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Abstract: In this article, we obtain certain finite integrals concerning generalized Mittag—Leffler
functions, which are evaluated in terms of the generalized Fox-Wright function. The integrals
of concern are unified in nature and thereby yield some new integral formulas as special cases.
Moreover, we numerically compute some integrals using the Gaussian quadrature formula and draw
a comparison with the main integrals by using graphical numerical investigation.
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1. Introduction

In mathematics, functions and symmetric functions are very common in theory and
applications. They have been applied to various fields including group theory, Lie algebras,
and algebraic geometry, to mention but a few. In applied mathematics, many functions are
defined via integrals or series (or infinite products), which are usually referred to as special
functions [1-6]. One of them is the Mittag—Leffler function, which was introduced in con-
nection with a method of summation of some divergent series. The Mittag—Leffler function
has recently received the interest of scientists due to its wide applications in pure as well
as applied mathematics. It is noted that the importance of the Mittag—Leffler function has
been envisaged during the last two decades due to its entanglement in physics, chemistry,
biology, engineering and applied sciences. The Mittag-Leffler function naturally occurs as
a solution of fractional order differential equations or fractional order integral equations.
Problems of physics and applied mathematics involve a notable numerical implementation
of the Mittag-Leffler function in general and modified forms; therefore, it remains an engag-
ing object of applied research. The implementation of Mittag-Leffler functions is required
in a wide variety of problems of physics and mathematics. Because of their crucial require-
ment, many research works have been dedicated to them, and various representations and
generalizations of Mittag-Leffler functions can be found in the literature. Among the most
popular special function of fractional calculus is the simplest ,'¥; functionand p=0,q=1,
called the Wright function or the Bessel-Maitland function or the Wright-Bessel function.
From this point of view, the Mittag—Leffler function, expressible in terms of the Fox-Right
function, is a special function of fractional calculus. Therefore the Mittag—Leffler function
is called the queen function of fractional calculus. The results obtained in the manuscript,
connected with a generalized Mittag=-Leffler function that will be used to solve a variety
of problems of fractional calculus, for example, Riemann-—Liouville fractional integrals and
derivatives, Laplace and Sumudu fractional and integral derivatives and Marichev-Saigo—
Maeda fractional integrals and derivatives, etc. Recently, fractional calculus associated with
some special functions has proved itself to be a useful tool for applications in many fields of
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research such as physical systems, biomedicine, nonlinear electronic circuits, chaos-based
cryptography, and image encryption. Examples of systems that can be precisely described
by fractional-order differential equations (FODEs) involve viscoelastic material models,
electrical components, electronic circuits, diffusion waves, the propagation of waves in
non-local elastic continua, hydro-logic systems, earthquakes’ nonlinear oscillations, models
of world economies, fractional viscoelastic models and continuous random walk and equa-
tions of muscular blood vessels (see [7-12]). In the past few years, several integral formulas
having a variety of special functions have been achieved by many authors (see [13-30]).
The present paper provides the study of finite integrals of the generalized Mittag-Leffler
function and investigates some useful formulas. We have computed many new results
involving integral transforms of the Mittag—Leffler function and plotted three graphs as the
major novelty of our work. The results derived in this paper are of general character and
likely to find certain applications in the theory of special functions. Additionally, the results
provide unification and extension of known results given earlier by various researchers. We
compare the results of analytically evaluated integrals with integrals evaluated numerically
using the Gaussian quadrature formula. We conclude that the results obtained will provide
a significant step in the theory of integral formulas and can yield some potential applica-
tions in the field of classical and applied mathematics. Motivated by the aforementioned
research and success of the application of integral formulas, we evaluate a new type of
integral formulas involving the generalized Mittag—Leffler function (GMLF) expressed in
terms of the Fox-Wright function. The Mittag-Leffler function [31,32] is defined as

; (mH 7 €C, Re(0) >0 )

where w ia a complex variable and I'(.) is the gamma function [25].
In 1905, A. Wiman [33] established a generalization of E,(w), as follows:

Eqp(w) = ; m+y (0,4 € C, Re(p) >0, Re(c) > 0). @)

In 1971, Prabhakar [23] came up with a further generalization of E; , (w) in the form

o) n

EZ,M( w) = 2 F(éz)jy)i' (7,4,0 € C, Re(c) > 0,Re(7y) > 0,Re(u) >0), (3)
n=0 :

where (), is known as the Pochhammer symbol [25]. The underlying generalization of
the Mittag-Leffler function is given by Shukla and Prajapati (2007) [29] as

1’!

h [ee]
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and expressed by Salim (2009) [26] in the form

1’!

