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Abstract: Integral inequalities make up a comprehensive and prolific field of research within the field
of mathematical interpretations. Integral inequalities in association with convexity have a strong
relationship with symmetry. Different disciplines of mathematics and applied sciences have taken
a new path as a result of the development of new fractional operators. Different new fractional
operators have been used to improve some mathematical inequalities and to bring new ideas in
recent years. To take steps forward, we prove various Grüss-type and Chebyshev-type inequalities
for integrable functions in the frame of non-conformable fractional integral operators. The key
results are proven using definitions of the fractional integrals, well-known classical inequalities, and
classical relations.

Keywords: Grüss-type inequalities; Chebyshev-type inequalities; non-conformable fractional operator

1. Introduction

Fractional calculus theory gained popularity and was employed as a mathematical tool
in a variety of pure and practical fields. This approach has previously been used in a variety
of industries with some impressive results. It has been used in medicine [1], physics [2],
modelling of diseases [3,4], nanotechnology [5], fluid mechanics [6], bioengineering [7],
epidemiology [8], economics [9], and control systems [10].

In applied mathematics, inequalities and their applications are crucial. Various frac-
tional operators were used to show a collection of integral inequalities and their generaliza-
tions (see [11–17]). To follow this trend, we use a generalized non-conformable fractional
integral operator to show an improved version of the Grüss-type inequality. G. Grüss pre-
sented the well-known Grüss-type inequality in 1935, which was linked to the Chebyshev’s
inequality; see [18].∣∣∣∣ 1

κ − $

∫ κ

$
S(u)Z(u)du−

(
1

κ − $

∫ κ

$
S(u)du

)(
1

κ − $

∫ κ

$
Z(u)du

)∣∣∣∣ ≤ (B −A)(D − C)
4

. (1)

Provided that S and Z are two integrable functions on [$, κ], satisfying the condition,

A ≤ S(u) ≤ B, C ≤ Z(u) ≤ D, A,B, C,D ∈ R, u ∈ [$, κ]. (2)

Symmetry 2022, 14, 1691. https://doi.org/10.3390/sym14081691 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081691
https://doi.org/10.3390/sym14081691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4524-1951
https://orcid.org/0000-0001-8372-2532
https://orcid.org/0000-0002-3084-922X
https://orcid.org/0000-0002-7469-5402
https://doi.org/10.3390/sym14081691
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081691?type=check_update&version=1


Symmetry 2022, 14, 1691 2 of 14

For integrable functions, various types of inequalities have been established, but
the Grüss inequality has been the focus of many studies as many scholars have examined it
extensively. Chaos, bio-sciences, fluid dynamics, engineering, meteorology, biochemistry, vi-
bration analysis, aerodynamics, and many other scientific fields benefit from this inequality.
See [19–24] for a steady growth of interest in such a field of study to address the difficulties
of various applications of these variants.

T(S,Z) =
1

κ − $

∫ κ

$
S(u)Z(u)du−

(
1

κ − $

∫ κ

$
S(u)du

)(
1

κ − $

∫ κ

$
Z(u)du

)
, (3)

where S and Z are two integral functions that are synchonous on [$, κ], given as

(S(u)−S(y))(Z(u)− Z(y)) ≥ 0,

for any u, y ∈ [$, κ]; then, the Chebyshev inequality states that T(S,Z) ≥ 0.
The interest in inequality (1) has been evoked by the researcher. There are numer-

ous recent studies in the literature on theoretical inequalities. In the approach of unital
2-positive linear maps, Balasubramanian [25] worked on the idea of the Grüss-type in-
equality. Pecaric [26] looked at certain Grüss inequality extensions and applications using
weighted Ozeki’s inequality, which is a supplement to the Cauchy–Schwartz inequality.
Butt [27] contributed a paper on the Jensen–Grüss-type inequality and its application to
the Zipf–Mandelbrot law. The extended generalized Mittag–Leffler function was used by
Akdemir [28] to investigate several Grüss-type integral inequalities for fractional integral
operators. Akdemir [29] also used the generalized fractional integral operator to analyze
several Grüss-type inequalities. Using the generalized Katugampola fractional integral
operator, Aljaaidi [30] investigated and proved various Grüss-type inequalities.

