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Abstract: A practical fixed-time fault estimation observer strategy for non-linear systems using an
unknown input observer scheme is investigated. The external disturbances of non-linear systems are
decoupled by an unknown input observer technique; therefore, the constructed error dynamics do not
include these disturbances. The fixed-time fault estimation observer is then constructed. Moreover, a
non-linear fault estimator with two power functions is proposed to improve the convergence speed
of fault estimation. Finally, simulation results of a non-linear Lorenz chaotic system are provided to
demonstrate the feasibility of the presented strategy.
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1. Introduction

The issue of fault diagnosis is crucial to improve the safety of control systems. In
model-based fault diagnosis, fault estimation can identify the occurrence of faults in a
timely and effective manner and provide accurate fault information for active fault-tolerant
control design. Therefore, this problem has attracted considerable attention over recent
decades [1–4].

The convergence rate is a key performance index of control systems. A finite-time
method is proposed to improve the transient response of asymptotic convergence. However,
the convergence time of the finite-time method is dependent on the initial value [5,6]. To
solve this dilemma, a fixed-time design method is investigated to endow the upper bound
of the settling time with independence from the initial values and to further improve the
convergence rate of the system [7,8]. In [9], a sliding mode-based attitude stabilisation
problem was considered for flexible spacecraft subject to modeling uncertainties and
external disturbances. In [10], a fixed-time tracking problem of an unmanned surface
vehicle was studied using a fixed-time stability strategy. In [11], an event-triggered method-
based distributed fixed-time consensus issue was addressed for time-delay multi-agent
systems. At present, most of the fixed-time design methods are applied to controller design.
Observer results based on a fixed-time method are rare, and research results obtained
for fixed-time fault estimation are limited. Fault information can often be used for active
fault-tolerant control to recover system performance quickly [12]. The system has high
requirements for rapid fault estimation, which is the motivation for this paper to consider
the fault estimation problem using a fixed-time method.

Representative fault estimation observers include sliding mode observers [13–15],
adaptive learning observers [16–18] and others. The adaptive learning observer method is
widely used because of its simple structure and practicability. However, external distur-
bances in the design of such observers can easily affect the selection of observer parameters
and learning rates. The selection of parameters for a fixed-time design is also easily influ-
enced by these disturbances. In the fixed-time method, a sign function is introduced to
suppress the influence of external disturbances. However, the sign function can increase
the chattering of the system. This article investigates non-linear fixed-time fault estimation
based on disturbance decoupling, which is a challenging task.
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The unknown input observer (UIO) technique is an effective method aimed at decou-
pling external disturbances, which can completely eliminate the influence of unknown
inputs. Such an observer has been widely investigated due to its good anti-disturbance
ability [19–21]. However, the transient performance in the convergence process is usually
ignored in the design of such an observer.

A non-linear fixed-time fault estimation observer using disturbance decoupling is
investigated in this paper. This observer not only suppresses the influence of disturbance
but also enhances the transient performance of fault estimation. The main contributions of
the work are as follows: (i) A UIO-based fixed-time fault estimation observer is proposed to
eliminate the influence of external disturbances on fault estimation; (ii) A fault estimation
observer and a non-linear fault estimator with two power functions are constructed based
on a fixed-time design to improve the rapidity of fault estimation.

The paper is organised as follows: Section 2 describes the non-linear system and the
problem investigated. Based on a fixed-time method, Section 3 presents a fault estimation
approach using a UIO and a non-linear fault estimator. Section 4 provides the simulation
results of a non-linear Lorenz chaotic system, which illustrates the effectiveness of the
fixed-time fault estimation. Section 5 provides concluding remarks.

2. Systems Description and Problem Formation

This paper considers a model of non-linear systems as follows:

ẋ(t) = Ax(t) + ρ(t, x(t)) + Bu f (t) + Dd(t) (1)

where x(t) ∈ Rn is the state, u f (t) ∈ Rm is the control input with actuator faults, d(t) ∈ Rd

is the external disturbance and is bounded, and ρ(t, x(t)) ∈ Rn is the non-linear function;
A is the system matrix, B is the input matrix, and D is the disturbance distributed matrix;
ρ(t, x(t)) satisfies the Lipschitz condition, i.e., ‖ρ(t, x1(t)) − ρ(t, x2(t))‖2 ≤ l2

p‖x1(t) −
x2(t)‖2, and the Lipschitz constant is lp > 0. It is assumed that B and D are column-
full rank.

