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Abstract: In this paper, symmetry properties of the basic equations of atmospheric motion are pro-
posed. The results on symmetries show that the basic equations of atmospheric motion are invariant
under space-time translation transformation, Galilean translation transformations and scaling trans-
formations. Eight one-parameter invariant subgroups and eight one-parameter group invariant
solutions are demonstrated. Three types of nontrivial similarity solutions and group invariants are
proposed. With the help of perturbation method, we derive the second-order approximate equations
for the large-scale atmospheric motion equations, including the non-dimensional equations and the
dimensional equations. The second-order approximate equations of the large-scale atmospheric
motion equations not only show the characteristics of physical quantities changing with time, but
also describe the characteristics of large-scale atmospheric vertical motion.

Keywords: basic equations of atmospheric motion; symmetry; large scale atmospheric motion
equations; second-order approximate equations

1. Introduction

Atmospheric dynamics mainly studies the evolution of atmospheric motion and the
influence of various dynamic processes on atmospheric motion and state. If the influence
of friction is not considered, the atmosphere can be called free atmosphere. The dynamic
equations describing the motion of free atmosphere are composed of motion equations,
continuity equations and thermodynamic equations. The basic equations of atmospheric
motion in the local rectangular coordinate take the form: [1–4]:

d u
d t
− f v = −1

ρ

∂ p
∂ x

, (1)

d v
d t

+ f u = −1
ρ

∂ p
∂ y

, (2)

d w
d t

= −g− 1
ρ

∂ p
∂ z

, (3)

d ρ

d t
+ ρ

(
∂ u
∂ x

+
∂ v
∂ y

+
∂ w
∂ z

)
= 0 , (4)

p = ρ R T, (5)

θ = T
(

P0

p

)R/cp

, (6)

cp
d T
d t
− 1

ρ

d p
d t

= Q , (7)
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where

d
d t
≡ ∂

∂ t
+ u

∂

∂ x
+ v

∂

∂ y
+ w

∂

∂ z

with d
d t , ∂

∂ t and u ∂
∂ x + v ∂

∂ y + w ∂
∂ z meaning material derivative, local change and convec-

tive change, respectively. Equations (1) and (2) are horizontal motion equations. Equation (3)
is a vertical motion equation. Equation (4) is a continuity equation. Equation (5) is an
atmospheric state equation. Equation (6) is a potential temperature equation. Equation (7)
is related to the first law of thermodynamics. t means time. z, x and y mean atmospheric
position in vertical direction, latitudinal direction and longitudinal direction, respectively. u,
v and w are wind velocities in x direction, y direction, and z direction. u > 0 and u < 0 mean
west wind and east wind, respectively. v > 0 and v < 0 denote south wind and north wind,
respectively. w > 0 and w < 0 are linked with ascending motion and descending motion,
respectively. f is Coriolis parameters, where f = 2 sin φ Ω with φ meaning latitude and Ω
meaning rotational angular velocity of the earth. p is atmospheric pressure, g denotes the
gravitational constant, ρ denotes the density and T is atmospheric temperature. cp is about
1005 J · kg−1 ·K−1 and it means specific heat at constant pressure. R = 287 J · kg−1 ·K−1 and
it is gas constant of dry air. P0 is a constant and P0 ≡ 1000 hPa. θ is the potential temperature,
which is a conserved quantity in adiabatic process. Q is the heat obtained from the outside by
a unit mass of air clusters in a unit time. Q = 0 denotes atmospheric adiabatic changes.

The physical characteristics of various motions in the atmosphere are mainly deter-
mined by the horizontal spatial scale occupied by the motion. Based on this, the atmo-
spheric motion is divided into large-scale motion, mesoscale motion and small-scale motion.
The weather systems of large-scale atmospheric motion include long wave, blocking high
pressure and large cyclone [5,6]. Mesoscale weather systems include typhoon, regional
precipitation, hail and other severe convective weather [7,8]. Small-scale weather systems
contain tornadoes, small thunderstorms and cumulus clouds [9,10].

According to the characteristics of different atmospheric motions, some approximate
conditions can also be introduced to study the simplified model of the basic equations of atmo-
spheric motion, such as hydrostatic approximation, anelastic approximation and Boussinesq
approximation. In the large-scale atmosphere, the static equilibrium is very accurate, so the hy-
drostatic equation is often applied. Hydrostatic equations include horizontal kinetic energy,
elastic potential energy and effective potential energy, but exclude sound waves [11,12].
For a system with small horizontal scale such as cumulus cloud, the static equilibrium
is no longer accurate and suitable, and it is necessary to introduce anelastic approxima-
tion. The anelastic approximate equations contain kinetic energy and effective potential
energy, which also exclude sound waves [13,14]. In the anelastic approximate equations,
the atmosphere is compressible. The Boussinesq approximation is corresponding to an
incompressible and non-hydrostatic atmosphere. The Boussinesq approximate equations
include kinetic energy and effective potential energy, excluding sound waves, and requiring
the vertical thickness of motion to be smaller than the elevation of the atmosphere [15–17].