5 [ee]
Eo(®@) = X ¢ o 2

A certain further generalization of the Mittag—Leffler function was given by Salim and
Faraj (2012) [27] as

7(517
ana Zro’n+ﬂ() (6)

On the other hand, Khan and Ahmad introduced a new generalization of the Mittag—
Leffler function (2013) [34] as

n
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where o, u, v, 6 € C; Re(c) >0, Re(u) > 0, Re(y) > 0, Re(6) >0; b€ (0,1) UN.
Consequently, they have introduced a generalization of (7) in the following form [34]

EA7.b _ - (C) (V)bn w"
Eg,y,z,(f),&,a(w) - ZO I“(o—n + ﬂ)(V)(pn (5),1;1, (8)

whereo, u,v,¢,6,¢,A,v € C; min{Re(c), Re(i), Re(v), Re(¢), Re(d), Re(&), Re(A), Re(y)}
> 0;a,b> 0,b < Re(o) +a.

Above all, (8) is the most generalized definition of all the above formalizations in-
troduced in (1)—(7). Upon substituting ¢ = v, A = ¢ and a = 1 in (8), it becomes (7),
which has been established by Khan and Ahmad (2013) [34]. Upon substituting { = v and
A = ¢, in (8), it becomes a special case (6), which has been established by Salim and Faraj
(2012) [27]. Upon substituting ¢ = v, A = ¢ and b = a = 1 in (8), it becomes (5), which
has been discussed by Salim (2009) [26]. Upon substituting = v,A =¢andé =a =1
in equation (8), it is a special case (4); see Shukla and Prajapati (2007) [29]. If b = 1, it
becomes a special case (3) of Prabhakar (1971) [23]. On substituting { = v, A = ¢ and
v =06 =a=>b=11in(8), it becomes a special case (2) established by A. Wiman (1905) [33].
Furthermore, if 4 = 1, we get the Mittag—Leffler function E,(w) defined in (1). Finally,
on setting 6 = a = b = 1 in (8), we establish a new generalization of the Mittag—Leffler

function in the form
n

Ay ”—)w
ety - £ e

)
where o, u,v,¢,¢,A, v € C; Re(u) > 0,Re(0) > 0,Re(v) > 0,Re(¢p) > 0,Re(g) > O,
Re(A)> 0and Re(7y) > 0.

The Fox-Wright function ,'¥s[w] (see [35-42]), is defined by

(/\ll;\l)/ sy (/\}’/ ;\r)/

7slw] =+ ¥s ) ) w (10)

(11/ ll)/ 4 (ZS/ lS)/
_ Z T(A+Ak), . T(Ar + Ark) wk a1

=0 T(h+hk),... T(s+ k) K

. (1—)\1,)(1),...,(1—)\,,&)
Hrsr+1 —w . , ’ (12)
(0,1),1—-1,h),...,(1—1,15)

where Hrlsr 1[w] represents the Fox-H function [38]. When Moo =10, =1
in (10), the Fox-Wright function reduces to the generalized hypergeometric function ,Fs[w]
(see [41])

r‘Ps|: ()\1,1),...,(/\r,1); w:| F(A)l,...,r(/\)

= I (A, Al s w). 13
(1), (15, 1); (), (D), e A dgw) o (13)

Here, we recall the result due to Prudnikov et al. [24] (see also [39], p. 250 (2.8)), by
means of which we have established our main result in the present article

/‘7 (x=p)* (g —x)P ix

P [(q—p)+ri(x —p) +r2(g —x)] 7P

_ I@r(p)
I'(a+p)

provided that Re(a) > 0, Re(B) > 0, g # p and the constants r; and r; are such that none
of the expression 1 + 11,1+ 1y, [(g — p) + r1(x — p) + r2(g — x)], where p < x < gis zero.