Remark 1. For the design of a state observer, many non-linear functions meet Lipschitz conditions
in practical systems (at least local Lipschitz conditions).

The actuator fault is usually described as below

u f (t) = σ(t)u(t) + δ(t), t > t f (2)

where u(t) ∈ Rm is the designed control, σ(t) = diag{σ1(t), σ2(t), . . . , σm(t)} ∈ Rm×m

denotes the loss rate of actuator effectiveness, and σi(t) is an unknown value within the
range (0, 1); δ(t) = [δ1(t), δ2(t), . . . , δm(t)]T ∈ Rm represents the actuator bias fault.

In active fault-tolerant control, to estimate the actuator fault conveniently, the actuator
fault model (2) can be rewritten as

u f (t) = u(t) + f (t) (3)

where f (t) = (σ(t)− I)u(t) + δ(t) [22], and it is assumed that f (t) and its derivative ḟ (t)
are bounded. Therefore, the non-linear system (1) is represented as

ẋ(t) = Ax(t) + ρ(t, x(t)) + B(u(t) + f (t)) + Dd(t) (4)

Remark 2. In the non-linear system considered in (4), the f (t) considered in (4) denotes actuator
fault, which includes loss of effectiveness and bias faults. The presented fault form is general,
because loss of actuator effectiveness can be expressed as a special form of bias faults [23]. Note
that, in contrast to external disturbances, actuator faults occur in the control input channel, i.e.,
B(u(t) + f (t)) [24].
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Remark 3. In general, fault-tolerant control methods are divided into passive fault-tolerant control
and active fault-tolerant control [25]. Passive fault-tolerant control does not need a fault diagnosis
module to obtain fault information, and the influence of a fault on the system is suppressed, based
on the idea of robust control. As for active fault-tolerant control, a fault diagnosis module is needed
to obtain accurate fault information [26,27].

Remark 4. Model-based fault diagnosis is usually divided into the following three steps: fault
detection, fault isolation and fault estimation. Fault detection is used to determine the time of fault
occurrence, fault isolation can determine the location of fault occurrence, and fault estimation can
be used to identify the size and amplitude of faults. Among these, the issue of fault estimation is
focused on in this paper. Actuator faults must be estimated online in real-time; the estimated value
is used as important information for active fault-tolerant control to recover system performance.
Accurate fault estimation effectively increases system performance restoration [28–30]. However,
external disturbance d(t) needs to be suppressed to reduce its impact on fault estimation. Therefore,
decoupling is considered in this paper to eliminate its impact on fault estimation.

This paper seeks to present a UIO-based fault estimation algorithm with disturbance
decoupling characteristics to eliminate the effect of disturbance on fault estimation and to
propose a fast non-linear fault estimation algorithm based on a fixed-time strategy.

The useful lemmas are first presented here.

Lemma 1 ([9]). For a continuous-time function ẋ(t) = F(x, t), the origin is an equilibrium
working point. If there is a Lyapunov function V(t) satisfying

V̇(t) ≤ −η1Vh1(t)− η2Vh2(t) + φ (5)

based on Lyapunov stability theory, where η1 > 0, η2 > 0, φ > 0, 0 < h1 < 1, 1 < h2 < +∞,
then the origin of ẋ(t) = F(x, t) is practical fixed-time stable, and the residual set is{

x(t)|V(t) ≤ min

{(
φ

η1(1− ϑ)

) 1
h1

,
(

φ

η2(1− ϑ)

) 1
h2

}}
(6)

And the upper bound of the settling time is

Tmax =
1

η1ϑ(1− h1)
+

1
η2ϑ(h2 − 1)

(7)

where 0 < ϑ < 1.

Lemma 2 ([31]). Let $1, $2, . . . , $N ≥ 0, then

N

∑
i=1

$h1
i ≥

(
N

∑
i=1

$i

)h1

, 0 < h1 < 1 (8)

N

∑
i=1

$h2
i ≥ N1−h2

(
N

∑
i=1

$i

)h2

, 1 < h2 < +∞ (9)

Lemma 3 ([32]). For x, y ∈ R, α, β, and λ are positive scalars, then the following relation holds

|x|α|y|β ≤ α

α + β
λ|x|α+β +

α

α + β
λ
− α

β |y|α+β (10)

3. Main Results

The design procedure of the non-linear fixed-time fault estimation observer is presented
in this section. A stability analysis is provided on the basis of Lyapunov stability theory.
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For the non-linear system (4), the following UIO-based fixed-time fault estimation
approach can be constructed to decouple external disturbances and accurately identify
actuator faults.