The classic Lie group symmetry analysis is an effective method to solve partial differ-
ential equations [18–21]. The symmetry method is also very useful for solving equations
related to atmospheric dynamics. By means of Lie Symmetry method, Ref. [22] determined
a one-dimensional optimal system for a two-dimensional ideal gas equation. The sym-
metries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq
equations describing atmospheric gravity waves were researched in Ref. [23]. To the best
of our knowledge, the symmetry characteristics and group invariant solutions for the basic
equations of atmospheric motion have not been researched. The large-scale atmospheric
dynamic equations can be expanded by the perturbation method. Neither the zero-order
approximate equations nor the first-order approximate equations can describe the convec-
tive motion, and only the second-order approximate equations can describe the vertical
motion. To our knowledge, the approximate equations of large-scale atmospheric vertical
motion have not been reported.
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As the above analysis shows, we will concentrate on the symmetries of the and the
approximate equations of large-scale atmospheric motion in this paper. The Lie symmetries
of the basic equations of atmospheric motion are researched in Section 2. In Section 3,
one-parameter group transformations of the basic equations of atmospheric motion are
demonstrated. Similarity solutions are addressed in Section 4. Approximate equations
of large scale atmospheric vertical motion are derived in Section 5. In the last section,
conclusions are concluded.

2. Lie Symmetry for the Basic Equations of Atmospheric Motion

Through the classical Lie point symmetry method, the symmetry property for the
basic equations of atmospheric motion can be obtained. The first step of the classical point
Lie symmetry method is to find symmetry components. In this section, we will look for
symmetric components for the basic equations of atmospheric motion.

There are seven variable functions in Equations (1)–(7), so there are seven symmetry com-
ponents, which are {σu, σv, σw, σT , σρ, σp, σθ}. We can assume that their forms are as follows:

σu = x̂
∂ u
∂ x

+ ŷ
∂ u
∂ y

+ ẑ
∂ u
∂ z

+ t̂
∂ u
∂ t
− û, (8)

σv = x̂
∂ v
∂ x

+ ŷ
∂ v
∂ y

+ ẑ
∂ v
∂ z

+ t̂
∂ v
∂ t
− v̂, (9)

σw = x̂
∂ w
∂ x

+ ŷ
∂ w
∂ y

+ ẑ
∂ w
∂ z

+ t̂
∂ w
∂ t
− ŵ, (10)

σT = x̂
∂ T
∂ x

+ ŷ
∂ T
∂ y

+ ẑ
∂ T
∂ z

+ t̂
∂ T
∂ t
− T̂, (11)

σρ = x̂
∂ ρ

∂ x
+ ŷ

∂ ρ

∂ y
+ ẑ

∂ ρ

∂ z
+ t̂

∂ ρ

∂ t
− ρ̂, (12)

σp = x̂
∂ p
∂ x

+ ŷ
∂ p
∂ y

+ ẑ
∂ p
∂ z

+ t̂
∂ p
∂ t
− p̂, (13)

σθ = x̂
∂ θ

∂ x
+ ŷ

∂ θ

∂ y
+ ẑ

∂ θ

∂ z
+ t̂

∂ θ

∂ t
− θ̂, (14)

where { x̂, ŷ, ẑ, t̂, ũ, ṽ, ŵ, T̂, ρ̂, p̂, θ̂} are all functions of {x, y, z, t, u, v, w, T, ρ, p, θ}. The
symmetry determinant equations for Equations (1)–(7) are

d σu

d t
+ σu ∂ u

∂ x
+ σv ∂ u

∂ y
+ σw ∂ u

∂ z
− f σv +

1
ρ

∂ σp

∂ x
− σρ

ρ2
∂ p
∂ x

= 0 , (15)

d σv

d t
+ σu ∂ v

∂ x
+ σv ∂ v

∂ y
+ σw ∂ v

∂ z
+ f σu +

1
ρ

∂ σp

∂ y
− σρ

ρ2
∂ p
∂ y

= 0 , (16)

d σw

d t
+ σu ∂ w

∂ x
+ σv ∂ w

∂ y
+ σw ∂ w

∂ z
+

1
ρ

∂ σp

∂ z
− σρ

ρ2
∂ p
∂ z

= 0 , (17)

d σρ

d t
+ σu ∂ ρ

∂ x
+ σv ∂ ρ

∂ y
+ σw ∂ ρ

∂ z
+ ρ

(
∂ σu

∂ x
+

∂ σv

∂ y
+

∂ σw

∂ z

)
+σρ

(
∂ u
∂ x

+
∂ v
∂ y

+
∂ w
∂ z

)
= 0 , (18)

σp = R
(

T σρ + ρ σT
)

, (19)(
P0
p

) R
cp
(R σp T − σT cp p) + σθ cp p = 0 , (20)

