, t2) =
∫
R2

V(~x, t, t1, t2, C)d~x,

Ω(t, t1, t2) =
∞

∑
n1=0

∞

∑
n2=0

Υ(−1)
n (t)σn(t)

tn1
1 tn2

2
n!

,

Aii(t, t1, t2) =
∫
R2

x2
i V(~x, t, t1, t2, C)d~x, i = 1, 2,

Aii(t, t1, t2) =
∞

∑
n1=0

∞

∑
n2=0

Υ−1
n (t)α(2)ii,n(t)σn(t)

tn1
1 tn2

2
n!

.

(64)

Here, the subscripts ii indicate the number of a matrix element.
Straightforward calculations of integral in the formulae (64) yield

Ω(t, t1, t2) =
2π

√
Z(−)

1 (t)Z(−)
2√

W(−)
1 (t)W(−)

2

exp
[
− 2
(

β1t2
1

Z(+)
1 (t)W(−)

1 (t)
+

β2t2
2

Z(+)
2 (t)W(−)

2 (t)

)
− t2

1 − t2
2

]
,

A11(t, t1, t2) =
2πD

√(
Z(−)

1 (t)
)5Z(−)

2 (t)√(
W(−)

1 (t)
)5W(−)

2 (t)

(
−

W(−)
1 (t)

Z(−)
1 (t)

+ 4t2
1

β1

Z− 1(−)(t)Z(+)
1 (t)

)

× exp
[
− 2
(

β1t2
1

Z(+)
1 (t)W(−)

1 (t)
+

β2t2
2

Z(+)
2 (t)W(−)

2 (t)

)
− t2

1 − t2
2

]
.

(65)

The formula for A22(t, t1, t2) can be obtained from one for A11(t, t1, t2) (65) by the formal
interchanging 1 ↔ 2 in all subscripts. In view of (64), the expansion of functions (65) in
powers of t1, t2 yields the following expression for moments:

σ(2n1,2n2)
(t) = Υ(2n1,2n2)

(t)
2π

√
Z(−)

1 (t)Z(−)
2 (t)√

W(−)
1 (t)W(−)

2 (t)

(2n1)!(2n2)!
n1!n2!

×
[
− 2β1

Z(+)
1 (t)W(−)

1 (t)
− 1
]n1[

− 2β2

Z(+)
2 (t)W(−)

2 (t)
− 1
]n2

,

σ(2n1+1,2n2)
(t) = σ(2n1,2n2+1)(t) = σ(2n1+1,2n2+1)(t) = 0,

α
(2)
11,(2n1,2n2)

(t) = −D
Z(−)

1 (t)

W(−)
1 (t)

{
1 +

[
2β1

Z(+)
1 (t)W(−)

1 (t)
+ 1
]−1 4β1

W(−)
1 (t)Z(+)

1 (t)
n1

}
,

α
(2)
22,(2n1,2n2)

(t) = −D
Z(−)

2 (t)

W(−)
2 (t)

{
1 +

[
2β2

Z(+)
2 (t)W(−)

2 (t)
+ 1
]−1 4β1

W(−)
2 (t)Z(+)

2 (t)
n2

}
.

(66)

Thus, among the obtained solutions v(n1,n2)
(~x, t, C) to the associated linear Equation (28),

only those ones with even indices n1, n2 generate the asymptotic solutions to the kinetic
Equation (25).

Note that functions (66) are particular solutions to the EE system (20). Hence, the solu-
tions to the EE system (20) are determined by the solutions to the variational system (36). It
is a corollary of the fact shown in [12] that the leading term of asymptotics for the function
u(~x, t) uniquely defines the functions σ(t), α(2)(t) within accuracy of O(D3/2).
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Substituting t = 0 into the formulae (66) and taking into account (40) and (31), we obtain
the following initial conditions for moments included in the integration constants Cn:

σ(2n1,2n2)
(0) =

N(2n1,2n2)

2n1+n2−1
π√
β1β2

√
(2n1)!(2n2)!

n1!n2!
,

α
(2)
11,(2n1,2n2)

(0) =
D
β1

(1 + 4n1), α
(2)
22,(2n1,2n2)

(0) =
D
β2

(1 + 4n2),
(67)

while the integration constants (60) read

c2
(2n1,2n2)

= σ(2n1,2n2)
(0), d(2n1,2n2)

= diag
( 1

2β1
(1 + 4n1),

1
2β2

(1 + 4n2)
)

. (68)

Thus, the functions (59) with the constants C(2n1,2n2)
=
(
c2
(2n1,2n2)

, 0, 2Dd(2n1,2n2)

)
of

the form (67) and (68) determine a countable set of solutions to Equation (26) that are the
leading terms of semiclassical asymptotics for the kinetic Equation (25).