ż(t) = Nz(t) + Gu(t) + MB f̂ (t) + Lx(t) + Mρ̂(t, x̂(t)) + Φ(t) (11)

x̂(t) = z(t)− Fx(t) (12)

where z(t) ∈ Rn is the observer state, f̂ (t) ∈ Rm is the fault estimation, x̂(t) ∈ Rn is the state
estimation, ρ̂(t, x̂(t)) ∈ Rm is the estimation of ρ(t, x(t)); N, G, M, L, F are matrices with
appropriate dimensions to be determined; Φ(t) is a fixed-time non-linearity to guarantee
the convergence speed of state estimation, which is designed in Theorem 1 later.

Remark 5. For the presented fault estimation scheme, the observer state z(t) is an intermediate
variable, whose function is to obtain the state estimation x̂(t) and estimate the unknown fault f (t).
Notably, f̂ (t) is the online fault estimator; a new non-linear fixed-time estimation algorithm f̂ (t) is
proposed in Theorem 1.

Remark 6. The non-linear term ρ̂(t, x̂(t)) has the same structure as ρ(t, x(t)), and is constructed
by replacing x(t) of ρ(t, x(t)) with x̂(t). Instead of the observer state z(t), the observer dynam-
ics (11) reveal that the function ρ̂(t, x̂(t)) is related to x̂(t). Therefore, the constructed observer
needs the state estimation information x̂(t).

Remark 7. In contrast to traditional UIO design, the proposed UIO-based fault estimation strategy
adds a fixed-time function Φ(t), as described in (11), to improve the convergence speed of state and
fault vectors; its specific expression is given in the following Theorem 1.

Denote two error vectors e(t) = x̂(t)− x(t) and e f (t) = f̂ (t)− f (t), then one obtains

e(t) = z(t)− Fx(t)− x(t)

= z(t)−Mx(t) (13)

where M = I + F.
The derivative of the error dynamics (13) is

ė(t) = ż(t)−Mẋ(t)

= Nz(t) + Gu(t) + MB f̂ (t) + Lx(t) + Mρ̂(t, x̂(t)) + Φ(t)

−MAx(t)−MBu(t)−MB f (t)−Mρ(t, x(t))−MDd(t) (14)

= Ne(t) + M(ρ̂(t, x̂(t))− ρ(t, x(t))) + MBe f (t) + (NM + L−MA)x(t)

+ (G−MB)u(t)−MDd(t) + Φ(t)

If the following conditions hold

NM + L−MA = 0, (15)

G = MB, (16)

MD = 0, (17)

then the error dynamics (14) are expressed as

ė(t) = Ne(t) + MΨ(t, e(t)) + MBe f (t) + Φ(t) (18)

where Ψ(t, e(t)) = ρ̂(t, x̂(t))− ρ(t, x(t)).
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Remark 8. Since the condition MD = 0 is introduced, we can see that the error Equation (18)
is completely unaffected by the disturbance, which will facilitate the design of a fault estimation
observer scheme.

Theorem 1. If there is a symmetric positive definite matrix P, matrices Ȳ, K̄, N, G, M, L, F, and
positive scalars ε, χ, ν1, ν2, µ1, µ2, 0 < h1, p1 < 1, 1 < h2, p2 < +∞ such that equalities (15)–(17)
and the following condition are satisfied

[
(P(I + U)A + ȲVA− K̄) + (P(I + U)A + ȲVA− K̄)T + εl2

p P(I + U) + ȲV
∗ −εI

]
< 0 (19)

then the fixed-time non-linear fault estimator

˙̂f (t) = −χ f̂ (t)− ΓBT(µ1sigp1(e) + µ2sigp2(e) + MTPe) (20)

where Γ > 0 is the learning rate, and the error dynamics (18) with the non-linear term Φ(t) such
that the errors e(t) and e f (t) are practical fixed-time stable and converge to the residual set (37)
within a fixed time (38), where Φ(t) = ν1P−0.5sigh1(P0.5e(t)) + ν2P−0.5sigh2(P0.5e(t)), and
sigh1(P0.5e(t)) = [sign(P0.5

1 e(t))|P0.5
1 e(t)|h1 , sign(P0.5

2 e(t))|P0.5
2 e(t)|h1 , . . ., sign(P0.5

n e(t))|
P0.5

n e(t)|h1 ]T, sign(·) is the sign function, P0.5
i represents the ith row of matrix P0.5, and | · |

is the absolute value of a scalar.