Employing the concept of time scales, Sarikaya [31] wrote a remark on Grüss-type
inequalities. Pachpatte [32] looked at certain differential function Chebyshev–Grüss in-
equalities. In the style of a generalized K-fractional integral operator, Noor [33] explained
various Grüss-type inequalities. Using the Riemann–Liouville fractional integral operator,
Dahmani [34] showed several expansions of the Grüss-type integral inequality. Chin-
chane [35] presented a paper that used the Hadamard fractional integral operator to create
a novel Grüss-type inequality. Sarikaya [36] employed a variation of Pompeiu’s mean value
theorem to develop a Grüss-type inequality. Kalla [37] investigated Grüss type inequalities
for a hypergeometric fractional integral operator. E. Set [38] worked on the novel Grüss
type inequalities via conformable fractional integral operator. The Riemann–Liouville
fractional integral operator was used to solve the following integral inequality given by
Dahmani et al. [34].

Theorem 1. Let S and Z be two integrable functions on (0, ∞) satisfying the condition

A ≤ S(u) ≤ B, C ≤ Z(u) ≤ D, A,B, C,D ∈ R, u ∈ [$, κ],

on (0, ∞); then, ∀η > 0, we have∣∣∣∣ wη

Γ(η + 1)
JηSZ(w)− JηS(w)JηZ(w)

∣∣∣∣ ≤ ( wη

2Γ(η + 1)

)2
(B −A)(D − C). (4)

The paper is arranged as follows: In Section 2, we give some known concepts. In
Section 3, we obtain some Grüss-type fractional integral inequalities on the basis of new
lemmas with the help of the Cauchy–Schwarz inequality. In Section 4, we investigate some
other fractional integral inequalities involving non-conformable fractional integral opera-
tors with the help of Young’s inequality. Section 5 deals with Chebyshev-type inequalities.
A brief conclusion is given in Section 6.
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2. Preliminaries

Definition 1 ([39]). For each S ∈ L[ξ, ϑ] and 0 < ξ < ϑ, we define

N3J
η
uS(x) =

∫ x

u
ϑ−ηS(ϑ)dϑ,

for every x, u ∈ [ξ, ϑ] and η ∈ R.

Definition 2 ([39]). For each function S ∈ L[ξ, ϑ], we define the fractional integrals

N3J
η
ξ+
S(x) =

∫ x

ξ
(x− ϑ)−ηS(ϑ)dϑ,

N3J
η
ϑ−S(x) =

∫ ϑ

x
(ϑ− x)−ηS(ϑ)dϑ,

for every x ∈ [ξ, ϑ] and η ∈ R.

Remark 1. In the above definitions, if we put η = 0 then we have the classical integrals, which are
represented by N3J

η
ξ+
S(x) = N3J

η
ϑ−S(x) =

∫ ϑ
ξ S(ϑ)dϑ.

3. Fractional Inequality of Grüss Type

In this section, first, we prove some new integrable equalities; then, using these
equalities and the Cauchy–Schwarz inequality, our main findings are presented.

Lemma 1. Let the integrable function on (0, ∞) be S with A,B ∈ R; then, ∀w > 0 and η > 0,
the following equality holds true:

(w− $)η

η N3J
η
$+
S2(w) +

(
N3J

η
$+
S(w)

)2

=

(
B (w− $)η

η
− N3J

η
$+
S(w)

)(
N3J

η
$+
S(w)−A (w− $)η

η

)
− (w− $)η

η N3J
η
$+
((B −S(w))(S(w)−A)). (5)

Proof. Let A,B ∈ R and S be an integrable function on (0, ∞) ∀ µ, ρ ∈ (0, ∞); then,
we have

(B −S(ρ))(S(µ)−A) + (B −S(µ))(S(ρ)−A)
− (B −S(µ))(S(µ)−A)− (B −S(ρ))(S(ρ)−A)
= S2(µ) +S2ρ + 2S(µ)S(ρ). (6)

If we multiply both sides of (6) by (w− µ)η−1 and integrate the resultant equality with
respect to µ, we obtain

(B −S(ρ))

(
N3J

η
$+
S(w)−A (w− $)η

η

)
+

(
B (w− $)η

η
− N3J

η
$+
S(w)

)
(S(ρ)−A)

− N3J
η
$+
((B −S(w))(S(w)−A))− (B −S(ρ))(S(ρ)−A) (w− $)η

η

= N3J
η
$+
S2(w) +

(w− $)η

η
S2(ρ) + 2S(ρ)N3J

η
$+
S(w). (7)
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Upon multiplication of both sides of (7) by (w− ρ)η−1 and integration of the resultant
equality with respect to ρ, we yield(

N3J
η
$+
S(w)−A (w− $)η

η

) ∫ w

a
(w− ρ)η−1(B −S(ρ))dρ

+

(
B (w− $)η

η
− N3J

η
$+
S(w)

) ∫ w

a
(w− ρ)η−1(S(ρ)−A)dρ

− N3J
η
$+
((B −S(w))(S(w)−A))

∫ w

a
(w− ρ)η−1(B −S(ρ))dρ

− (w− η)η

η

∫ w

a
(w− ρ)η−1(B −S(ρ))(S(ρ)−A)dρ

=
(w− η)η

η N3J
η
$+
S2(w) +

(w− $)η

η N3J
η
$+
S2(w) + 2N3J

η
$+
S(w)N3J

η
$+
S(w),

This led us to the proof of Lemma 1.