Note that the solution in Equation (58) for n 6= 0 changes its sign in the space ~x ∈ R2

due to the properties of Hermitian polynomials. For the main physical applications,
the function u(~x, t) is positive definite (e.g., it corresponds to the ion concentration in the
model of the MVAM kinetics). Therefore, the functions vn(~x, t, C) are rather of interest
not by themselves but as a basis for the expansion of positive definite functions. In such
interpretation, the function vn(~x, t, C) is a “mode” of the physical state involving vn(~x, t, C)
in its expansion. In order to clarify the meaning of this statements, let us describe the
nonlinear superposition principle for semiclassical solutions of Equation (25).

The functions vn(~x, t) (61) can be written as

vn(~x, t) = Υn(t)Ψn(~x, t), n = (n1, n2),

Ψn(~x, t) = Hn1(ξ1)Hn2(ξ2)
1
D

exp
{

1
2D

(
W(−)

1 (t)

Z(−)
1 (t)

x2
1 +

W(−)
2 (t)

Z(−)
2 (t)

x2
2

)}
,

ξi =

√
βi

DZ(−)
i (t)Z(+)

i (t)
xi.

(69)

The substitution of t = 0 into (69) yields

ψn(~x) = Ψn(~x, 0) = Hn1

(
x1

√
β1

D

)
Hn2

(
x2

√
β2

D

)
1
D

exp
{
− 1

2D
(β1x2

1 + β2x2
2)
}

. (70)

It can be seen that the following orthogonality condition holds for the functions ψn(~x):∫
R2

ψn(~x)ψm(~x)d~x =
2|n|n!π

D
√

β1β2
δn1m1 δn2m2 , m = (m1, m2). (71)

Let us expand the initial condition (17) in functions ψn(~x):

ϕ(~x) =
∞

∑
n1=0

∞

∑
n2=0

knψn(~x). (72)
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Then, the initial condition ϕ(~x) corresponds to the following solution to the associated
linear Equation (28):

v(~x, t, C) = exp
{ 1

D
S(t) + φ(t)

} ∞

∑
n1=0

∞

∑
n2=0

kn

(
Z(+)

1 (t)

Z(−)
1 (t)

) n1
2
(

Z(+)
2 (t)

Z(−)
2 (t)

) n2
2

Ψn(~x, t),

v(~x, t, C)
∣∣∣
t=0

=
∞

∑
n1=0

∞

∑
n2=0

knψn(~x), Ψn(~x, 0) = ψn(~x).

(73)

In order to obtain the asymptotic solution of the original kinetic Equation (25), we
must impose the algebraic condition C = Cϕ. The integration constants Cϕ for the function
ϕ(~x) (72) are given by

σ(0) =
∞

∑
n1=0

∞

∑
n2=0

k(2n1,2n2)
2π√
β1β2

(
− 1√

2

)n1+n2
√
(2n1)!(2n2)!√

n1!n2!
, σ(0) 6= 0,

α
(2)
ii (0) =

1
σ(0)

D
βi

∞

∑
n1=0

∞

∑
n2=0

k(2n1,2n2)
2π√
β1β2

(
− 1√

2

)n1+n2
√
(2n1)!(2n2)!√

n1!n2!
(1 + 4ni),

(74)

where i = 1, 2.
Thus, a set of the integration constants Cϕ is determined by a set of expansion co-

efficients of an initial condition ϕ(~x) with respect to functions ψn(~x, t), i.e., expansion
coefficients nonlinearly determine the asymptotic solution u(~x, t) = v(~x, t, C) + O(D3/2) to

the nonlinear kinetic Equation (25) with the initial condition u(~x, t)
∣∣∣
t=0

= ϕ(~x). The nonlin-

earity of this superposition principle is caused by the nonlinear dependence of the functions
included in (73) (in particular, the solutions of the variational system) on the integration
constants in (74).