Proof. Step 1. The Lyapunov function is chosen as:

V(t) = eT(t)Pe(t) + eT
f (t)Γe f (t) (21)

The derivative of the Lyapunov function V(t) along the error dynamics (18) is

V̇(t) = eT(t)[PN + NTP]e(t) + 2eT(t)PMΨ(t, e(t)) + 2eT(t)PMBe f (t)

− 2ν1eT(t)P0.5sigh1(P0.5e(t))− 2ν2eT(t)P0.5sigh2(P0.5e(t))

− 2χeT
f (t)Γ

−1 f̂ (t)− 2eT
f (t)BT(µ1sigp1(e(t)) + µ2sigp2(e(t)) + MTPe(t))

− 2eT
f (t)Γ

−1 ḟ (t) (22)

Based on the non-linearity ρ(t, x(t)) meeting the Lipschitz constraint, one obtains

eT(t)[PN + NTP]e(t) + 2eT(t)PMΨ(t, e(t))

≤eT(t)[PN + NTP]e(t) +
1
ε

eT(t)PMMTPe(t) + εl2
peT(t)e(t) (23)

According to the Schur complement lemma, if condition[
PN + NTP + εl2

p I PM
∗ −εI

]
< 0 (24)

holds, we can derive

eT(t)[PN + NTP]e(t) +
1
ε

eT(t)PMMTPe(t) + εl2
peT(t)e(t) < 0 (25)

After that, we have

V̇(t) ≤− 2ν1eT(t)P0.5sigh1(P0.5e(t))− 2ν2eT(t)P0.5sigh2(P0.5e(t))

− 2χeT
f (t)Γ

−1 f̂ (t)− 2eT
f (t)BT(µ1sigp1(e(t)) + µ2sigp2(e(t))) (26)

− 2eT
f (t)Γ

−1 ḟ (t)
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Furthermore, according to the Young’s inequality and Lemma 2, one gets

−2ν1eT(t)P0.5sigh1(P0.5e(t)) ≤ −2ν1(eT(t)Pe(t))
h1+1

2 (27)

−2ν2eT(t)P0.5sigh2(P0.5e(t)) ≤ −2ν2n
1−h2

2 (eT(t)Pe(t))
h2+1

2 (28)

−2µ1eT
f (t)BTsigp1(e) ≤ µ1σeT

f (t)Γ
−1e f (t) +

µ1

σ
(sigp1(e))TBΓBTsigp1(e) (29)

−2µ2eT
f (t)BTsigp2(e) ≤ µ2ψeT

f (t)Γ
−1e f (t) +

µ2

ψ
(sigp2(e))TBΓBTsigp2(e) (30)

−2χeT
f (t)Γ

−1 f̂ (t) =− 2χeT
f (t)Γ

−1(e f (t) + f (t))

≤− χeT
f (t)Γ

−1e f (t) + χ f T(t)Γ−1 f (t) (31)

−2eT
f (t)Γ

−1 ḟ (t) ≤ ςeT
f (t)Γ

−1e f (t) +
1
ς

ḟ T(t)Γ−1 ḟ (t) (32)

If χ− µ1σ− µ2ψ− ς > 0 and let τ = χ− µ1σ− µ2ψ− ς, then one obtains

V̇(t) ≤− 2ν1(eT(t)Pe(t))
h1+1

2 − 2ν2n
1−h2

2 (eT(t)Pe(t))
h2+1

2

− τeT
f (t)Γ

−1e f (t) + ξ1(t) (33)

where

ξ1(t) =
µ1

σ
(sigp1(e))TBΓBTsigp1(e) +

µ2

ψ
(sigp2(e))TBΓBTsigp2(e)+

χ f T(t)Γ−1 f (t) +
1
ς

ḟ T(t)Γ−1 ḟ (t).