σρ

ρ

d p
d t
− d σp

d t
+ cp ρ

(
d σT

d t
+ σu ∂ T

∂ x
+ σv ∂ T

∂ y
+ σw ∂ T

∂ z

)
−
(

σu ∂ p
∂ x

+ σv ∂ p
∂ y

+ σw ∂ p
∂ z

)
= 0 . (21)
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Substitute Equations (8)–(14) into Equations (15)–(21), and let the coefficients of vari-
ous order terms on variables {u, v, w, T, ρ, p, θ} in the updated Equations (15)–(21) be zero,
we obtain

x̂ = C2 sin( f t) + C3 cos( f t) + C1, ŷ = C2 cos( f t)− C3 sin( f t) + C4,
ẑ = tC5 + C6, t̂ = C7, T̂ = 0, ρ̂ = C8ρ, û = f (C2 cos( f t)− C3 sin( f t)),

v̂ = − f (C3 cos( f t) + C2 sin( f t)), ŵ = C5, p̂ = C8 p, θ̂ = −C8θ R
cp

.
(22)

The symmetry components in Equations (8)–(14) turn to

σu = [C2 sin( f t) + C3 cos( f t) + C1 ]
∂ u
∂ x

+ (C5 t + C6)
∂ u
∂ z

+ C7
∂ u
∂ t

+[C2 cos( f t)− C3 sin( f t) + C4]
∂ u
∂ y
− f [C2 cos( f t)− C3 sin( f t)], (23)

σv = [C2 sin( f t) + C3 cos( f t) + C1 ]
∂ v
∂ x

+ (C5 t + C6)
∂ v
∂ z

+ C7
∂ v
∂ t

+[C2 cos( f t)− C3 sin( f t) + C4]
∂ v
∂ y

+ f [C2 cos( f t)− C3 sin( f t)], (24)

σw = [C2 sin( f t) + C3 cos( f t) + C1 ]
∂ w
∂ x

+ (C5 t + C6)
∂ w
∂ z

+ C7
∂ w
∂ t

+[C2 cos( f t)− C3 sin( f t) + C4 ]
∂ w
∂ y
− C5 , (25)

σT = [C2 sin( f t) + C3 cos( f t) + C1 ]
∂ T
∂ x

+ (C5 t + C6)
∂ T
∂ z

+ C7
∂ T
∂ t

+[C2 cos( f t)− C3 sin( f t) + C4 ]
∂ T
∂ y

, (26)

σρ = [C2 sin( f t) + C3 cos( f t) + C1 ]
∂ ρ

∂ x
+ (C5 t + C6)

∂ ρ

∂ z
+ C7

∂ ρ

∂ t

+[C2 cos( f t)− C3 sin( f t) + C4 ]
∂ ρ

∂ y
− C8 ρ , (27)

σp = [C2 sin( f t) + C3 cos( f t) + C1 ]
∂ p
∂ x

+ (C5 t + C6)
∂ p
∂ z

+ C7
∂ p
∂ t

+[C2 cos( f t)− C3 sin( f t) + C4 ]
∂ p
∂ y
− C8 p , (28)

σθ = [C2 sin( f t) + C3 cos( f t) + C1 ]
∂ θ

∂ x
+ (C5 t + C6)

∂ θ

∂ z
+ C7

∂ θ

∂ t

+[C2 cos( f t)− C3 sin( f t) + C4 ]
∂ θ

∂ y
+

C8 θ R
cp

. (29)

3. Invariant Solutions and One-Parameter Invariant Groups for the Basic Equations of
Atmospheric Motion

From Formulas (23)–(29), the subvectors in the form of

V1 =
∂

∂ x
, V2 = sin( f t)

∂

∂ x
+ cos( f t)

∂

∂ y
+ f cos( f t)

∂

∂ u
− f sin( f t)

∂

∂ v
,

V3 = cos( f t)
∂

∂ x
− sin( f t)

∂

∂ y
− f sin( f t)

∂

∂ u
− f cos( f t)

∂

∂ v
, V4 =

∂

∂ y
,

V5 = t
∂

∂ z
+

∂

∂ w
, V6 =

∂

∂ z
, V7 =

∂

∂ t
, V8 = ρ ∂ρ + p

∂

∂ p
− R

cp
θ

∂

∂ θ
.

(30)

can be obtained. V1, V4 and V6 mean translation invariance of atmosphere along the
latitudinal direction, longitudinal direction and vertical direction, respectively. V7 denotes
translation invariance along time translation transformation. V2, V3 and V5 are related
to Galilean translation transformations, and V8 denotes scaling transformations. These
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invariance demonstrate the space-time symmetry of atmospheric motion. Otherwise, from
these subvectors, we can obtain some one-parameter invariant groups and one-parameter
group invariant solutions. Eight one-parameter invariant groups are concluded in the
form of

{x, y, z, t, u, v, w, T, ρ, p, θ} −→

{x + ε, y, z, t, u, v, w, T, ρ, p, θ},
{x + ε sin( f t), y + ε cos( f t), z, t, u + ε f cos( f t), v− ε f sin( f t), w, T, ρ, p, θ},
{x + ε cos( f t), y− ε sin( f t), z, t, u− ε f sin( f t), v− ε f cos( f t), w, T, ρ, p, θ},
{x, y + ε, z, t, u, v, w, T, ρ, p, θ},
{x, y, z + ε t, t, u, v, w + ε, T, ρ, p, θ},
{x, y, z + ε, t, u, v, w, T, ρ, p, θ},
{x, y, z, t + ε, u, v, w, T, ρ, p, θ},
{x, y, z, t, u, v, w, T, ρ eε, p eε, θ e

−ε R
cp }

(31)

From the one-parameter subgroups (31), different analytic solutions can be obtained
from an analytic solution. Then, we present the one-parameter group invariant solutions.

