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Abstract: The classical logit and probit models allow to explain a dichotomous dependent variable as
a function of factors or covariates which can influence the response variable. This paper introduces a
new skew-logit link for item response theory by considering the arctan transformation over the scobit
logit model, yielding a very flexible link function from a new class of generalized distribution. This
approach assumes an asymmetric model, which reduces to the standard logit model for a special case
of the parameters that control the distribution’s symmetry. The model proposed is simple and allows
us to estimate the parameters without using Bayesian methods, which requires implementing Markov
Chain Monte Carlo methods. Furthermore, no special function appears in the formulation of the
model. We compared the proposed model with the classical logit specification using three datasets.
The first one deals with the well-known data collection widely studied in the statistical literature,
concerning with mortality of adult beetle after exposure to gaseous carbon disulphide, the second
one considers an automobile insurance portfolio. Finally, the third dataset examines touristic data
related to tourist expenditure. For these examples, the results illustrate that the new model changes
the significance level of some explanatory variables and the marginal effects. For the latter example,
we have also modified the definition of the intercept in the linear predictor to prevent confounding.

Keywords: asymmetry; binary response; claim; link; logit; insurance; scobit

1. Introduction

In many applications of statistical principles and procedures, the practitioners finds
observations that take two possible values. This binary values are often measured with
explanatory variables or covariates, either continuous or discrete, or even categorical.
The relation between the response and the covariates is usually modeled by assuming
that the probability of one response, after a suitable transformation, is typically linear in
the covariates.

The logit model, which is based on the logistic distribution, examines in insurance
settings the explanatory variables that explain why the insured do or do not claim in an
insurance portfolio. Nevertheless, individual responses are often much more frequent with
one of the values taken by the dependent variable than with the other one or vice versa;
i.e., there is a clear asymmetry between the two responses. This issue is crucial when the
model determines certain factors as statistically significant, thus this could imply uncertain
consequences in the decisions taken by the economic agents’ decisions. From the practical
experience, this is a frequent situation. Particularly, for the one of the examples considered
in this work, many more policyholders do not claim to the insurance company.

Hence, the requirements based on an asymmetric logit model is preferable than the
logit one, which assumes symmetry between the two values taken by the dependent
variable. The work of [1] was the pioneering work attending to the asymmetric case in
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logit and probit model specification. This work was used for estimating dose response
and requires fitting two additional parameters to the data to describe the distribution,
rather than only one. Since this work, numerous models that generalize discrete-choice
ones have been proposed in the statistical bibliography. Based on ideas in [1], in [2] the
the scobit model was firstly introduced. This model was useful in situations where the
practitioner wants to use a skew-logit (skew-probit) to explain the data. Due to the advances
in computational calculations, more asymmetric alternative to the classical logit and probit
models were included in the statistical literature. See, for instance [3–6]. On the other
hand, Refs. [7,8] applied Bayesian procedures via a skewed link in their examination of
binary responses when one dependent variable is much more frequent than the other
one. This methodology is difficult to implement because it is required Markov Chain
Monte Carlo (MCMC) to obtain the parameter estimates. Nevertheless, recently [9] have
implemented a similar model where it is not required the MCMC methodology to obtain
Bayesian approximation. Ref. [10] presented a new skew-probit link for item responses
by considering an aggregated skew-normal distribution. Ref. [11] consider a widened
class of parametric link functions that includes, as special cases, both symmetric as well as
asymmetric links when binary responses are considered. Ref. [12] extents the asymmetry
logit model introducing Weibull link (skewed) distribution for categorical data arising from
binomial and multinomial model. Some papers discussing these issues are given next.
Ref. [13] considered skewed logit link to estimate the fraudulent conduct reflected in a
Spanish database of insurance claims. Ref. [14] examined the risk variables underlying
automobile insurance claims having into account the asymmetry of the database. Ref. [15]
compared the binary logistic and skewed logistic (Scobit) regression models in the context
of injury costs in motor vehicle collisions. Ref. [16] analyzed logistic regression when some
of the explanatory variables have skewed cell probabilities and lastly [17] considered the
logistic model proposed by [1] to examine correlated infant morbidity data. More recently,
Ref. [18] derived a new class of the logistic model which was used to explain unimodal
data that include some level of skewness and Ref. [19] introduced a skew logit distribution
which was based on the use of the alpha skew logistic model. In [20], new distributions for
analyzing categorical data which contain binary case as special one are considered.