Moreover, we have

V̇(t) ≤− 2ν1(eT(t)Pe(t))
h1+1

2 − 2ν2n
1−h2

2 (eT(t)Pe(t))
h2+1

2 − (τeT
f (t)Γ

−1e f (t))
h1+1

2

− (τeT
f (t)Γ

−1e f (t))
h2+1

2 + (τeT
f (t)Γ

−1e f (t))
h1+1

2 + (τeT
f (t)Γ

−1e f (t))
h2+1

2 (34)

− τeT
f (t)Γ

−1e f (t) + ξ1(t)

Based on Lemma 3, the following inequality is satisfied

(τeT
f (t)Γ

−1e f (t))
h1+1

2 − τeT
f (t)Γ

−1e f (t) ≤ (
h1 + 1

2
)

1+h1
1−h1 − (

h1 + 1
2

)
2

1−h1 (35)

Let α1 = min{2ν1, τ
h1+1

2 }, α2 = min{2ν2n
1−h2

2 , τ
h2+1

2 }, then it yields

V̇(t) ≤− α1(V(t))
h1+1

2 − α22
1−h2

2 (V(t))
h2+1

2 + ξ1(t) + ξ2(t)

≤− α1(V(t))
h1+1

2 − α22
1−h2

2 (V(t))
h2+1

2 + ξ (36)

where ξ2(t) = (τeT
f (t)Γ

−1e f (t))
h2+1

2 + ( h1+1
2 )

1+h1
1−h1 − ( h1+1

2 )
2

1−h1 , ξ is the upper bound of
ξ1(t) + ξ2(t), i.e., ξ ≥ ξ1(t) + ξ2(t). Since both ξ1(t) and ξ2(t) are positive and bounded,
the ξ does exist.



Symmetry 2022, 14, 1618 7 of 12

According to Lemma 1, the errors e(t) and e f (t) are practical fixed-time stable and
converge to the residual set{e(t), e f (t)}|V(t) ≤ min


(

ξ

α1(1− ϑ)

) 2
h1+1

,

(
ξ

α22
1−h2

2 (1− ϑ)

) 2
h2+1


 (37)

within a fixed time. The settling time is

T ≤ 1

α1ϑ(1− h1+1
2 )

+
1

α22
1−h2

2 ϑ( h2+1
2 − 1)

=
1

α1ϑ( 1−h1
2 )

+
1

α22
1−h2

2 ϑ( h2−1
2 )

(38)

where 0 < ϑ < 1.
Step 2. It follows from (17) that

MD = (I + F)D = 0 (39)

then we can obtain the solution of the unknown matrix F

F = U + YV (40)

where U = −DD+, V = (I − DD+), D+ = (DTD)−1DT, and Y is an any matrix with
appropriate dimension.

Let N = MA− K and K = L + NF satisfy condition (15), then

PN = PMA− PK

= P(I + U + YV)A− PK

= P(I + U)A + ȲVA− K̄ (41)

PM = P(I + U) + ȲV (42)

where Ȳ = PY and K̄ = PK, then, substituting expressions PN and PM into (25), we can
obtain condition (19). This is the end of this proof.

Remark 9. The non-linear fixed-time fault estimator is presented in (20), where Γ is the learning
rate. The estimator is used to identify the unknown actuator fault based on Lyapunov stability theory.
Meanwhile, the learning rate Γ is chosen to meet the performance requirements of fault estimation.

Remark 10. The fault estimation algorithm depends on the state estimation error; thus, the
convergence speed of the state estimation error is also crucial. From (11) and (20), the observer and
non-linear fault estimation algorithm contain double-power terms. The function Φ(t) in (11) is
used to accelerate the convergence of the state estimation error, whilst power functions in (20) can
improve the speed of fault estimation. The given double-power functions are the signum functions of
state estimation error. If Φ(t) = 0, then the convergence speed of state estimation errors would slow
down, which also affects the performance of fault estimation.

Remark 11. For the first step in this proof, the matrices to be designed in the fault estimation ob-
server cannot be obtained directly from (25); therefore, Step 2 is necessary to calculate these matrices.

Remark 12. From Theorem 1, matrices P, Y = P−1Ȳ, and K = P−1K̄ can be calculated directly.
Afterwards, matrices by F = U + YV, M = I + F, G = MB, and N = MA− K can be obtained
in the UIO design (11) and (12).
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Remark 13. In contrast to existing fixed-time results [32,33], the proposed method includes not
only two power functions in the fault estimation observer, but also in the fault estimator. Moreover,
the two groups of power functions are different, which increases the degrees of freedom and improves
the convergence speed of fault estimation.

4. Simulation Results

Consider the non-linear Lorenz chaotic system to verify the effectiveness of the pre-
sented design method [34], whose system parameters are as follows:

A =

 −10 10 0
28 −1 0
0 0 −8/3

, ρ(t, x(t)) =

 0
−x1(t)x3(t)
x1(t)x2(t)

,

B =

 1 0
0 0
0 1

, D =

 1
1
1

.

It is verified that matrices B and D are column full rank. According to the disturbance
matrix D, we can obtain matrices U and V in (40).