Theorem 1 (One-parameter group invariant solutions). If {u(x, y, z, t), v(x, y, z, t), w(x, y,
z, t), T(x, y, z, t), ρ(x, y, z, t), p(x, y, z, t), θ(x, y, z, t)} is an analytic solution for the basic equa-
tions of atmospheric motion, then so are the functions in the form of:

u1 = u(x− ε, y, z, t), v1 = v(x− ε, y, z, t),
w1 = w(x− ε, y, z, t), T1 = T(x− ε, y, z, t),
ρ1 = ρ(x− ε, y, z, t), p1 = p(x− ε, y, z, t), θ1 = θ(x− ε, y, z, t)

, (32)



u2 = u(x− ε sin( f t), y− ε cos( f t), z, t) + ε f cos( f t),
v2 = v(x− ε sin( f t), y− ε cos( f t), z, t)− ε f sin( f t),
w2 = w(x− ε sin( f t), y− ε cos( f t), z, t),
T2 = T(x− ε sin( f t), y− ε cos( f t), z, t),
ρ2 = ρ(x− ε sin( f t), y− ε cos( f t), z, t),
p2 = p(x− ε sin( f t), y− ε cos( f t), z, t),
θ2 = θ(x− ε sin( f t), y− ε cos( f t), z, t)


, (33)



u3 = u(x− ε cos( f t), y + ε sin( f t), z, t)− ε f sin( f t),
v3 = v(x− ε cos( f t), y + ε sin( f t), z, t)− ε f cos( f t),
w3 = w(x− ε cos( f t), y + ε sin( f t), z, t),
T3 = T(x− ε cos( f t), y + ε sin( f t), z, t),
ρ3 = ρ(x− ε cos( f t), y + ε sin( f t), z, t),
p3 = p(x− ε cos( f t), y + ε sin( f t), z, t),
θ3 = θ(x− ε cos( f t), y + ε sin( f t), z, t)


, (34)


u4 = u(x, y− ε, z, t), v4 = v(x, y− ε, z, t),
w4 = w(x, y− ε, z, t), T4 = T(x, y− ε, z, t),
ρ4 = ρ(x, y− ε, z, t), p4 = p(x, y− ε, z, t), θ4 = θ(x, y− ε, z, t)

, (35)


u5 = u(x, y, z− ε t, t), v5 = v(x, y, z− ε t, t),
w5 = w(x, y, z− ε t, t) + ε, T5 = T(x, y, z− ε t, t),
ρ5 = ρ(x, y, z− ε t, t),
p5 = p(x, y, z− ε t, t), θ5 = θ(x, y, z− ε t, t)

, (36)


u6 = u(x, y, z− ε, t), v6 = v(x, y, z− ε, t),
w6 = w(x, y, z− ε, t), T6 = T(x, y, z− ε, t),
ρ6 = ρ(x, y, z− ε, t), p6 = p(x, y, z− ε, t), θ6 = θ(x, y, z− ε, t)

, (37)



Symmetry 2022, 14, 1540 6 of 14


u7 = u(x, y, z, t− ε), v7 = v(x, y, z, t− ε),
w7 = w(x, y, z, t− ε), T7 = T(x, y, z, t− ε),
ρ7 = ρ(x, y, z, t− ε), p7 = p(x, y, z, t− ε), θ7 = θ(x, y, z, t− ε)

. (38)


u8 = u(x, y, z, t), v8 = v(x, y, z, t),
w8 = w(x, y, z, t), T8 = T(x, y, z, t),

ρ8 = ρ(x, y, z, t) eε, p8 = p(x, y, z, t) eε, θ8 = θ(x, y, z, t) e
−ε R

cp

. (39)

4. Similarity Solutions and Symmetry Reduction Equations for the Basic Equations of
Atmospheric Motion

From the symmetries of the basic equations of atmospheric motion, one can obtain
similarity solutions. The following three types of nontrivial similarity solutions and group
invariants are obtained.

Case 1 C7 6= 0
The first case is the most general condition. In this case, the group invariants read

ξ = −z +
C5 t2 + 2 C6 t

2 C7
,

η = x +
−C1 f t + C2 cos( f t)− C3 sin( f t)

C7 f
,

ζ = y− C4 f t + C3 cos( f t) + C2 sin( f t)
C7 f

.

The corresponding similarity solutions are

u = ũ(ξ, η, ζ) +
C2 sin( f t) + C3 cos( f t)

C7
, (40)

v = ṽ(ξ, η, ζ) +
C2 cos( f t)− C3 sin( f t)

C7
, (41)

w = w̃(ξ, η, ζ) +
C5t
C7

, (42)

T = T̃(ξ, η, ζ), (43)

ρ = ρ̃(ξ, η, ζ)e
C8t
C7 , (44)

p = p̃(ξ, η, ζ)e
C8t
C7 , (45)

θ = θ̃(ξ, η, ζ)e
C8R t
C7Cp , (46)

where {ũ, ṽ, w̃, T̃, ρ̃, p̃, θ̃} are all functions of the group invariants {ξ, η, ζ}. The reduction
equations are very lengthy, and we will not list them here.

