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Abstract: Let k and n be two positive integers. Firefighting is a discrete dynamical process of
preventing the spread of fire. Let G be a connected graph G with n vertices. Assuming a fire starts at
one of the vertices of G, the firefighters choose k unburned vertices at each step, and then the fire
spreads to all unprotected neighbors of the burning vertices. The process continues until the fire
stops spreading. The goal is to protect as many vertices as possible. When a fire breaks out randomly
at a vertex of G, its k-surviving rate, ρk(G), is the expected number of saved vertices. A graph is
IC-planar if it has a drawing in which each edge cross once and their endpoints are disjoint. In this
paper, we prove that ρ4(G) > 1

124 for every IC-planar graph G. This is proven by the discharging
method and the locally symmetric of the graph.

Keywords: firefighting; surviving rate; IC-planar graph

1. Introduction

Firefighting is a discrete-time process that occurs on a connected graph that simulates
the spread of fire, virus, or rumors across a network. Such a problem is named after
Hartnell [1], who presented it at a combinatorial mathematics and computing conference
in 1995. Specifically, given a connected graph G and a positive integer k, initially, assume
that the fire breaks out at one of the vertices of G. At each stage, firefighters select a
subset of at most k vertices that are not yet on fire for defense. At the same time, the fire
spreads to all undefended neighbours. This process ends until the fire stops spreading.
Furthermore, unburned vertices can be regarded as saved. The goal is to maximize the
number of saved vertices.

The complexity of firefighting is NP-complete for bipartite graphs [2], cubic graphs [3],
and even trees of maximum degree three [4]. There is a considerable amount of literature
on the algorithms of firefighting and complexity. Further information on firefighting can be
found in the latest survey article by Wang and Kong [5]. Moreover, firefighting modeling
has many applications in computer science, biology, the spread of epidemics, etc. (see [6–8]).

To demonstrate the defensive capabilities of a graph or a network as a whole, Cai
and Wang [9] introduced surviving rate of graphs in 2009. Let snk(v) be the maximum
number of vertices that the firefighter can save when a fire breaks out at vertex v. The
k-surviving rate, denoted by ρk(G), is the expectation of the vertices that can be saved when
a fire breaks out randomly on one vertex of G with n vertices. That is:

ρk(G) =
∑v∈V(G) snk(v)

n2 ,

In the probabilistic sense, for any ε > 0, almost all graphs have ρk(G) < ε, due to
Wang et al. [10]. Let c be a positive constant less than one. It is natural to determine whether
a given graph G has ρk(G) ≥ c. For convenience, such graph G is called k-good.
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Let l be a non-negative integer. A graph which can be embedded in the Euclidean
plane with at most l crossings per edge is called an l-planar graph, and let Pl be the family
of l-planar graphs. Obviously, P0 is the family of planar graphs. In particular, a 1-planar
graph is IC-planar if it admits a 1-planar drawing such that no two crossed edges share an
end-vertex. A 1-planar graph is NIC-planar if it admits a 1-planar drawing such that any
two distinct pairs of crossing edges have at most one end-vertex in common. We use PIC
and PNIC to denote the classes of IC-planar graphs and NIC-planar graphs, respectively.
From the definition, we have:

P0 ⊆ PIC ⊆ PNIC ⊆ P1 ⊆ P2 ⊆ · · · .

An example of a planar graph, an IC-planar graph, a NIC-planar graphs, and a
1-planar graph is shown in Figure 1. Observe that all of them are symmetric with respect to
their vertices.

Figure 1. (a) A planar graph. (b) An IC-planar graph. (c) A NIC-planar graph. (d) A 1-planar graph.

Note that the smaller the number of edges, the higher the probability of k-good. Most
investigations of surviving rate concerning sparse graphs. Table 1 shows all known such
results on the graph classes of k-good, up to our own knowledge.

Table 1. The latest results of k-good families.

Graph Family Restriction k-Good [Reference]

Tree k = 1 [9]

Halin graph 1 k = 1 [9]

Outerplanar graph 2 k = 1 [9]

Sparse graph m ≤ 15
11 n k = 1 [11]

m ≤ 1
2 (l + 2− 1

l+2 )n(l ≥ 2) k = l [12]
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Table 1. Cont.