Although the solutions of the associated linear equation v(2n1,2n2+1)(~x, t), v(2n1+1,2n2)
(~x, t),

v(2n1+1,2n2+1)(~x, t) do not correspond to any asymptotic solutions of the kinetic equation in
themselves, the functions Ψ(2n1,2n2+1)(~x, t), Ψ(2n1+1,2n2)

(~x, t), and Ψ(2n1+1,2n2+1)(~x, t) given
by (69) enter into the expansion (73) subject to σ(0) 6= 0. Thus, we can construct asymmetrical
solutions with respect to spatial variables (not odd and not even) to the nonlinear kinetic
equation with the help of the nonlinear superposition principle.

Note that our functions vn(~x, t, C) contain two free positive parameters, β1 and β2.
The change of these parameters yields us a new family of the asymptotic solutions (59)
or a new basis (69) for the nonlinear superposition principle. For example, the solution
v0(~x, t, C0) is invariant under the interchanging x1 ↔ x2 for β1 = β2 and is not invariant for
β1 6= β2. The parameters β1, β2 determine the localization area of the functions vn(~x, t, C)
and Ψn(~x, t, C) with respect to x1, x2. The nonlinear superposition principle can be applied
to the given initial condition under any positive β1, β2. However, the more the localization
area of the initial condition differs from the localization area of the functions Ψn(~x, t, C)
determined by β1, β2, the slower the series (72) converges. The slow convergence of
the series (72) leads to the slow convergence of the series (73) for t > 0. Yet, it is not
clear how to compare the localization area of two multipeak functions in a general case.
It can be completed in the particular case though, which is illustrated in the next section.
We can draw an analogy for the parameters β1, β2 with the scaling factor (dilations) of the
wavelets [23], since both the functions (69) and their Fourier transform with respect to ~x
are localized functions at each fixed t with the localization area determined by β1, β2. The
proposed rule of thumb for the choice of β1, β2 corresponds to the value of dilations for the
peak of the wavelet image.
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6. Example of the Semiclassical Two-Dimensional Distribution

In this section, we construct the semiclassical solutions to Equation (25) with the
initial condition

ϕ(~x) =
N
D

(
exp

[
− ~x2

2γ1D

]
− ε · exp

[
− ~x2

2γ2D

])
, (75)

where γ1 > γ2 > 0, 0 ≤ ε ≤ 1. For such constraints for the parameters γ1, γ2, ε,

and N > 0, the function ϕ(~x) does not take on negative values. If ε >
γ2

γ1
, then the

initial distribution (75) has a minimum at the center ~x = 0. The minimum of the ion
distribution described by Equation (25) is physically realizable by the addition of hydrogen
into the metal vapor active medium (by creating the so-called kinetically enhanced active
medium) [24–26].

Let us apply the nonlinear superposition principle to the initial condition (75). Note that

h(~x, t1, t2) = exp
{

2

√
β1

D
t1x1 + 2

√
β2

D
t2x2 − t2

1 − t2
2

}
1
D

× exp
{
− 1

2D
(β1x2

1 + β2x2
2

}
=

∞

∑
n1=0

∞

∑
n2=0

ψ(n1,n2)
(~x)

tn1
1 tn2

2
n1!n2!

.
(76)

Since the function φ(~x) (75) has the symmetry x1 ↔ x2, we put

β1 = β2 = β. (77)

In view of (72) and (77), the coefficient kn in (72) is given by

∫
R2

ϕ(~x)h(~x, t1, t2)d~x =
π

Dβ

∞

∑
n1=0

∞

∑
n2=0

kn2|n|tn1
1 tn2

2 . (78)

The integral in (78) yields

∫
R2

ϕ(~x)h(~x, t1, t2)d~x =
N
D

(
2πγ1

1 + βγ1
exp

[
βγ1 − 1
1 + βγ1

(t2
1 + t2

2)

]

− 2πεγ2

1 + βγ2
exp

[
βγ2 − 1
1 + βγ2

(t2
1 + t2

2)

])
,

k2n =
Nβ

2|2n|n!

(
2γ1

1 + βγ1

( βγ1 − 1
1 + βγ1

)|n|
− 2εγ2

1 + βγ2

( βγ2 − 1
1 + βγ2

)|n|)
, 2n = (2n1, 2n2).