Case 2 C1
2 + C2

2 + C3
2 6= 0 and C7 = 0

The formula C7 = 0 means that t is one of the three group invariants. The three group
invariants are given as

ξ = y− x[C2 cos( f t)− C3 sin( f t) + C4]

C2 sin( f t) + C3 cos( f t) + C1
,

η = z− x(tC5 + C6)

C2 sin( f t) + C3 cos( f t) + C1
,

ζ = t .
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In this case, the similarity solutions are given by

u =
f [C2 cos( f t)− C3 sin( f t) ]x
C2 sin( f t) + C3 cos( f t) + C1

+ ũ(ξ, η, ζ) , (47)

v = − f [C2 sin( f t) + C3 cos( f t)]x
C2 sin( f t) + C3 cos( f t) + C1

+ ṽ(ξ, η, ζ) , (48)

w =
C5 x

C2 sin( f t) + C3 cos( f t) + C1
+ w̃(ξ, η, ζ) , (49)

T = T̃(ξ, η, ζ) , (50)

ρ = ρ̃(ξ, η, ζ)e
C8x

C2 sin( f t)+C3 cos( f t)+C1 , (51)

p = p̃(ξ, η, ζ)e
C8x

C2 sin( f t)+C3 cos( f t)+C1 , (52)

θ = θ̃(ξ, η, ζ)e
C8x R

Cp (C2 sin( f t)+C3 cos( f t)+C1) . (53)

The reduction equations are also very lengthy in this case, and it is not suitable for
listing them here.

Case 3 C2 = 0, C3 = 0, C1 6= 0 and C7 6= 0
When C2 = 0 and C3 = 0, the Formula (23) degenerates to

σu = C1 ux + C4 uy + (C5 t + C6) uz + C7 ut , (54)

σv = C1 vx + C4 vy + (C5 t + C6) vz + C7 vt , (55)

σw = C1 wx + C4 wy + (C5 t + C6)wz + C7 wt − C5 , (56)

σT = C1 Tx + C4 Ty + (C5 t + C6) Tz + C7 Tt , (57)

σρ = C1 ρx + C4 ρy + (C5 t + C6) ρz + C7 ρt − C8ρ , (58)

σp = C1 px + C4 py + (C5 t + C6) pz + C7 pt − C8 p , (59)

σθ = C1 θx + C4 θy + (C5 t + C6) θz + C7 θt +
C8 θ R

cp
. (60)

Then, the similarity solutions are

u = ũ(ξ, η, ζ) , (61)

v = ṽ(ξ, η, ζ) , (62)

w =
C5x
C1

+ w̃(ξ, η, ζ) , (63)

T = T̃(ξ, η, ζ) , (64)

ρ = ρ̃(ξ, η, ζ)e
C8 x
C1 , (65)

p = p̃(ξ, η, ζ)e
C8 x
C1 , (66)

θ = θ̃(ξ, η, ζ)e
C8 R x
C1 Cp , (67)

where ξ, η, ζ are group invariants, which read

ξ = − xC4

C1
+ y ,

η = t− xC7

C1
,

ζ = z− C5x t
C1

+
x2 C5C7

2 C1
2 −

xC6

C1
.
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The reduction equations are in the form

(C1 w̃− η1ũ1)
∂ ũ
∂ ζ
− C7 ũ

∂ ũ
∂ η

+ (C1ṽ− ũ1 C4)
∂ ũ
∂ ξ
− f ṽ C1

+
C8 p̃

ρ̃
− C7

ρ̃

∂ p̃
∂ η
− C4

ρ̃

∂ p̃
∂ ξ
− η1

ρ̃

∂ p̃
∂ ζ

= 0, (68)

C1

ρ̃

∂ p̃
∂ ξ
− C7ũ

∂ ṽ
∂ η

+ (C1ṽ− C4 ũ1)
∂ ṽ
∂ ξ

+ (C1w̃− η1ũ1)
∂ ṽ
∂ ζ

+ C1 f ũ = 0, (69)

(C1 ṽ− C4 ũ1)
∂ w̃
∂ ξ
− C7 ũ

∂ w̃
∂ η

+(C1w̃− η1ũ1 )
∂ w̃
∂ ζ

+ C1 g + C5ũ1 +
C1

ρ̃

∂ p̃
∂ ζ

= 0, (70)

C7
∂ ũ
∂ η

+ C4
∂ ũ
∂ ξ

+ η1
∂ ũ
∂ ζ
− C1

∂ ṽ
∂ ξ
− C1

∂ w̃
∂ ζ
− C8 ũ1 + C7 ũ

∂ ln ρ̃

∂ η

+(C4 ũ1 − C1ṽ)
∂ ln ρ̃

∂ ξ
+ (η1ũ1 − C1w̃)

∂ ln ρ̃

∂ ζ
= 0, (71)

p̃ = ρ̃ R T̃, (72)

(C4ũ1 − C1 ṽ)

(
∂ p̃
∂ ξ
− cp ρ̃

∂ T̃
∂ ξ

)
+ (η1ũ1 − C1w̃)

(
∂ p̃
∂ ζ
− cp ρ̃

∂ T̃
∂ ζ

)

+C7 ũ

(
∂ p̃
∂ η
− cp

∂ T̃
∂ η

ρ̃

)
− C1 Q ρ̃− C8 ũ1 p̃ = 0, (73)

θ̃ = T̃
(

P0

p̃

)R/cp

. (74)

where ũ1 = ũ + C1
C7

and η1 = η C5 + C6.
Solving Equations (68)–(74), one can obtain some analytic solutions of Equations (68)–(74).