Graph Family Restriction k-Good [Reference]

P0 m ≤ 9
4 n k = 2 [13]

no 6-cycle k = 2 [14]
no chordal 5-cycle 3 k = 2 [15]

P0 girth 4 ≥ 7 k = 1 [16]
girth ≥ 5 k = 1 (Conjecture [17])

P0 k = 5 [10]
k = 4 [17,18]
k = 3 [19,20]
k = 2 (Conjecture [17])

PIC k = 4 (this paper)

PNIC k = 5 [21]

P1 k = 6 [22]
1 A Halin graph is a graph H = T ∪ C, where T is a plane tree on at least four vertices in which no vertex has a
degree of two, and C is a cycle connecting the leaves of T in the cyclic order determined by the embedding of T.
2 A graph is outerplanar if it has a planar embedding in which all vertices lie on the boundary of its outer face.
3 A cycle having a chord is called a chordal cycle. 4 The girth of a graph is defined as the length of a shortest cycle.

In this paper, we will show the following result, which implies that IC-planar graphs
are 4-good.

Theorem 1. Let G be an IC-planar graph. Then, ρ4(G) > 1
124 .

2. Notation

An IC-plane graph, which is a drawing of a IC-planar graph in the Euclidean plane,
such that each edge intersects another edge with as few crossings as possible. For an
IC-plane graph G, for each pair ab, cd edges that cross each other at a crossing point z, their
end vertices are pairwise distinct. Let X(G) be the set of all crossing points and E1(G) be
the non-crossed edges in G. An associated plane graph GX =

(
V
(
GX), E

(
GX))of G is the

plane graph with:

V(GX) = V(G) ∪ X(G); E(GX) = E1(G) ∪ E2(G)

where E2(G) = {az, bz | ab is a crossing edge and z is the crossing point on ab}. Thus,
each of the crossing point becomes an actual vertex of degree four in GX . For convenience,
we still refer to the crossing vertices in GX as new vertices, and the edges in E(G) that
contain a crossing vertex are called crossing edges. Denote F

(
GX) the set of faces of GX.

Let Vk(G), V−k (G) and V+
k (G) denote the sets of vertices in G with degree k, at most k

and at least k, respectively. We say a vertex v is k-vertex (k− -vertex or k+-vertex ) if
v ∈ Vk

(
v ∈ V−k (G) or v ∈ V+

k (G)
)
. The set of vertices which is adjacent to v in graph G is

denoted by NG(v), and set N[v] = N(v) ∪ {v}.
A kite is a graph isomorphic to K4 with an embedding such that all the vertices are

on the boundary of the outer face, the four edges on the boundary are planar, and the
remaining two edges cross each other (see Figure 2a). We say that a kite (a, b, c, d) with
crossing edges ad and bc is empty if it contains no other vertices; that is, the edges ac, ad,
and ab are consecutive in the counterclockwise order around a (see Figure 2b,c).
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Figure 2. (a) A kite. (b) The kite (bold lines) is not empty. (c) Rerouting edge ab to make the
kite empty.

A vertex v is called good if sn4(v) ≥ n− 4. Otherwise, v is called bad. Let Vg and Vb

be the set of good vertices and bad vertices, respectively. Moreover, let Vb
k be the set of bad

k-vertices, For a vertex v ∈ V(GX), we use nb
k(v) and nX(v) to denote the number of bad

k-vertices and crossing vertices that are adjacent to v in GX , respectively. Let
V1

X = {v ∈ X(G)|nb
5(v) = 1},

Vi
X = {v ∈ X(G)|nb

6(v) = 4− i} for 2 ≤ i ≤ 4,
V1

7 = {v ∈ Vb
7 | vs. is adjacent to a vertex in V2

X},
V2

7 = Vb
7 \V1

7 .
Let G be an IC-plane graph. G is maximal if no edge can be added without violating

IC-planarity. An IC-planar graph G is maximal if every IC-planar embedding is maximal.
If we restrict to IC-plane graphs, we say that an IC-plane graph G is planar-maximal if no
edge can be added without creating at least an edge crossing on the newly added edge or
making the graph not simple.

3. Structural Properties

In this section, we identify some structural properties that lead to good vertices in the
plane-maximal IC-plane graph.