The formal aspects of the classical logistic and probit regression models are shown in
Section 2. The skewed models introduced here are developed in Section 3. Three numerical
examples together with the description of the second and third database are shown in
Section 4. Finally, Section 5 concludes.

2. Methodological Background

In order to make this article self-contained, we proceed to briefly explain the logistic
specification. Let the variable Y denotes a dichotomic dependent variable that can take
the values Y = 1, corresponding to the case where the event under study occurs, or Y = 0
when the event does not occur. Let x be a vector of predictors. Our purpose is to fit a binary
regression model to describe the variable Y as a function of the observed values in x. We
focus, particularly, on the logistic regression model. See Refs. [21,22] for more details.

Let Yi be a random variable related to an event for an individual i that is specified
as Yi = x′i β + εi, where β = (β1, . . . , βk)

′ is a k× 1 vector of regressors, which represents
the effect of each variable in the model to be estimated and xi = (xi1, . . . , xik)

′ is a vector
of explanatory variables, which can include an intercept, for the individual i. The distur-
bance term ε is a random variable. Note that Yi is unobserved and continuous. We now
assume that

Yi =

{
1, if Yi > 0,
0, otherwise.

Therefore,

pi = Pr(Yi = 1) = Pr(x′i β + εi > 0) = 1− F(−x′i β),
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where F(·) is the cumulative distribution function of the random variable ε. In addition,
the marginal effect on pi due to changes in xk is f (−xiβ)βk, where f (·) is the probability
density function of ε.

If we assume that F(·) is the standard normal cumulative distribution function (cdf),
Φ(ε), we obtain the probit model, and if we assume the logistic distribution, the logistic
regression model that will be considered in this work is obtained. Then, for the individual i
in a sample of size n, we have that

pi = Pr(Yi = 1) =
1

1 + exp(−x′i β)
=

exp(x′i β)
1 + exp(x′i β)

, (1)

and Pr(Yi = 0) = 1− pi. Remind that the density of the standard logistic distribution is
symmetric about 0. To sum up, the logit model takes the following form:

log
(

pi
1− pi

)
= x′i β, i = 1, 2, . . . , n.

Therefore, the likelihood is provided by

`(y|x, β) =
n

∏
i=1

[F(x′i β)]
yi [1− F(x′i β)]

1−yi ,

where the β regression parameters are estimated via maximum likelihood. Therefore, the
model gives the probability of each individual to take the event. The logit (frequentist
approach) model is implemented in most of the standard statistical software packages such
as Mathematica (Champaign, IL, USA), STATA (Texas, TX, USA), and R (Vienna, Austria),
among others. We have estimated the basic logit model by using WinRats econometric
software (see [23]).

3. Asymmetric Logistic Specification

In this work, a novel procedure to include an additional parameter to a family of
probability distributions is presented after completing a change of variable in the truncated
Cauchy distribution. Consequently, we obtain a class of probabilistic families that incor-
porates an extra scale parameter α 6= 0 and the inverse of the circular tangent function
(tan−1(·)) in its analytical expression. The density function of the half-Cauchy distribu-
tion [24] truncated at α > 0 is given by

f (y) =
1

tan−1 α

1
1 + y2 , 0 < y < α. (2)