The combination of the analytic solutions for Equations (68)–(74) and the similarity solution
(61)–(67) leads to the analytic solutions of the basic equations of atmospheric motion.
Analytical solutions of Equations (68)–(74) are very rich and need to be discussed in
different condition, so we don’t discuss this problem here.

5. Second-Order Approximate Equations of the Large-Scale Atmospheric
Motion Equations

Given the conditions of large-scale atmospheric motion, the basic equations of atmo-
spheric motion will degenerate to large-scale atmospheric motion equations. By pertur-
bation method, large-scale atmospheric motion equations can be expanded as zero-order,
first-order and second-order and higher order approximate equations. The zero-order
approximate equations reflect the basic characteristics of atmospheric large-scale motion,
namely geostrophic equilibrium, static equilibrium and horizontal nondivergence [3]. The
first-order approximate equations reflect the quasi geostrophic equilibrium of large-scale
atmospheric motion, but there are still no convection term [3]. In order to consider con-
vective motion, we need to study the second-order approximate equations. In this section,
we aims to derive the second-order approximate equations of the large-scale atmospheric
motion equations.

We define the state of the static atmosphere as the background state of the atmo-
sphere. Suppose that in the atmosphere of this background state, there is a small deviation
p
′
, ρ
′
, T
′
, θ
′

and perturbation velocity u
′
, v
′
, w
′
. Suppose

u = u
′
, v = v

′
, w = w

′
, p = p0(z) + p

′
, ρ = ρ0(z) + ρ

′
,

T = T0(z) + T
′
, θ = θ0(z) + θ

′
, (75)
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and

p
′ � p0(z), ρ

′ � ρ0(z), T
′ � T0(z), θ

′ � θ0(z) (76)

Atmospheric motion is consider to be frictionless and adiabatic. Under the above
assumptions, the basic equations of atmospheric motion (1)–(7) turn to [3]

d u
d t
− f v = − 1

ρ0

∂p
′

∂x
, (77)

d v
d t

+ f u = − 1
ρ0

∂p
′

∂y
, (78)

d w
d t

= − 1
ρ0

∂p
′

∂z
− g

ρ
′

ρ0
, (79)

d
d t

(
ρ
′

ρ0

)
+

∂u
∂x

+
∂v
∂y

+
1
ρ0

∂(ρ0w)

∂z
= 0 , (80)

θ
′

θ0
=

1
γ g H

p
′

ρ0
− ρ

′

ρ0
, (81)

d
d t

(
θ
′

θ0

)
+

N2 w
g

= 0. (82)

Equation (81) is derived from the combination of the state Equation (5), potential
temperature equation (6) and adiabatic conditions, so the number of Equations (77)–(82) is
one less than that of Equations (1)–(7). Here, N satisfies d2z

dt2 + N2z = 0. N2 > 0, N2 = 0
and N2 < 0 indicate that stratification is stable, neutral and instability, respectively. In the
atmosphere with stable stratification, N has the characteristics of frequency, so it is also
called buoyancy frequency or Brunt-Väisälä frequency.

The weather system of large-scale atmospheric motion covers thousands of kilometers
horizontally and the whole troposphere vertically. Its life history is generally about 5 days.
The wind speed is about 10 m/s and the vertical speed is about (1− 5)× 10−2 m/s. The
basic scales of large-scale atmospheric motion are horizontal distance scale L = 106 m,
vertical distance scale D = 104 m, horizontal wind speed scale U = 10 m · s−1 and time
scale τ = L/U = 105 s.

The scales of Coriolis parameter f , Rossby parameter β, N2 and the height are
f0 = 10−4 s−1, β0 = 10−11 m−1 · s−1, N2 = 10−4 s−2 and H = 104 m, respectively. Some
other dimensionless parameters are [3]

α0 ≡
N2H

g
= 10−1, µ2

0 =
f 2
0 L2

g H
= 10−1,

µ2
1 =

f 2
0 L2

N2 H2 =
µ2

0
α0

= 1, β1 ≡
β0 L2

U
= 1, δ ≡ D

L
= 10−2.