Lemma 1 ([23]). Let G = (V, E) be an IC-plane graph. There exists a plane-maximal IC-plane
graph G+ = (V, E+) with E ⊆ E+ such that the following conditions hold:

(1) The four endpoints of each pair of crossing edges induce a kite.
(2) Each kite is empty.
(3) Let C be the set of crossing edges in G+. Let C∗ ⊂ C be a subset containing exactly one edge

for each pair of crossing edges. Then, G+\C∗ is plane and triangulated.
(4) The outer face of G+ is a 3-cycle of non-crossed edges.

Corollary 1. Let G+ be a plane-maximal IC-plane graph and v ∈ V(G+). Then, the neighbors of
v in G+ are adjacent successively.

Proof. The Lemma 1 states that the edge set of every plane-maximal IC-plane graph can
be decomposed into a triangulation and a matching M. Let v ∈ V(G+) be a k-vertex with
NG+(v) = v0, v1, . . . , vk−1 in clockwise order around v. If v is matched under M, without
loss of generality, suppose that vv1 ∈ M. Then, v0v2, vivi+1 ∈ E(G+) by Lemma 1(3), where
2 ≤ i ≤ k− 1. Since vv1 and v0v2 are crossing edges, v0v1, v1v2 ∈ E(G+) by Lemma 1(1).
Otherwise, according to Lemma 1(3), we have vivi+1 ∈ E(G+), where 0 ≤ i ≤ k− 1.

Fact 1 ([9]). Let H be a subgraph of G with V(H) = V(G). Then, ρk(H) ≥ ρk(G).

Given the fact above, plane-maximal IC-plane graphs have the lowest surviving rates
among all IC-plane graphs. For convenience, we always assume that G is a plane-maximal
IC-plane graph, and GX is an associated plane graph of G in the following argument.
Furthermore, assume the neighbours of k-vertex v in G in clockwise order around v are
v0, v1, . . . , vk−1.
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Lemma 2. Every 4−-vertex is good.

Lemma 3. Let v be a bad 5-vertex. Then, v is adjacent to five 8+-vertices in G. Moreover, if v is
incident to a crossing edge, then v is adjacent to at least two 9+-vertices in G.

Proof. By contradiction, assume v is adjacent to a 7−-vertex, say v0. When a fire breaks out
at v, we protect {v1, v2, v3, v4} first. By Corollary 1, we have v0v1, v0v4 ∈ E(G). Noting that
both v1 and v4 have been protected in the first turn, we only need to protect all vertices
in NG(v0)\{v, v1, v4} in the second turn. Thus, all the vertices in V\{v, v0} have been
saved under our strategy. This implies that sn4(v) ≥ n− 2, that is, v is a good 5-vertex, is
a contradiction.

Suppose v is incident to a crossing edge. Without loss of generality, suppose that
vv0 is a crossing edge. By Corollary 1, we obtain that v0v1, v1v4, v0v4, v1v2, v3v4 ∈ E(G).
If v1 is a 8−-vertex, then we first protect {v0, v2, v3, v4}; next, we protect all vertices in
NG(v1)\{v, v0, v2, v4} when a fire breaks out at v. It follows that sn4(v) ≥ n− 2, that is, v
is a bad 5-vertex, which is impossible. Thus, v1 is a 9+-vertex. An analogous argument
shows that v4 is a 9+-vertex.

Lemma 4. Let [vuw] be a 3-cycle with v, u, w are bad vertices, and let x ∈ (NG(u) ∪ NG(w)) \ NG[v].

(1) If v is a bad 6-vertex, then |(NG(u) ∪ NG(w)) \ NG[v]| ≥ 5.
(2) Moreover, if |(NG(u) ∪ NG(w)) \ NG[v]| = 5, then d(x) ≥ 8.

Proof. Suppose, by way of contradiction, that |(NG(u) ∪ NG(w)) \ NG[v]| ≤ 4. Assume
that a fire breaks out at v. We first protect NG(v) \ {u, w}, then (NG(u)∪NG(w)) \NG[v]. It
is easy to inspect that all vertices in V \ {v, u, w} have been saved under the above strategy.
Hence, sn4(v) ≥ n− 3, that is, v is a good 6-vertex, is a contradiction.

Assume that |(NG(u) ∪ NG(w)) \ NG[v]| = 5. Suppose x is a 7−-vertex. When a fire
breaks out at v, we first protect NG(v) \ {u, w}, then (NG(u) ∪ NG(w)) \ (NG[v] ∪ {x}),
and finally the neighbors of x in G which are not protected. According to Corollary 1, it is
not difficult to see that all the vertices in V \ {v, u, w, x} have been saved under our strategy.
Thus, sn4(v) ≥ n− 4, which contradicts that v is a bad 6-vertex.