(79)

Let the value of the parameter β be considered optimal when the coefficients k2n converge
to zero, as |n| → ∞ is the most rapid. It corresponds to the minimum value of the
following function:

f (β) = max
(∣∣∣∣ βγ1 − 1

1 + βγ1

∣∣∣∣; ∣∣∣∣ βγ2 − 1
1 + βγ2

∣∣∣∣). (80)

The function f (β) reaches its minimum at

β =
1√

γ1γ2
. (81)

We use this value of β hereinafter. Note that the search of the value of βi corresponding
to the the most rapid convergence can be more complicated in the general case. However,
it is not crucial to obtain the exact value of βi corresponding to the least |kn| for large |n|.
Hence, it can be done using some approximations for kn (e.g., [27]).
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The initial conditions for the EE system (20) can be obtained either by the substi-
tution of the coefficients (79) into the formulae (74) or by the substitution of the initial
condition (75) into the relations (16). Both ways yield

σ(0) = 2Nπ(γ1 − εγ2),

α
(2)
11 (0) = α

(2)
22 (0) = D

γ2
1 − εγ2

2
γ1 − εγ2

.
(82)

The EE system (20) is integrable for the coefficients in Equation (25) of the form

a(t) = A1e−t/τa , D̃a(t) = d1e−t/τd , b(t) = B2 + (B1 − B2)e−t/τb . (83)

The general solutions to the EE system for the coefficients in (83) were obtained in [12].
This case is treated as the model of the plasma relaxation. Let us illustrate the solutions
corresponding to the initial condition (75) for this case. Note that the variational system (37)
is not integrable for such coefficients as far as we know. It is a remarkable fact, since
the analytical solutions of the EE system, which are quite cumbersome though, can be
expressed in terms of the solutions of the variational system by analogy with (66). For our
example, we use the solution to the EE system from [12] and construct the solutions to the
variational system (37) numerically. Note that the variational system (37) is the system of
linear differential equations with constant-sign coefficients. The subsequent calculations
are presented for κ = 1, A1 = 1, τa = 1, d1 = 0.5, τd = 1, B2 = 0.4, B1 = 0.2, τb = 1,
µ = 0.5, γ1 = 1.5, γ2 = 1, D = 0.01, N = 1. Figure 1 shows the evolution of σ(t) for
two values of ε. The physical meaning of this function is the total number of ions in the
active medium. Figure 2 shows the solutions of the variational system. We provide the
plot of these solutions just for one value of ε, since the difference between these plots for
ε = 0.85 and ε = 1 is barely perceptible due to the little difference in σ(t). The sign of
W(−)(t) was reverted for compactness of the figure. The values of the expansion coefficients
are presented in Table 1. Note that they tend to zero rapidly as |n| increases due to the
optimal choice of β and they equal zero for odd n1 or n2. Figure 3 shows the asymptotic
evolution u(~x, t) of the initial ion distribution (75) constructed as the proposed nonlinear
superposition in the weak diffusion approximation with an accuracy of O(D3/2).

Figure 1. The plot of the function σ(t) for various ε. It illustrates the relaxation of the total number of
ions for two initial distributions according to the analytic formula derived in [12] and (82).
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Figure 2. The plot of the solutions to (37) and (39) for ε = 0.85. The solutions are obtained numerically.

Table 1. The values of the coefficient k(n1,n2) for n1, n2 = 0, 1, 2, 3, 4, and two values of ε.

ε = 0.85 ε = 1

n1

n2 0 1 2 3 4 0 1 2 3 4

0 3.37× 10−1 0 4.71× 10−2 0 1.07× 10−4 2.02× 10−1 0 5.05× 10−2 0 6.44× 10−5

1 0 0 0 0 0 0 0 0 0 0
2 4.71× 10−2 0 2.15× 10−4 0 1.50× 10−5 5.05× 10−2 0 1.29× 10−4 0 1.61× 10−5

3 0 0 0 0 0 0 0 0 0 0
4 1.07× 10−4 0 1.50× 10−5 0 3.43× 10−8 6.44× 10−5 0 1.61× 10−5 0 2.05× 10−8

Note that Z(+)(t) does not tend to nonzero constant. In a general case, this constant
can be negative, which leads to the zero value of Z(+)(t) at some point t = t0. At this point,
the condition of nondegeneracy of the matrix C(t) (34) is violated. It is worthy of discussion
how it affects the solutions vn(~x, t, Cn). It can be shown that the functions (66) have the
removable discontinuity at this point. The same is true for the solutions in (58). Hence,
the asymptotic solutions u(~x, t) = vn(~x, t, Cn) regularly depend on t in a neighborhood of
the point t = t0. It means that if we construct the germ r2

t from the point t = 0 to a point
left of the point t = t0 and then we construct the germ r̃2

t after the point t = t0, the resulting
asymptotic solutions u(~x, t), t < t0, and ũ(~x, t), t > t0, generated by the germ r2

t and r̃2
t ,

respectively, determine the continuous asymptotic evolution of the initial state u(~x, t)
∣∣
t=0

for both t < t0 and t > t0. Therefore, the formal constraint of the nondegeneracy of the
matrix C(t) (34) can be bypassed. Note that the error of the semiclassical solutions usually
grows over time. It can result in an adverse effect when the semiclassical solution jumps
from the asymptotics for one exact solution to another at a sufficiently large time (see the
work [28]). Therefore, the estimate of the period of time where the asymptotics are valid is
the subject to study separately and is to be obtained in every particular case.