U = −DD+ =

 −1/3 −1/3 −1/3
−1/3 −1/3 −1/3
−1/3 −1/3 −1/3

, V = (I − DD+) =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

.

For the non-linear function ρ(t, x(t)), a local Lipschitz constant is selected as lp = 20.
Then the following solutions can be obtained by solving condition (19) in Theorem 1.

P =

 38.5460 0.0894 0.5412
0.0894 38.0065 0.7700
0.5412 0.7700 38.5166

, Y =

 −0.5035 0.1073 0.3961
0.2416 −0.6319 0.3903
0.3219 0.3258 −0.6477

,

K =

 4.3876 0.6881 −0.1951
0.7036 7.1243 −0.2910
−0.1674 −0.2914 7.4154

, ε = 1.1948.

Based on Remark 11, the unknown matrices in UIO-based fault estimation scheme (11)
and (12) are calculated as

F =

 −0.8368 −0.2260 0.0628
−0.0918 −0.9652 0.0570
−0.0114 −0.0075 −0.9810

, M =

 0.1632 −0.2260 0.0628
−0.0918 0.0348 0.0570
−0.0114 −0.0075 0.0190

,

G =

 0.1632 0.0628
−0.0918 0.0570
−0.0114 0.0190

, N =

 −12.3484 1.1701 0.0276
1.1884 −8.0769 0.1390
0.0702 0.1849 −7.4660

,

L =

 −5.8375 −0.9732 0.5408
0.9583 −0.4019 0.2311
−0.1769 −0.1534 0.0760

.

The other parameters of the fixed-time fault estimation observer are selected as
h1 = 0.1, h2 = 2, ν1 = 0.1, and ν2 = 3. Therefore, the non-linear term in the UIO-based
fault estimation observer (11) is Φ(t) = 0.1P−0.5sig0.1(P0.5e(t)) + 3P−0.5sig2(P0.5e(t)). The
parameters of the fault estimator are p1 = 0.01, p2 = 2, µ1 = 0.1, µ2 = 4, and χ = 0.001.

In simulation, it is supposed that the actuator fault f (t) = [ f1(t), f2(t)]T is as follows:

f1(t) =
{

0 t ≤ 8s
4 t > 8s

, f2(t) =
{

0 t ≤ 10s
2 sin(0.5t) t > 10s
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Herein, actuator bias and time-varying faults, which can be used to describe loss of
actuator effectiveness, are both considered. The simulation results are illustrated in Figure 1.
This figure shows that the presented fault estimation method can identify all faults of each
control channel simultaneously and is unaffected by external disturbances.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-3

-2

-1

0

1

2

3

4

5

Figure 1. Actuator fault estimation.

The real fault value is compared with the estimated value, as shown in Figures 2 and 3,
to verify the effect of fault estimation. The proposed fixed fault estimator has a rapid fault
estimation effect, regardless of a constant or a time-varying fault.

When Φ(t) = 0 in (11), the convergence speed of state estimation errors will slow
down, which will influence the fault estimation effect, as shown in Figure 4. Comparison
reveals that the introduction of Φ(t) can improve the performance of fault estimation by
accelerating the convergence speed of the fault estimation error.

When µ1, µ2 = 0 in (20), the presented fault algorithm strategy (20) becomes the
conventional one. Figure 5 shows that the proposed method in this paper has superior
performance for time-varying fault estimation despite the positive effect of constant fault
estimation. Therefore, the proposed fault estimation algorithm in this paper shows good
fault estimation performance for constant and time-varying faults.

0 2 4 6 8 10 12 14 16 18 20

Time (s)
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0

1

2

3

4

5

Figure 2. Fault f1(t) estimation comparison.
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Figure 3. Fault f2(t) estimation comparison.
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Figure 4. Fault estimation under Φ(t) = 0 in (11).
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Figure 5. Fault estimation under µ1, µ2 = 0 in (20).
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5. Conclusions

A practical fixed-time fault estimation observer method is proposed on the basis of
a UIO approach. The external disturbance is completely decoupled, which facilitates the
fault estimation design. The fault estimation observer and the non-linear fault estimation
algorithm contain two power functions to enhance the convergence rate of fault estimation.
Finally, simulation results of a non-linear Lorenz chaotic system are provided to certify the
performance of the method. The fixed-time scheme can only obtain the upper bound of the
convergence time but cannot accurately calculate the exact time, which will be addressed
in future work. In addition, active fault-tolerant control using the obtained accurate fault
estimation will also be investigated.
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