By calculating the cardinality of NG(u) ∪ NG(w)) \ NG[v], deduce the following corol-
lary from Lemma 4.

Corollary 2. Let [vuw] be a 3-cycle with v, w ∈ Vb
6 and u ∈ V1

7 . Then, the vertices in (NG(u) ∪
NG(w)) \ NG[v] and (NG(u) ∪ NG(v)) \ NG[w] are 8+-vertices.

Corollary 3. There are at most two bad 6-vertices in the four endpoints of each pair of crossing edges.

Proof. Let ad and bc be crossing edges. By Lemma 1, derive that ac, cd, db, ab ∈ E(G). We
establish the corollary by contradiction. Suppose that there are at least three bad 6-vertices
in {a, b, c, d}, say a, b and c. Hence, there is a 3-cycle [abc], where a, b, c are bad 6-vertices.
Since |(NG(a) ∪ NG(b)) \ NG[c]| ≤ 4, according to Lemma 4, c is a good 6-vertex, there is
a contradiction.

Lemma 5. Every 8-vertex is adjacent to at most one bad 5-vertex in G.

Proof. By contradiction. Let u be a 8-vertex which is adjacent to at least two bad 5-vertices
in G, say v and w. Because bad 5-vertices are not adjacent by Lemma 3, uw /∈ E(G).
Suppose a fire breaks out at v, we first protect NG(v) \ {u}, then NG(u) \ (NG[v] ∪ {w}),
and finally NG(w) \ {u}. Since |NG(u) \ (NG[v] ∪ {w})| ≤ 4 by Corollary 1, all the vertices
in V \ {v, u, w} have been saved under our strategy. Thus, sn4(v) ≥ n− 3, which contradicts
v, is a bad 5-vertex.
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Lemma 6. Every vertex in Vb
5 ∪Vb

6 ∪V1
7 is adjacent to a vertex in Vg ∪V2

7 ∪V+
8 .

Proof. If v ∈ Vb
5 , then v is adjacent to a 8+-vertex by Lemma 3. Assume v ∈ Vb

6 .
If v is adjacent to a 5−-vertex u, then u is a good vertex by Lemma 3. Suppose the
neighbors of v are 6+-vertices. If there are two adjacent bad 6-vertices in NG(v). With-
out loss of generality, say v0 and v1 are bad 6-vertices, it can readily be checked that
|(NG(v)∪NG(v1)) \NG[v0]| = 5. It follows that d(vi) ≥ 8, where 2 ≤ i ≤ 4, by Lemma 4(2).
Thus, we may assume v is adjacent to a 7-vertex, say v0. If v0 ∈ V1

7 , then there is a 3-cycle
[v0uw] with u, w ∈ Vb

6 by the definition of V1
7 , since v ∈ (NG(u) ∪ NG(v0)) \ NG[w], by

Corollary 2, d(v) ≥ 8, is a contradiction. Hence, v0 ∈ V2
7 .

Assume v ∈ V1
7 . Then, v is adjacent to a vertex x in V2

X with nb
6(x) = 2, by the

definition of V1
7 . Without loss of generality, we may suppose that vv0 crosses v1v6 in G at

the crossing x. Since nb
6(x) = 2, there is a 3-cycle [vuw], where {u, w} ⊆ {v0, v1, v6} ∩Vb

6 .
It is not hard to check that [vuw] satisfies the condition of Lemma 4(2). Hence, d(vi) ≥ 8,
where 3 ≤ i ≤ 5.

4. The Surviving Rate

In this section, we use the Discharging Method in two stages to prove the main result
of Theorem 1.

Let G be a plane-maximal IC-plane graph, and GX be an associated plane graph of G.
Assign a charge of dGX (v)− 4 to each vertex v ∈ V(GX), and a charge of dGX ( f )− 4 to each
face f ∈ F(GX). Using Euler’s Formula, it can be verified that the total charge assigned to
vertices and faces is −8.

4.1. First Discharge

In the first stage, we define the following discharging rules (R1) to (R3).

(R1) Every vertex in GX sends charge 1
3 to incident 3-face.

(R2) Suppose v is a crossing vertex and u is a neighbor of v in GX .