Figure 1 illustrates that the ion distribution with the less pronounced minimum at
the GDT center relaxes faster. However, Figure 3 shows that both distributions tend to the
Gauss-like profile over time. It means that their evolution will be similar on large times.
Hence, the difference is significant only at the initial stage of the relaxation.

Note that our method is applicable for the linear case (κ = 0). For κ = 0 and
a(~x, t) = a(t), the method proposed yields the exact solution to the kinetic equation.
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a) ε = 0.85

b) ε = 1

Figure 3. The plot of the function u(~x, t) in the section x2 = 0. It illustrates the evolution of the ion
distribution according to the formula in (73).

7. Conclusions

Within the framework of the approach presented in [12], we have constructed a count-
able family of asymptotic solutions to the two-dimensional kinetic Equation (25) with the
nonlocal cubic nonlinearity. The approach proposed can be generalized for n-dimensional
space. We have considered the two-dimensional problem for the sake of simplicity in
order to demonstrate our method and to give its physical interpretation. The constructed
asymptotic solutions correspond to the weak diffusion approximation. The approach is
based on the solutions to the Cauchy problem to the nonlinear dynamical system (the
Einstein–Ehrenfest system) (9) and (20). These solutions generate the linear parabolic
Equations (13) and (28) associated with the nonlinear kinetic equation. Solutions of this
associated linear equation subject to the algebraic condition (15) yield the asymptotic solu-
tions (58) and (59) to the original nonlinear kinetic equation. The family of the asymptotic
solutions is constructed based on the set of skew-orthogonal, linearly independent solutions
to the system of linear ODEs (37) (the variational system). Such asymptotic solutions form
the orthogonal basis for the nonlinear superposition principle that allows one to construct
the asymptotic evolution of arbitrary initial distribution ϕ(~x) (17) expanded into the series
with respect to the basis formed by the functions (58). The nonlinearity of the superposition
principle is caused by the necessity of solving the nonlinear dynamical system (9) and (20)
with initial conditions (16) determined by the initial distribution. Note that the functions
vn(~x, t, C) with C determined from (74) form an orthogonal basis for the nonlinear super-
position principle, while the functions vn(~x, t, Cn) with Cn given by (67) and (68), which
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determine independent asymptotic solutions to the nonlinear kinetic equation, are not
orthogonal in the general case.

This work extends the results of our work [12] where the asymptotic evolution operator
of the kinetic Equation (25) was constructed via the Green function of the associated linear
equation. Here, we construct the asymptotic solutions with the help of the symmetry
operators (51) for the associated linear equation based on the nonlinear superposition
principle. It allows us to study the properties of the asymptotic solutions through the
properties of the variational system (37) that generates the Maslov germ r2

t on the zero-
dimensional manifold Λ0

t and the symmetry operators. Moreover, we have found the
relation (66) between the solutions to the Einstein–Ehrenfest system and the variational
system. It means that our approach can yield analytical solutions expressed in terms
of the solutions to the system of the linear ODEs (37) only. However, in the considered
specific case, the nonlinear dynamical system admits the analytical solutions, while the
variational system (37) is solved numerically. Note that the asymptotic evolution operator
in [12] and the nonlinear superposition principle yield the exact solutions to the associated
linear Equation (28), i.e., they yield the same asymptotic solutions for the given initial
condition. However, the approach proposed here broadens the possibilities of analysis for
these solutions. In addition, the nonlinear superposition principle leads to the expressions
with free parameters that can be chosen so that the functional series (73) converges rapidly.
Hence, in some cases, the study of the solutions (73) can be practically reduced to the study
of the first few terms of the series. It makes the analysis of such solutions even easier,
especially when the solutions are numerical–analytical.

The future prospects for this work are related to the study of a more complex two-
component kinetic model. We plan to generalize the approach [29] for the latter problem.
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