In this expression, tan−1(·) is the inverse of the circular tangent function. Let us
now consider the transformation y = αF(x), where F(x) is the cdf of a random variable
X with support in [a, b] and where a and b can be either finite or non-finite. Then, the
corresponding probability density function of the random variable X derived from (2) is

fα(x) =
1

tan−1 α

α f (x)
1 + [αF(x)]2

, (3)

for a ≤ x ≤ b and α > 0. The cdf of X, which is derived from (3) by integration, is provided by

Fα(x) =
tan−1(αF(x))

tan−1 α
. (4)

Moreover, it is easy to check that (3) and (4) are genuine probability density function
and cdf, respectively, when the support of the parameter α is extended to (−∞, ∞) except
for zero. Here, we have that Fα(x) = F−α(x). Additionally, by taking in (4) the limit when
the parameter α approaches to zero and applying L’Hospital’s rule, it is simple to see that
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the parent cdf, F(x), is obtained as a particular case, that is, Fα(x) → F(x) when α → 0.
Therefore, this procedure can be considered as a method to add a scale parameter to a
parent cdf and, consequently, a method to derive a more flexible cdf. Particularly, the
case where F(x) is replaced by the cdf of the classical Pareto distribution was considered
in [25,26] and the case where the parent cdf is the classical exponential distribution was
studied in [27].

Specific Model

Let us consider the cdf given in (1) to obtain a generalization of the same by introducing
this distribution (4). The resulting distribution, logistic arctan distribution (LAT in advance),
can be arranged by some stochastic orders depending on the value of the parameter α via
the likelihood ratio order, that is defined as follows (see [28]).

Definition 1. Let X1 and X2 be continuous random variables with density functions f1 and f2,
respectively, such that

ϕ(x) =
f2(x)
f1(x)

(5)

is non-decreasing over the union of the supports of X1 and X2. Then, X1 is said to be smaller than
X2 in the likelihood ratio order (denoted by X1 ≤LR X2).

Some stochastic orders can order many parametric families of distributions depending
on the value of their parameters. We prove now that the LAT distribution can be arranged
via the likelihood ratio order, which is defined below (see [29]). Likelihood ratio order is
a powerful tool in parametric models. See, for instance, Section1.C of [28] where many
of its properties are explained. Some examples of distributions ordered by the likelihood
ratio order are the normal and exponential distributions among others. Now, we have the
next result.

Theorem 1. Let X1 and X2 be two LAT random variables with density functions f (x|α1) and
f (x|α2), respectively. If α2 ≤ α1 then X1 ≤LR X2.

Proof. Note that for the ratio ϕ(x) provided in (5) we have that

dϕ(x)
dx

=
2α2(1 + exp(x))(α1 − α2)(α1 + α2) tan−1 α1

α1 tan−1 α2
(
2(1 + cosh x) + α2

2 exp(x)
)2

is positive for x ∈ (−∞, ∞) and α2 ≤ α1. Here, cosh z = (ez + e−z)/2 gives the hyperbolic
cosine of z. Thus, ϕ(x) is non-decreasing and then the result holds.

The likelihood ratio order is stronger than the hazard rate order and the usual stochas-
tic order, which are defined as follows:

Definition 2. Let X1 and X2 be two random variables with respective distribution functions
provided by F1(x) and F2(x) and hazard rates r1(x) and r2(x), respectively. Then:

(i) X1 is said to be stochastically smaller than X2, denoted by X1 ≤ST X2, if F1(x) ≥ F2(x) for
all x;

(ii) X1 is said to be smaller than X2 in the hazard rate order, denoted by X1 ≤HR X2, if
r1(x) ≤ r2(x) for all x.

Now, the following corollary is presented.

Corollary 1. Let X1 and X2 be two LAT random variables with respective pdf’s fα1(x) and fα2(x)
and hazard rates r1(x) and r2(x), respectively. If α2 ≤ α1 then X1 ≤HR X2 and X1 ≤ST X2.
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Proof. It is well-known (see [28]) that

X1 ≤LR X2 =⇒ X1 ≤HR X2 =⇒ X1 ≤ST X2. (6)

Then, this result follows directly from Theorem 1 and (6).