(R2.1) If u is good, then u sends charge 4
3 to v;

(R2.2) If d(u) ≥ 8 and v ∈ V1
X , then u sends charge 4

9 to v;
(R2.3) If d(u) ≥ 7 and v ∈ V2

X , then u sends charge 2
3 to v;

(R2.4) If d(u) ≥ 7 and v ∈ V3
X , then u sends charge 4

9 to v;
(R2.5) If d(u) ≥ 7 and v ∈ V4

X , then u sends charge 1
3 to v.

(R3) Suppose v is a bad 5-vertex and u is a neighbor of v in GX .

(R3.1) If d(u) = 8, then u sends charge 2
15 to v;

(R3.2) If d(u) ≥ 9, then u sends charge 1
5 to v.

Lemma 7. Let w1 denote the resultant weight function after the discharging procedure is performed
on GX according to the rules (R1) to (R3). Then, we have the following:

(1) If x ∈ Vg, then w1(x) ≥ 2d(x)−16
3 ;

(2) If x ∈ F(GX) ∪ X(GX), then w1(x) = 0;
(3) For each vertex x ∈ V \Vg, we have the following:

(3.1) If x ∈ Vb
5 ∪Vb

6 ∪V1
7 , then w1(x) ≥ 0;

(3.2) If x ∈ V2
7 , then w1(x) ≥ 2

9 ;
(3.3) If d(x) = 8, then w1(x) ≥ 8

15 ;

(3.4) If d(x) ≥ 9, then w1(x) ≥ 17d(x)−140
30 .

Proof. Assume x ∈ Vg, w1(x) ≥ d(x)− 4− d(x)× 1
3 −

4
3 = 2d(x)−16

3 by (R1) and (R2.1). If
x ∈ F(GX), then d(x) = 3 according to Lemma 1. It follows that w1(x) = 3− 4 + 3× 1

3 = 0
by (R1). Let x ∈ X(GX), without loss of generality, and assume that ab cross cd in G at
the crossing x. If one of {a, b, c, d} is a good vertex, it sends 4

3 to x by (R2.1). This implies
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that w1(x) = 4− 4− 4× 1
3 + 4

3 = 0. Otherwise, every vertex in {a, b, c, d} is bad. If x is
adjacent to a bad 5-vertex, say a, that is x ∈ V1

X , then each vertex in {b, c, d} is a 8+-vertex
by Lemma 3. It follows that w1(x) = 4− 4− 4× 1

3 + 4
9 × 3 = 0 by (R2.2). According to

Corollary 3, there are at most two bad 6-vertices in {a, b, c, d}. If nb
6(x) = 2, that is, x ∈ V2

X ,
then n7+(x) = 2. We have w1(x) = 4− 4− 4× 1

3 +
2
3 × 2 = 0 by (R2.3). Similarly, according

to (R2.4) and (R2.5), if nb
6(x) = 1, then w1(x) = 4− 4− 4× 1

3 + 4
9 × 3 = 0, if nb

6(x) = 0,
then w1(x) = 4− 4− 4× 1

3 + 1
3 × 4 = 0, , respectively. Therefore, (1) and (2) hold.

Now, we begin with the proof of the statement (3). Let x ∈ Vb
5 . If nX(x) = 0, then x is

adjacent to five 8+-vertices in GX by Lemma 3, which sends at least 2
15 to x by (R3.1) and

(R3.2). Hence, w1(x) ≥ 5− 4− 5× 1
3 +

2
15 × 5 = 0. If nX(x) = 1, then x is adjacent to at least

two 9+-vertices in G by Lemma 3. Therefore, w1(x) ≥ 5− 4− 5× 1
3 + 2

15 × 2 + 1
5 × 2 = 0

by (R3.1) and (R3.2). Assume x ∈ Vb
6 . Then, w1(x) = 6− 4− 6× 1

3 = 0 by (R1). Assume
x ∈ V1

7 . Then x is adjacent to a vertex in V2
X, which gets 2

3 from x by (R2.3). Hence,
w1(x) = 7− 4− 7× 1

3 −
2
3 = 0. Hence, (3.1) holds.

If x ∈ V2
7 , then w1(x) ≥ 7 − 4 − 7 × 1

3 − nX(x) ×max{ 4
9 , 1

3} ≥
2
9 by (R1), (R2.4)

and (R2.5).
If d(x) = 8, then nb

5(x) ≤ 1 by Lemma 5. Therefore, w1(x) ≥ 8− 4− 8× 1
3 −

2
15 ×

n5(x)−max{ 4
9 , 2

3 , 1
3} × nX(x) ≥ 8

15 by (R1), (R2), and (R3.1).