(83)

Introduce a parameter Ro, which is defined as

Ro ≡ U
f0L

=
U2/L

f0U
=

f−1
0

L/U
=

U/L
f0

(84)

The above formula means that Ro represents the ratio of horizontal inertial force to
Coriolis force, the ratio of inertial characteristic time to advection time, and the ratio of
relative vorticity to implicated vorticity. Therefore, Ro is a very important dimensionless
parameter, which is often used to judge the scale of atmospheric motion. In large-scale
atmospheric motion,
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Ro =
U

f0 L
=

10
10−4 × 106 = 10−1, (85)

so we choose Ro as a small parameter. In the atmospheric motion with a frictionless and
adiabatic static atmosphere as the background,

σ0 ≡
∂ρ0

∂z
=

N2

g
+

1
γ H

. (86)

Its dimensionless quantity can be defined as

σ1 ≡
∂ρ0

∂z1
= Dσ0 =

N2D
g

+
D

γ H
= α0 +

1
γ

. (87)

The physical quantities can be transformed into the corresponding dimensionless
quantities, the concrete forms are

x = L x1, y = L y1, z = D z1, t = L
U t1,

u = U u1, v = U v1, w = Ro D U
L w1, f = f0 f1,

p
′
= ρ0 f0 U L p

′
1, w1, ρ

′
= ρ0 µ2

0 Ro ρ
′
1, θ

′
= θ0 µ2

0 Ro θ
′
1 .

(88)

The physical quantities marked with “1” are dimensionless, and their orders of magni-
tude are all 1.

The substitution of Formulas (88) into Formulas Equations (77)–(82) leads to [3]

Ro
(

∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)
u1 − f1 v1 = −∂p1

′

∂x1
, (89)

Ro
(

∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)
v1 + f1 u1 = −∂p1

′

∂y1
, (90)

δ2 Ro2
(

∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)
w1 = −∂p1

′

∂z1
+ σ1 p1

′ − ρ1
′
, (91)

µ0
2 Ro

(
∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)
ρ1
′
+

∂u1

∂x1

+
∂v1

∂y1
+ Ro

1
ρ0

∂(ρ0w1)

∂z1
= 0, (92)

θ1
′
=

1
γ

p1
′ − ρ1

′
, (93)

Ro
[(

∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)
θ1
′
+

α0

µ02 w1

]
= 0. (94)

The left term of (91) δ2 Ro2 = 10−6 � 1, which can be accurately discarded. Substitut-
ing (93) into (91) and (92), and using the Formula (87), we can rewrite Formulas (89)–(94) as
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Ro
(

∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)
u1 − f1 v1 = −∂p1

′

∂x1
, (95)

Ro
(

∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)
v1 + f1 u1 = −∂p1

′

∂y1
, (96)

∂p1
′

∂z1
− α0 p1

′ − θ1
′
= 0, (α0 = 10−1 = Ro), (97)

µ0
2 Ro

(
∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)(
1
γ

p1
′ − θ1

′
)

+
∂u1

∂x1
+

∂v1

∂y1
+ Ro

1
ρ0

∂(ρ0w1)

∂z1
= 0 (98)

Ro
[(

∂

∂t1
+ u1

∂

∂x1
+ v1

∂

∂y1
+ Ro w1

∂

∂z1

)
θ1
′
+

α0

µ02 w1

]
= 0, (99)

The term µ0
2 Ro = 10−2 in (98), which is ignored in Ref. [3], since Ref. [3] only

considers the zero-order and first-order approximate equations. In this paper, we aim
to derive the second-order approximate equation, then the first three terms µ0

2 Ro ( ∂
∂t1

+

u1
∂

∂x1
+ v1

∂
∂y1

+ Ro w1
∂

∂z1
)( 1

γ p1
′ − θ1

′
) are very important, and we retain them. This is a

difference between this paper and Ref. [3].
From Formulas (95)–(99), we can see that Ro w1 is formally equivalent to u1 and v1, so

the physical variables {u1, v1, w1, p1
′
, θ1

′} can be expanded as follows:

u1 = u1
(0) + Ro u1

(1) + Ro2 u1
(2) + Ro3 u1

(3) + · · · , (100)

v1 = v1
(0) + Ro v1

(1) + Ro2 v1
(2) + Ro3 v1

(3) + · · · , (101)

w1 = w1
(1) + Ro w1

(2) + Ro2 w1
(3) + · · · , (102)

p1
′

= p1
(0) + Ro p1

(1) + Ro2 p1
(2) + Ro3 p1

(3) + · · · , (103)

θ1
′

= θ1
(0) + Ro θ1

(1) + Ro2 θ1
(2) + Ro3 θ1

(3) + · · · (104)

where the upper right corners (0), (1), (2) and (3) represent the zero-order, first-order,
second-order and third-order approximation, respectively. f1 can be expanded as

f1 ≡
f0 + β0 y

f0
= 1 + Ro β1 y1 . (105)

Substitute Equations (100)–(105) into the Equations (95)–(99), and compare the coeffi-
cients of different power terms for Ro, we can obtain different order approximate equations.
The coefficients of Ro0 and Ro1 lead to zero-order and first-order approximate equations of
Equations (95)–(99), respectively. From the coefficients of Ro2, we derive the second-order
approximate equations in the form of
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(
∂

∂t1
+ u1

(0) ∂

∂x1
+ v1

(0) ∂

∂y1

)
u1

(1) − β1 y1 v1
(1) − v1

(2)

+

(
u1

(1) ∂

∂x1
+ v1

(1) ∂

∂y1
+ w1

(1) ∂

∂z1

)
u1

(0) = −∂p1
(2)