The examination of stochastic ordering is appropriate in many scenarios of applied
statistics. For example, in binary regression, this ordering would provide that the approx-
imation of p to 1 is faster than the one obtained via the logistic distribution. In contrast,
the approximation to zero would be slower. However, sometimes the reverse would be
required. The approximation of p to 1 was slower than the approximation to zero or a
combination of both. The approach to 1 was slower and the approach to zero faster. This
can be achieved by applying the arctan transformation to the distribution with cdf

Fσ(x) =
[

exp(x)
1 + exp(x)

]σ

, −∞ < x < ∞, σ > 0. (7)

The cdf provided in (7) is one of the several proposed by [30]. It is a max-stable
(maximum of several random variables) distribution, which is also related to extreme value
theory and also referred to in the literature as Lehmann’s alternative or exponentiated
distribution of the form [G(·)]σ, where σ > 0 and G(·) is a continuous cumulative dis-
tribution function. For details about this family of distributions, see [31]. Furthermore,
this distribution is the cdf used in the skewed logit model proposed by [1] and known as
scobit model.

Thus, we focus now on the distribution obtained when (7) is implemented in (4),
providing a distribution, say Fα,σ(x) which is much more flexible and with cdf given by

Fα,σ(x) =
1

tan−1 α
tan−1

{
α

[
exp(x)

1 + exp(x)

]σ}
, −∞ < x < ∞.

Henceforward, we will denote this distribution as the SAT distribution, highlighting
the fact that is the arc transformation of the Scobit model.

For the resulting random variable, it is not straightforward to prove that X1 ≤LR X2,
however we can prove that X1 ≤ST X2 by using (ii) in Definition 2. Therefore, for a random
variable with cdf Fα,σ(x) for any α1 > 0 and α2 > 0 and σ1 < σ2, we have that X1 ≤ST X2.
This is corroborated below in Figure 1 where the cdf for special values of parameters α and
σ are shown. It is observed that as the parameter α is closed to zero and σ = 1 (corresponds
to the symmetric case, i.e., the classical logit specification), the shape of the curve varies.

Changes in the marginal effect against pi, for specific parameter values of α and σ are
displayed in Figure 2. This graph shows the relationship between pi and the marginal effect
for a continuous covariate (∂pi/∂x′β). Its maximum value varies from pi = 0.5 (symmetry
case with α→ 0 and σ = 1) to the left or right, respectively, as these parameters decrease or
increase. As it is observed, the marginal effects take on their maximum values at different
probability levels depending on the values of these parameters.
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Figure 1. Cumulative distribution function (logistic kernel mean function) of the skewed logit model
for special values of skewness parameters α and σ. The case α = 0, σ = 1 corresponds to the classical
logistic specification.
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Figure 2. Marginal effect of the skewed logit model with different values of skewness parameters α

and σ. The case α = 0, σ = 1 corresponds to the classical logistic specification.
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4. Empirical Application

In order to apply and illustrate our methodology, we consider three datasets. The first
deals with a well-known data collection widely examined in the statistical literature. It deals
with mortality of adult beetle after five hours of exposure to gaseous carbon disulphide.
The original dataset appeared in [32] and it has been discussed in many papers, such
as [1]. We also reproduce them in Table 1 together with the fitted data values via maximum
likelihood estimation. As in [1], we have added a location parameter µ > 0 and a scale
parameter λ > 0 to the logistic distribution given in (1). The estimated parameters are
µ̂ = 1.772 (0.030) and λ̂ = 0.0293 (0.019) with the standard errors in brackets. Observe
that the parameter λ is not significant at the usual statistical levels. The negative value
of the maximum of the log-likelihood function (NLL) is 3.116. The estimation with the
arc transformation of this logistic distribution, expression is given in (4), yielded the same
estimates of the parameters because the α parameter collapsed to zero. Nevertheless, for
the general scobit model (the arc tan transformation of the scobit model provided in (7) and
with cdf given by

Fα,σ,µ,λ(x) =
1

tan−1 α
tan−1

{
α

[
exp((x− µ)/λ)

1 + exp((x− µ)/λ))

]σ}
, −∞ < x < ∞,

The parameter estimates are as follows: µ = 1.820 (0.024), λ = 0.015 (0.016),
α = −0.330 (0.085), σ = 0.278 (0.008) with a NLL value of 3.048. This Table also shows the
contribution of every observation to Pearson’s chi-squared test statistics.