(q=p) A +r) 1 +r2) P, (14)
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2. Main Results

Theorem 1. Let a and B exist such that Re(a) > 0,Re(B) > 0,q # p and the constants ry and
ro are such that none of the expressions 1+ r1, 1412, [(9 — p) +r1(x — p) + r2(q — x)], where
p <x <gqgiszero. Leto,u,v,¢,6,¢,A,v € C if min{Re(c), Re(u), Re(v), Re(¢$), Re(J), Re({),
Re(A),Re(y)} > 0;a,b > 0,b < Re(0) + a, then the following identity holds:

7 (x —p)* g —x)f! ok [ (x—p)(g—x) "
/P [(g—p) +ri(x—p)+ra(q —x)]*F Fonvipsa { { [(g—p) +ri(x—p)+r2(g—x)]? } }d
_ 1 T(v)['(6)
C(g—p) A4+r) (1 +r)f T(ET(y)
&A), (v,b), (em), (Bm),  (1,1);

(o), (v, ), (6,a), (a + p,2m);

where EEQZ:)M( ) is a GMLF given by (8).

(T+r)"(1+r)™

X 5?4 (15)

Proof. Denoting the left hand side of (15) by I, writing ESQZ; 5,(w) in its summation

formula in the integrand with the help of (8), we obtain

(x—p)* g —x)F"

q
I =
/P [(7—p) +r(x—p)+ra(q—x))*F
= (E)an()en (D)0 w" (x —p)™* (g — x)™" p 16
X L Fon 1 1) (Won @ [0 — ) - 1i(x —p) Tralg — Pt (19
which, by further simplification, yields
i an (Von w0 (x —p)™ 7t (g — )P dx. (17)

I'(on —|— “ll (v ) (0)an n! Jp [(g—p)+ri(x—p)+rlg— x)]Zmn+a+ﬁ
We apply the result of (14), and, through simplifying, this yields

1 T(v) T(6)
(g—p) (A4+r)* (A +r)f T(E)T(7)

=

(18)

n
T(& -+ An) T(y -+ bn) T(a+ mn) (B +mn) T(1 + 1) (s )
% ,;) I'(p+on)T(v+An)T(6+an) I'(a+ B+ 2mn) n! '
Finally, after summing up, with the help of (11), we arrive at (15). This completes the
proof of Theorem 1. [

Corollary 1. For b = 6 = a = 1 and all the conditions already stated in (15), the following
identity holds:

9 (x—p)*Hg—x)F! A o (x—p)g—x) " i
/p [(g—p)+r(x—p)+ra(g—x))*TF E”’”’”"”[ {[(q—P)+r1(x—P)+rz<q—x)]2} ]d
1 I'(v)
(g—p) A +r)* (A +1r2)f T(OT(7)

GA), (r1), (a,m), — (Bm);
(), (v, ), (& + B, 2m);

x 4¥3

w
T+ r)"(1 + rz)m] ' (19)
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Theorem 2. Let a and B be such that Re(x) > 0, Re(B) > 0, q # p and the constants ry and
1 are such that none of the expressions 1 +r1, 1 +1y, [(9 — p) +r1(x — p) +r2(q — x)], where
p <x <giszero. Leto,u,v,¢,6,¢,A, v € C if min{Re(c), Re(u), Re(v), Re(¢), Re(d), Re({),
Re(A),Re(y)} > 0;a,b > 0,b < Re(c) + a, the following identity holds:

i (x—p)* g —x)P" EAD (x—p)(qg—x) "
/p [(g—p) +ri(x—p)+ra(q—x)]*F Fopipoa H [(g=p) +r1(x—p)+r2(g—x) } w} *
1 ()T () A(m;a), A(m;p), AA;E),
G—p) (L+m)* (1+m)f T(a+ P () 2mAA+b+1F2my o9+

Ao ), Algrv), Aad),
A<b; ,)/), 1 w MBP ]

20
AQ2m;a + B); orgardr ()" (L +r)" @

where A(m; A) abbreviates the arrangement of m parameters % Al % and m > 1.

m

Proof. By using the formulas
F(A+n)=T(A)(A)x (21)

—— A+1 A+m—1
= (), (57~ (=), @

and

and after a little simplification, the required result (20) can be obtained. Therefore, we omit
the proof. O

Corollary 2. On putting a = b = 6 = 1 under the condition already set out in (20), the following
identity holds:

9 (x—p)* Hg—x)F ey (x—p)g—x) "
/P [(g—p)+ri(x—p)+r(g—x)]*"P Foyvg [w{ [(g—p) +ri(x —p)+r2(q — x)]2 } ] ax
1 T'()T(B)
(q—p) A+71)* (1 +r2)f T(a+ BT (1)
A(m;a),  A(m;B), A(A;G), v

w AN
oTPPAM (1 +11)™ (1 +12)™

. (23)

X 2m+a+1Famto+¢ [
Aosu),  Algrv), A(2m; o+ B);
3. Special Cases
Here, we compute certain integral formulas as special cases of our key results.
(i) Onsetting ¢ =v, A = ¢ in (15), the following identity holds:

q x— ) 1(g — x)B-1 b v o m
/P [(g — p)(—i- rl?(ja)c - ;E)q+ rz)(q —x)]* P el [w{ [(a—p) 4‘(71(:1(;) + 7)2(‘1 —x)]? } } -
1 T(5)
(q=p) (A+r1)* A+r2)P T(7)

(7,b), (&, m), (B, m) (L,1);

w

X 4
473 (T+r)"(1+r)"

; (24)

(w0), (6,a), (a+ B, 2m);
(i) Setting ¢ =v, A = ¢ and a = 1 in (15), the following identity holds:

7 (x—p)* g —x)f 7 [ (x = p)(q—x) " i
/P [(7—p) +r1(x—p) +r2(qg — x)]**P EU’”"{ {[(q—P)+r1(x—P)+72(q—x)+]2} ]d




Symmetry 2022, 14, 869 60f 13

1 T(5)
(g—p) A +r)* (1+1r2)P T(7)

(7,0), (&, m), (B, m) (1,1);

(o), (6,1), (& +p, 2m);
(iii) Setting ¢ =v, A = ¢ and a = b = 1in (15), the following identity holds:

w

X 42F
473 1+ r)"(1+rp)m

; (25)

q x — p)—1(g — x)B-1 5 Y — . m
/p (g p>(+ fz) - £?+ rz)@ — P el [w{ [(a—p) +( " (x@(Z) n 7)2(17 —2)P } ] o
1 I'(6)
(q—p) A +r)* (1 41r2)P T(7)

(1), (&, m), (B,m)  (L1);

(n,0), (4,1), (a+p, 2m);
(iv) Setting ¢ =v, A =¢ and a = § = 1in (15), the following identity holds:

w

X 4¥
473 A+ r)"(1+rp)m

; (26)

7 (x —p)* g —x)P 70 [ (x—p)(g—x) " i
/P [(g—p) +ri(x—p)+ra(g—x)]*F E”’“[ {[(q—P)+r1(x—r7)+rz(q—x)]2} ]d
1 1
(g—p) A+r)* (1 +1r2)P T(7)

(y,b), (D‘r m)r (IB’ m);

(1, 0), (& +p, 2m);
(V) Setting¢=v,A=¢anda =b =05 =11in (15), the following identity holds:

x 3%

(T4 r)™(1 4 rp)m

o ] ; 27)

7 (x—p)* g —x)F 7 [ (x—p)(g—x) " i
/P [(q—p)+1’1(x—p)—i—rz(q—x)]"‘ﬂ3 Em[ {[(‘7‘?)+7’1(X—P)+rz(l7—x)]2} ]d

1 1
C(g—p) A+r)* (1+7r2)P T(7)
(1), @om), (6w .
x 3%> wo), (i B, 2m); A+r)"(1+r)m |’ (28)
(vi) Setting¢=v,A=¢anda =b =y =J = 1in (15), the following identity holds:
7 (x—p)*g—x)F" (x—p)(g—x) "
-/P [(g—p)+ri(x—p)+r2(g— x)]‘”ﬁ Eo [w{ (g —p) +r1(x = p) +1r2(g — x)]? } ] o
1
(g—p) A4+r)* (A +r)f
(@ m), (B m), (1) .
x 3% w0) (et B, 2m) A+ r)m(1+r)m|’ (29)

(vii) Setting¢ =v,A=¢anda =b =y =09 = u = 1in (15), the following identity holds:

7 (x=p)* Hg—x)F! (x—p)(q—x) "
/P [(g—p) +ri(x —p) +r2(q — x)]*F be {w{ (g —p) +r1(x—p) +12(g — x)]z} } A
1
(g—p) M+r)* (1+r)P
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(@,m), (B,m), (1,1);

w

X 3¥ ; 30
312 (1, U), ([x . 'B,Zm); (1 _|_1,1)m(1 + rz)m ( )
(viii) Setting  =v,A=¢anda =b =y =6 = y = 0 = 1in (15), the following identity
holds:
a_ - (x=p)a-2) "
/q (x—p)* g —x)P" e{w{ [(q—p>+r1<f—pq>+r2<q—xn2} ] dx
I [(q=p)+ri(x = p)+r2lg —2))F
B 1
(@ —p) A 4r)* (1+r2)P
(wm), (B,m), )
X ¥ ; 31
o (a + B,2m); (1)1 472)" o
(ix) Settingl=v,A=¢anda =b =y =0 =pu =1,0 = 0in (15), the following
identity holds:
/q (x—p)* g —x)F 1 i
_ _ — ) [ _ (x—p)(q—x) "
P [(g—p)+ri(x—p)+rqg—x)] {1 w{ [(qu)+r1(xfp)+rz(qfx)}2} }
_ 1
(g—p) A+r)* (1+7r2)f
(am), (Bm), (1,1); ,
x 3% ; 32
312 1,0), (0{-1—,3,2771)) (1 +7r)"(1+r)m (32)
(x) Setting ¢ = v, A = ¢ in (20), the following identity holds:
[ epa0t (x—p)lg—2) "
a+p o, — _ _ 2
p [(g—p)+ri(x—p)+r(qg—x) [(q—p)+r1(x—p)+r2(q — x)]
B 1 I()I(B)
(@—p) A+r)* (1 +r2)f Tla+p)T(k)
{ Am; ), A(m;B), A(b;y), 1; wb?
X omtbr1Famtota P P i (33)
o+ Ao 1), Aa:5), AQm;a+ B); 4mgoat(1+ 7)™ (1 +1p)
(xi) Setting ¢ =v, A =¢ and a = 1 in (20), the following identity holds:
L R (x = p)(g — %) 1o
P [(g—p)+r(x—p)+rg—x)] P T [(g—p)+ri(x—p)+r2(q —x)]?
_ 1 T'(a)C(B)
(@—p) A+r)* (1+r2)f T(at BT (1)
A(m;a), A3 B), Ab;y), I w b
X omtb+1Famto+1 — - — 15 (34)
Alo;u),  AQ2ma+pB), o; 4071+ r)" (1 +r2)

(xii) Setting ¢ =v, A = ¢ and a = b = 1in (20), the following identity holds:

7 (x—p)* g —x)F 7 [ (x—p)(g—x) " i
/P [(g—p) +ri(x—p)+ra(q—x))*F E”’”[ {[(q—P)+r1(x—P)+rz(q—x)]2} ]d
1 T(a)T(B)
(g—p) A+r)* (14+r)f T(a+p)T (k)
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A(m;a),  A(m;B), v, L ”
X om+2Fomtot1 Mop), Almadtp), 5 4mg7 (14 1) (1 + o)™ ; (35)
(xiii) Setting { =v, A = ¢ and a = § = 1 in (20), the following identity holds:
7 (x—p*tg—xFf! £ (x—p)g—x) "4
/P [(g—p)+r(x—p)+r(g—x)]F " {w{ [+(g=p)r(x—p) +r2(q —x)]? } ] *
_ 1 ['(a)C(B)
C@—p) (A +r)* (1+r)P T(a+p)T(p)
A(m;a),  A(m; B), Ab;y); w b a6
X m F m-+o o — m " ; 36
2m+bE2m+ Mosp),  AQmat f) 4mg7 (14 r1)"(1412)
(xiv) Setting § =v, A = ¢ and a = b = § = 1 in (20), the following identity holds:
I et (=)o - "
-/P [(g—p)+ri(x—p)+r(g—x)]*"P B [w{ [(q—p)+ri(x—p)+r(g—x)]? } ] :
_ 1 L(a)T'(B)
C(g=p) (M) (L +r2)f Ta+ BT (W)
A(m;a),  A(m; B), v; ”
X 2m+1F2m+(T[ M), Amet B T AT ) A )" ; (37)
(xv) Setting¢=v,A=¢anda =b =y =J=1in (20), the following identity holds:
7 (x—p)* g —x)F (x—p)g—x) "4
/P [(g—p)+ri(x—p)+r(g—x)]*"P Fo [w{ [(q=p) +ri(x—p)+r2(g —x)]? } ] *
_ 1 [(a)T(B)
C@—p) A +r)* (1+r)P T(a+p)T(p)
Am;u),  Am;B), 1;
X 2m+lF2m+t7 [ 4m 0(1 + Zl;m(l T )m ; (38)
Aop), Dma+p); cUTnR TR