∂x1
, (106)(

∂

∂t1
+ u1

(0) ∂

∂x1
+ v1

(0) ∂

∂y1

)
v1

(1) + β1 y1 u1
(1) + u1

(2)

+

(
u1

(1) ∂

∂x1
+ v1

(1) ∂

∂y1
+ w1

(1) ∂

∂z1

)
v1

(0) = −∂p1
(2)

∂y1
, (107)

∂p1
(2)

∂z1
= θ1

(2) + α0 Ro−1 p1
(1) (α0 Ro−1 = 1), (108)

∂u1
(2)

∂x1
+

∂v1
(2)

∂y1
+

1
γ

(
∂

∂t1
+ u1

(0) ∂

∂x1
+ v1

(0) ∂

∂y1

)
p1

(0)

+
1
ρ0

∂(ρ0w1
(2))

∂z1
−
(

∂

∂t1
+ u1

(0) ∂

∂x1
+ v1

(0) ∂

∂y1

)
θ1

(0) = 0, (109)

(
∂

∂t1
+ u1

(0) ∂

∂x1
+ v1

(0) ∂

∂y1

)
θ1

(1)

+

(
u1

(1) ∂

∂x1
+ v1

(1) ∂

∂y1
+ w1

(1) ∂

∂z1

)
θ1

(0) +
α0

µ02 w1
(2) = 0. (110)

The corresponding dimensional forms are(
∂

∂t
+ u(0) ∂

∂x
+ v(0)

∂

∂y

)
u(1) − β0 y v(1) − f0 v(2)

+

(
u(1) ∂

∂x
+ v(1)

∂

∂y
+ w(1) ∂

∂z

)
u(0) = − 1

ρ0

∂p(2)

∂x
, (111)(

∂

∂t
+ u(0) ∂

∂x
+ v(0)

∂

∂y

)
v(1) + β0 y u(1) + f0 u(2)

+

(
u(1) ∂

∂x
+ v(1)

∂

∂y
+ w(1) ∂

∂z

)
v(0) = − 1

ρ0

∂p(2)

∂y
, (112)

∂

∂z

(
p(2)

ρ0

)
= g

θ(2)

θ0
+

N2

g
p(1)

ρ0
, (113)

∂u(2)

∂x
+

∂v(2)

∂y
+

1
γ

1
g H

(
∂

∂t
+ u(0) ∂

∂x
+ v(0)

∂

∂y

)
p(0)

ρ0

+
1
ρ0

∂(ρ0w(2))

∂z
−
(

∂

∂t
+ u(0) ∂

∂x
+ v(0)

∂

∂y

)
θ(0)

θ0
= 0 , (114)(

∂

∂t
+ u(0) ∂

∂x
+ v(0)

∂

∂y

)(
g

θ(1)

θ0

)

+

(
u(1) ∂

∂x
+ v(1)

∂

∂y
+ w(1) ∂

∂z

)(
g

θ(0)

θ0

)
+ N2w(2) = 0 . (115)

The second-order approximate equations not only show the characteristics of physical
quantities changing with time, but also establish the relationship between zero-order
approximation, first-order approximation and second-order approximation. Moreover, the
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second-order approximate equations are no longer static equations, but reflect the motion
characteristics of convection.

6. Conclusions and Discussion

In this manuscript, symmetry properties for the basic equations of atmospheric motion
are studied. The basic equations of atmospheric motion are invariant under space-time
translation transformation, Galilean translation transformations and scaling transforma-
tions. From these results, we can know the symmetries for spatiotemporal variation of
atmospheric motion.

Symmetry method is an effective means to obtain new solutions of the researched
equations. Eight one-parameter invariant subgroups are listed. Eight one-parameter group
invariant solutions are produced. Several types of nontrivial group invariants, similarity
solutions and symmetry reduction equations are obtained. If further calculations are carried
out, we can obtain some analytic solutions of these reduction equations. Combing the
similarity solutions and the analytic solutions of the reduction equations, some analytic
solutions of the basic equations of atmospheric motion can be obtained. These results are
helpful for us to understand the law of atmospheric motion and provide guidance for
weather forecasting.

By means of perturbation method, large-scale atmospheric motion equations can
be expanded as equations of different orders. The zero-order approximate equations
reflect the basic characteristics of atmospheric large-scale motion, namely geostrophic
equilibrium, static equilibrium and horizontal nondivergence. The first-order approximate
equations reflect the quasi geostrophic equilibrium of large-scale atmospheric motion, but
there are still no convection term. In this paper, we develop a system of second-order
approximate equations for the large scale atmospheric motion equations. The second-
order approximate equations not only show the characteristics of physical quantities
changing with time, but also establish the relationship between zero-order approximation,
first-order approximation and second-order approximation. It is worth noting that the
second-order approximate equations reflect the characteristics of atmospheric vertical
motion. The second-order approximate equations include the non-dimensional equations
and the dimensional equations. In the future, we will consider how to obtain the second-
order approximate equations for large-scale atmospheric motion equations if the viscous
terms are added. In addition, we will study analytic solutions, physical property and
the corresponding atmospheric dynamics of the second-order approximate equations in
the future.
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