Table 1. Data taken from [32] dealing with mortality of adult beetle after five hours exposure to
gaseous carbon disulphide.

Dosage 1.6907 1.7242 1.7552 1.7842 1.8113 1.8369 1.861 1.8839
Insects 6 13 18 28 52 53 61 60
Killed 59 60 62 56 63 59 62 60
Logit fit 3.48 9.85 22.41 33.80 49.98 53.21 59.17 58.71
Chi-square 1.828 1.004 0.866 0.994 0.082 0.001 0.056 0.028
General Scobit fit 6.10 11.28 20.16 29.69 48.45 54.76 60.91 59.75
Chi-square 0.002 0.260 0.231 0.096 0.260 0.057 0.000 0.001

The second dataset is concerning with automobile insurance portfolio. This dataset is
available at the website of the Faculty of Business and Economics, Macquarie University
(Sydney, Australia), see also [33].

4.1. Brief Description of the Automobile Database

The dataset considered here is well-known in the actuarial literature. It is based
on one-year vehicle insurance policies in 2004 or 2005. There are n = 67,856 policies for
which the binary dependent variable is expressed as a collection of ones and zeros, with
one representing the occurrence of at least one claim. A pictorial representation of this
dependent variable is shown in Figure 3. A significant imbalance in the two categories of
outcome considered can be observed. In this case, the portfolio contains 4624 (6.8%) of
policyholders who had at least one claim. The description of the explanatory variables
associated with the claims considered in this work is as follows:

• Vehicle’s value (VAGE) in USD 10,000;
• The body of the vehicle, coded as, Bus (BUS), Convertible (CONVT), Coupe (COUPE),

Utility (UTE), and Hatchback (HBACK);
• Area: driver’s area of residence: A, B, C, D, E (the reference variable is the driver’s

area of residence F);
• Age (AGE): driver’s age category: 1 (youngest), 2, 3, 4, 5, 6 (older);
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0 (No claim)

93.19%

1 (Claim)

6.81%

0 (No repetition)

24.80%

1 (Repetition)

75.20%

Figure 3. A pictorial representation of the dependent variable. Second example on the left and third
example on the right.

4.2. Third Database and Brief Description

The third dataset is concerned with tourism. The database was obtained from the
2017 Canary Islands Tourist Expenditure Survey, carried out by the Canary Islands In-
stitute of Statistics (ISTAC). This study corresponds to personal interviews with tourists
from mainland Spain on departure and provides quarterly information about their total
expenditure in the Canaries. The sample includes both package and non-package tourists,
staying for at least one and no more than 30 consecutive nights (representing around 99%
of the sample). After excluding observation data with missing values and non-response,
10,000 observations remained in the sample.

• Length of stay (LS) (trip duration or number of nights) in the Canaries;
• INCOME. This is an ordered categorical variable. It takes the following values: =1,

from C 12,001 to C 24,000; =2, from C 24,001 to C 36,000; =3, from C 36,001 to C 48,000;
=4, from C 48,001 to C 60,000; =5, from C 60,001 to C 72,000; =6, from C 72,001 to
C 84,000; and =7, higher than C 84,001;