(xvi) Setting { =v,A=¢anda = b =y = = u = 1in (20), the following identity holds:

7 (x—p)* g —x)P! " (x—p)(q—x) "
/r' [(q=p)+r1(x=p)+ra2(g — )] EU{ {[(fi—P)+r1(x—P)+rz(q—x)]2} }d
(@)T'(B) 1

(@+B) (q—p) L+r)* (1+r2)f
Alm;),  A(m;B), 1;

T
T

w
g7 (1 + 1) (1 + ra)™

; (39)

X omt1Pamio
A(o;1), AQ2m;a+ B);

(xvii) Setting=v,A=¢anda =b =7 =5 =y = c = 1in (20), the following

identity holds:
-1 -1 (x=p) (=) "
/q (x _ p)a (q _ x)ﬁ e{w{ [(»H’Hrl(xpqu)wz(q—x)]z} ] dx
T 1q=p)+ri(x—p) +ralg = 0))*F
_ I(a)T'(B) 1

Tla+p) (q—p) Q+r)* (1+7r2)P
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A(m;a),  A(m; B); w

4m0-17(1 + Vl)m(l + 72)111 )

X omFom (40)

AQ2m; o+ B);

4. Graphical Representation

Here, in terms of the parameter 3, we illustrate Equations (14) and (15) using graphical
simulations. For this, we evaluate the integrals numerically using the Gaussian quadrature
Method (see [37]) and compare this with the main results. We choose k = 5 and n = 8 to
get more precise results.

5. Conclusions

It is worth stressing that the generalized Mittag—Leffler function obtained and the inte-
gral formulas computed are amenable to further generalizations and future investigation.
We have attempted to exploit the close connection of the generalized Mittag—Leffler func-
tions with several important special functions and compute the integrals of the functions
mentioned above in the form of the generalized Mittag-Leffler, linking different families of
special functions. Our main results (15) and (20) and some special cases (24)-(32) can yield
several new integrals in terms of Fox-H functions obtained from Equations (11) and (13).
For instance, we write

7 (x—p)* g —x)P ok [ (x—p)(g—x) " i
/r’ [(7—p) +ri(x—p)+ra(q —x))*F Fonapsa [ { [(g—p) +ri(x—p)+r2(qg—x)]? } ] g

_ 1 T(v) T(6)
(g—p) A+r)* (14+r)f T(E)T(y)
&A), (1,b), (wm), (Bm),  (1,1); . "
s - ” 41
(o), (), Ga),  (a+pomy; LH"LE7)
_ 1 T(v) T(6)
(g—p) A+r)*(1+r)f T(E)T(y)
. Y (=g A), (1=1b), (1—am), (1—pm), (0,1) }
X H5/5 m m ’ (42)
CLOEAERT o), o), -vg), 1-5a), {1 (atp2m)]}

with all the conditions prescribed in Theorem 1. We have also proved that Figures 1-3 show
a good compatibility of the numerical solution obtained by the Gaussian quadrature method
and the analytic expression. We conclude that the results obtained will provide a significant
step in the theory of integral transforms and can yield some potential applications in the
field of the classical and applied mathematics.
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+ Analytical method
6 Gaussian quadrature method

3 3.5 4 4.5 5
B
Figure 1. Solution of (14) fora = 6,711 =2, =2,p=0and g = 1.
9
3 x10
+ Analytical method
- Gaussian quadrature method

1 BRI L &8s 5 G i

3 3.5 4 4.5 5

Figure 2. Solution of (15) (forg = 1) fora = 6,711 =2,1p =4,p=0,{ =1, A =2,y =2b=3,0=2,
u=5v=2¢=30=2a=4w=3andm=2.
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+ Analytical method
Gaussian quadrature method

0.8

0.4

L N ety

4 45 g
B

Figure 3. Solution of (15) (forallg) fora = 6,71 =2, =4,p=0,{ =1, A=2,y=2b=3,0=2,
u=5v=2¢=30=2a=4w=3andm=2.
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