If d(x) ≥ 9, then nb
5(x) ≤ b d(x)

2 c as bad 5-vertices are not adjacent. Consequently,

w1(x) ≥ d(x)− 4− d(x)× 1
3 −

1
5 × nb

5(x)−max{ 4
9 , 2

3 , 1
3} × nX(x) ≥ 17d(x)−140

30 .

4.2. Second Discharge

We now need to perform a second stage of discharging. To do this, we define an
additional discharging rule R′ as follows:
(R′) Every vertex in Vg ∪V2

7 ∪V+
8 sends 1

36 to every adjacent vertex in Vb
5 ∪Vb

6 ∪V1
7 .

Let w2 denote the resultant weigh function after the second discharging procedure is
performed on GX according to the rule (R′).

Lemma 8.

(1) If x ∈ Vg, then w2(x) ≥ − 123
36 ;

(2) If x ∈ V(G)\Vg, then w2(x) ≥ 1
36 ;

(3) If x ∈ F
(
GX) ∪ X

(
GX), then w2(x) = 0.

Proof. If x ∈ Vg, then it is obvious that w2(x) = w1(x)− 1
36 d(x) ≥ 2d(x)−16

3 −− 1
36 d(x) =

23d(x)−192
36 ≥ − 123

36 as δ(GX) ≥ 3.
Let x ∈ V(G)\Vg. Then, d(x) ≥ 5. By Lemma 7, w1(x) ≥ 0. If x ∈ Vb

5 ∪ Vb
6 ∪ V1

7 ,
then x is adjacent to a vertex in Vg ∪ V2

7 ∪ V+
8 by Lemmas 3 and 6. Hence, w2(x) ≥

w1(x) + 1
36 ≥

1
36 by Lemma 7 (3.1) and (R′). If x ∈ V2

7 , then w2(x) ≥ w1(x)− 1
36 × 7 ≥

2
9 −

7
36 = 1

36 . If x ∈ V8, then w2(x) ≥ w1(x)− 1
36 × 8 ≥ 8

15 −
8

36 = 14
45 . If x ∈ V+

9 , then

w2(x) ≥ w1(x)− 1
36 × d(x) ≥ 17d(x)−140

30 − d(x)
36 = 97d(x)−840

180 ≥ 11
60 .

If x ∈ F
(
GX) ∪ X

(
GX), then w2(x) = w1(x) = 0 by Lemma 7.

4.3. The Main Result

By Lemma 8, let ng = |Vg|, we can derive the following.
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0 > −8 = ∑
x∈V(GX)

w2(x) + ∑
x∈F(GX)

w2(x)

= ∑
x∈C(GX)

w(x) + ∑
x∈Vg

w(x) + ∑
x∈V(G)\Vg

w(x) + ∑
x∈F(GX)

w(x)

≥ ∑
x∈Vg

w(x) + ∑
x∈V(G)\Vg

w(x)

≥ −123
36

ng +
1
36

(n− ng)

Thus:
ng >

1
124

n.

It is easy to see that when a fire breaks out at a vertex in V(G)\Vg, the firefighter can
save at least four vertices. Thus:

∑
x∈V(G)

sn4(x) = ∑
x∈Vg

sn4(x) + ∑
x∈V(G)\Vg

sn4(x)

≥ (n− 4)ng + 4(n− ng)

= (n− 8)ng + 4n

>
n(n− 8)

124
+ 4n

>
1

124
n2

Therefore:

ρ4(G) =
∑x∈V(G) sn4(x)

n2 >
1

124
.

It is interesting to improve the lower bound for the class of IC-planar graphs, as this is
not the best possible. However, we are mostly concerned with the following question.

Question 1. What is the smallest integer k∗ such that all IC-planar graphs are k∗-good ?

Note that K2,n is a planar graph, which is also an IC-planar graph. It is easy to compute
that ρ(K2,n) =

2
n+2 ; therefore, lim

n→∞
ρ(K2,n) = 0. This fact and our Theorem 1 imply that

2 ≤ k∗ ≤ 4. It is conjectured that planar graphs are 2-good in [17], and we conjecture that
IC-planar graphs are also 2-good.
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