• Type of accommodation. Three types of variable are considered. First, an indicator
which takes the value 1 if the tourist accommodation is a 5-star hotel/aparthotel, and
the value 0 otherwise (STARSUP). Second, an indicator which takes the value 1 for a 4-
star hotel/aparthotel (STAR45), and 0 otherwise. Finally, a binary variable which takes
the value 1 if the accommodation is a 1, 2, or 3-star hotel/aparthotel, and 0 otherwise
(STAR3). The reference category represents other types of accommodation, such as the
tourists’ own property, friends or family property, or campsites or apartments;

• REPETITION. A dichotomic variable which takes the value 1 if the tourist has visited
the Canaries previously, and 0 otherwise. This corresponds to the dependent variable;

• JOB. This variable contains the following categories: business owner, self employed,
liberal profession, upper management employee, middle management employee, aux-
iliary level employee, other employee, student, retired, homemaker, and unemployed.
Three dummy variables are considered. Business owner takes the value 1 if the tourist
is a business owner, and 0 otherwise. Self employed takes the value 1 if the tourist
is self employed or has a liberal profession and 0 otherwise. Salaried worker takes
the value 1 if the tourist works for a salary and 0 otherwise. The reference category is
student, retired, homemaker, and unemployed;

• LOW COST. This is an indicator that takes the value one if the tourist has travelled in
a low-cost airline and 0 otherwise.
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4.3. Estimation Results and Discussion

Table 1 summarizes the estimation results for the three models examined, logistic,
scobit, and general scobit, they are given by

pi =
exp(x′i β)

1 + exp(x′i β)
,

pi =

[
exp(x′i β)

1 + exp(x′i β)

]σ

,

pi =
1

tan−1 α
tan−1

{
α

[
exp(x′i β)

1 + exp(x′i β)

]σ
}

,

respectively.
Parameter estimates, standard error (in brackets) and marginal effects (ME) for stan-

dard logistic and skewed logistic models: Scobit and SAT are displayed in Table 2 for the
second example (automobile dataset). Overall, the three models similarly fit the data, as
judged by the NLL and the chi-square value. Nevertheless, the model with more significant
variables is the SAT. Qualitatively, all the models yielded similar results, with coefficient
estimates showing the same signs for all variables. It is interesting to note that the parame-
ters which control the skewness in the Scobit model (σ) and the SAT model (α and σ) are
highly significant. Thus, as judged by their values and significance, we cannot reject the
assumption of asymmetry of the dependent variable. However, it is noticeable substantial
differences in the magnitude of estimated coefficients for several explanatory variables,
affecting the marginal effects. The marginal effect on pi on a change on xk, for a continuous
variable, can be calculated as

∂pi
∂xk

=
∂

∂xk
F(x′i β) = βk f (x′i β).

For dichotomous variables, taking values 0 and 1, the marginal effect for the variable
xk is given by F1(x′i β)− F0(x′i β), where for F1(·), the kth explanatory variable takes the
value 1 and for F0(·) the value 0, remaining the rest of the explanatory variables constant.
Since there is a marginal effect for each individual in the sample and some variables are
continuous and other are binary variables, we computed the marginal effect for all the
individuals and took their mean value, i.e., average marginal effect. It should be noted
that some of the marginal effects obtained were slightly different between the logit, Scobit,
and general Scobit. In this regard, as illustrated in this Table, for the explanatory variable
Vehicle’s value (VAGE), the marginal effect under the logit model is 0.005, this is intuitively
interpreted as an increase of USD 10,000 in the vehicle’s value, increases the probability
of occurrence of at least one claim in 0.5%. The increase in that probability for the scobit
model is 0.1% whereas for the general Scobit is 0.7%. Similarly, the marginal effect for the
variable AGE is −0.007 for the logit model, which is interpreted as an increase of one in
the driver’s age category year would decrease the probability of occurrence of at least one
claim by 0.7%, holding the other variables fixed. The decrease in the probability under the
scobit model is 0.2% where under the general scobit model is 1%, which is not negligible.

Below in Table 3 parameter estimates together with standard errors (in brackets)
and marginal effects for standard logistic and skewed logistic models: Scobit, LAT, and
SAT for the third example are provided. No important differences are observed between
the four regression models in terms of the marginal effects and significance level of the
explanatory variables considered. Nevertheless, both the NLL and the chi-square statistics
are reduced under the SAT regression model. The response variable is repetition of holidays
destination (:=1).

Figure 4 displays the cdf of the three models considered by using the parameter
estimates exhibited in Tables 2 and 3. It can be seen that for the scobit and SAT models, the
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approximation of p to 0 is faster than the one for the logit model, as expected. In contrast,
the approximation to the value 1 is slower.

Table 2. Parameter estimates, standard error (in brackets) and marginal effects (ME) for standard
logistic and skewed logistic models: Scobit and SAT.

Logit Scobit SAT

Variable Estimate (SE) ME Estimate (SE) ME Estimate (SE) ME

VAGE 0.057 (0.012) *** 0.005 0.026 (0.006) *** 0.001 0.030 (0.005) *** 0.007
BUS 1.110 (0.371) ** 0.134 0.556 (0.237) ** 0.129 0.628 (0.206) ** 0.130

CONVT −1.066 (0.598) −0.059 −0.425 (0.254) −0.056 −0.508 (0.266) * −0.057
COUPE 0.215 (0.128) 0.019 0.099 (0.063) 0.019 0.114 (0.061) * 0.019

UTE −0.244 (0.067) *** −0.019 −0.103 (0.030) *** −0.017 −0.121 (0.031) *** −0.017
HBACK −0.006 (0.036) −5.04 × 10−4 −0.002 (0.017) 3.54 × 10−4 −0.002 (0.017) −3.1 × 10−4

AREA A −0.107 (0.070) −0.009 −0.045 (0.031) −0.008 −0.053 (0.022) ** −0.008
AREA B −0.009 (0.071) −7.50 × 10−4 −0.002 (0.031) −3.54 × 10−4 −0.003 (0.022) −4.64 × 10−4

AREA C −0.067 (0.069) −0.005 −0.028 (0.030) −0.005 −0.033 (0.021) −0.005
AREA D −0.193 (0.078) ** −0.016 −0.082 (0.035) ** −0.014 −0.096 (0.028) *** −0.014
AREA E −0.121 (0.082) −0.009 −0.052 (0.038) −0.009 −0.061 (0.030) ** −0.009

AGE −0.083 (0.010) *** −0.007 −0.036 (0.005) *** −0.002 −0.042 (0.004) *** −0.010
α −0.226 (0.031) ***
σ 5.792 (0.074) *** 3.276 (0.001) ***

CONSTANT −2.340 (0.078) *** 0.642 (0.017) *** −0.112 (0.001) ***
NLL 16,820.912 16,820.334 16,820.464

Chi-square 7423.71 7245.82 7281.60
*** indicates 1% significance level. ** indicates 5% significance level. * indicates 10% significance level.

Table 3. Parameter estimates, standard error (in brackets) for standard logistic and skewed logistic
models: Scobit, LAT, and SAT.

Logit Scobit LAT SAT

Variable Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

INCOME 0.182 (0.013) *** 0.162 (0.011) *** 0.156 (0.011) *** 0.073 (0.010) ***
LOWCOST −0.062 (0.055) −0.049 (0.043) −0.049 (0.045) −0.018 (0.022)

JOB −0.099 (0.064) −0.084 (0.053) −0.082 (0.053) −0.035 (0.026)
STAR45 −0.031 (0.055) −0.031 (0.045) −0.028 (0.045) −0.016 (0.022)
STAR3 −0.213 (0.069) ** −0.181 (0.057) ** −0.177 (0.057) ** −0.075 (0.028) **

STARSUP −0.408 (0.126) *** −0.360 (0.106) *** −0.347 (0.103) *** −0.160 (0.059) **
LS 0.076 (0.007) *** 0.066 (0.006) *** 0.064 (0.006) *** 0.028 (0.004) ***
α 59.817 (21.101) ** 16.429 (6.061) **
σ 36.511 (2.437) *** 29.429 (0.001) ***

CONSTANT 0.407 (0.153) *** 4.238 (0.063) *** −3.786 (0.379) *** 2.370 (0.103) ***
NLL 5424.235 5422.862 5423.053 5420.629

Chi-square 3493.96 3485.11 3479.47 3458.27
*** indicates 1% significance level. ** indicates 5% significance level.
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Figure 4. CDF of the classical logit, scobit, LAT, and SAT obtained from the estimated parameters.
Second example above and third example below.

Furthermore, as a Reviewer has pointed out, when the link function is skewed, then
the definition of the intercept needs to be changed to prevent confounding. This matter
which has been neglected in the literature is dealt in deep in [9] for the skew probit model.
Following the latter paper, we can redefine the intercept β0 as β0(q) = F−1(q) where q is
the quantile level. Then, we have that the expression for the intercept for the Scobit and
SAT regression models are given by

β0(q|σ) = log

(
pσ−1

1− pσ−1

)
,

β0(q|α, σ) =

[
(1/α) tan(q tan−1 α)

]σ−1

1−
[
(1/α) tan(q tan−1 α)

]σ−1

respectively.
Below in Table 4 are displayed the parameter estimates, standard error (in brackets)

for Scobit and SAT regression models when the intercept has been redefined to prevent
confounding. The LAT regression model has not been incorporated into this Table because
the parameter α is insignificant. The estimate of the quantile level q is significant at the
1% level for both models. Nevertheless, for the other explanatory variables, there are no
essential differences concerning the models with an intercept to the significant covariates
with the exemption of JOB, which is statistically significant at the 10% significant level
under both models.
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Table 4. Parameter estimates, standard error (in brackets) for Scobit and SAT models with redefined
intercept.

Scobit SAT

Variable Estimate (SE) Estimate (SE)

INCOME 8.041 (0.468) *** 0.155 (0.009) ***
LOWCOST −2.604 (1.621) −0.049 (0.044)

JOB −3.120 (1.584) ** −0.081 (0.046) *
STAR45 −0.965 (1.081) −0.028 (0.045)
STAR3 −11.426 (2.052) *** −0.176 (0.055) ***

STARSUP −8.876 (3.248) ** −0.345 (0.090) ***
LS 3.143 (0.146) *** 0.064 (0.005) ***
α −365.691 (64.688) ***
σ 0.004 (<0.001) *** 1.115 (0.044) ***
q 0.628 (0.001) *** 0.391 (0.061) ***

NLL 5445.790 5423.030
*** indicates 1% significance level. ** indicates 5% significance level. * indicates 10% significance level.

5. Final Comments

We have introduced a binary skewed model starting first with the classical logistic
specification and followed next, by the scobit specification. This new model performs well
when there exists a pronounced imbalance in the distribution of the response variable. The
significant difference between the classical model and the new one is mainly based on the
slight differences in the resulting marginal effects. In summary, for the dataset considered
in the empirical application section of this work, no substantial differences were found in
the three models examined when the NLL was considered as a measure of model selection.
However, relevant differences in the significance level and marginal effects for some of the
explanatory variables were observed in the general logistic model introduced in this work
that were not observed in the other two models.

Following the ideas provided in [9] when we perform a skew logit or probit model,
the new link functions need to be scaled and centered bringing the results into the same
scale and estimates, and, thus, they could be compared. This is obviously more important
in the Bayesian context, which is not the case discussed here, for obvious reasons.

Finally, by replacing the cdf of the standard normal (i.e., Φ(·)) distribution in (4) F(x),
expressions of the type [Φ(x)]σ, σ > 0 are obtained, that is, generalizations of the probit
model. Alternatively, generalizations of the binomial proportion generalized linear models
can be also simply derived by modifying the cauchit, log-log and complementary log-log
link functions accordingly. These issues can be studied in future works.
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