Theorem 2. Let the integrable functions on [0, ∞), be S and Z satisfying the condition

A ≤ S(w) ≤ B, C ≤ Z(w) ≤ D, A,B, C,D ∈ R, w ∈ [0, ∞).

Then, ∣∣∣∣ (w− η)η

η N3J
η
$+
(SZ)(w)− N3J

η
$+
S(w)N3J

η
$+
Z(w)

∣∣∣∣
≤
(
(w− η)η

2η

)2

(B −A)(D − C). (8)

holds true.

Proof. Let S and Z be two given integrable function on [0, ∞), with the condition

A ≤ S(w) ≤ B, C ≤ Z(w) ≤ D, A,B, C,D ∈ R, w ∈ [0, ∞).

If we define
H(µ, ρ) = (S(µ)−S(ρ))(Z(µ)− Z(ρ)).

It readily follows that

H(µ, ρ) = (S(µ)Z(µ)−S(µ)Z(ρ)−S(ρ)Z(µ) +S(ρ)Z(ρ).

Then, multiplying the above equality by (w − µ)η−1 and integrating the resultant
equality with respect to µ, we have∫ w

a
(w− µ)η−1H(µ, ρ)dµ

= N3J
η
$+
SZ(w)−S(ρ)N3J

η
$+
Z(w)− Z(ρ)N3J

η
$+
S(w) +S(ρ)Z(ρ)

(w− $)η

η
. (9)

Again, multiplying the above equality by (w− ρ)η−1 and then integrating the with
respect to ρ, we have

∫ w

a

∫ w

a
(w− µ)η−1(w− ρ)η−1H(µ, ρ)dµdρ = 2

(
(w− $)η

η N3J
η
$+
SZ(w)−N3 J

η
$+
S(w)N3J

η
$+
Z(w)

)
.

Employing the Cauchy–Schwarz inequality, we obtain
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(
(w− $)η

η N3J
η
$+
SZ(w)− N3J

η
$+
S(w)N3J

η
$+
Z(w)

)2

≤
(
(w− $)η

η N3J
η
$+
S2(w)−

(
N3J

η
$+
S(w)

)2
)(

(w− $)η

η N3J
η
$+
Z2(w)−

(
N3J

η
$+
Z(w)

)2
)

. (10)

Since, (B −S(w))(S(w)−A) ≥ 0 and (D − Z(w))(Z(w)− C) ≥ 0, we consequently
have

(w− $)η

η N3J
η
$+
((B −S(w))(S(w)−A)) ≥ 0, (11)

and
(w− $)η

η N3J
η
$+
((D − Z(w))(Z(w)− C)) ≥ 0. (12)

Thus,

(w− $)η

η N3J
η
$+
S2(w)−

(
N3J

η
$+
S(w)

)2

≤
(
B(w− $)η

η
− N3J

η
$+
S(w)

)(
N3J

η
$+
S(w)− A(w− $)η

η

)
. (13)

Additionally,

(w− $)η

η N3J
η
$+
Z2(w)−

(
N3J

η
$+
Z(w)

)2

≤
(
D(w− $)η

η
− N3J

η
$+
Z(w)

)(
N3J

η
$+
Z(w)− C(w− $)η

η

)
. (14)

From Lemma 1 and the above inequalities (10) and (14), we can conclude that(
(w− $)η

η N3J
η
$+
SZ(w)− N3J

η
$+
S(w)N3J

η
$+
Z(w)

)2

≤
(
B(w− $)η

η
−N3 J

η
$+
S(w)

)(
N3J

η
$+
S(w)− A(w− $)η

η

)
×
(
D(w− $)η

η
−N3 J

η
$+
Z(w)

)(
N3J

η
$+
Z(w)− C(w− $)η

η

)
. (15)

Now, using the inequality 4bc ≤ (b + c)2, b, c ∈ R, we obtain

4
(
B(w− $)η

η
− N3J

η
$+
S(w)

)(
N3J

η
$+
S(w)− A(w− $)η

η

)
≤
(
(w− η)η

η
(B −A)

)2

, (16)

and

4
(
D(w− $)η

η
− N3J

η
$+
Z(w)

)(
N3J

η
$+
Z(w)− C(w− $)η

η

)
≤
(
(w− η)η

η
(D − C)

)2

. (17)

The proof of Theorem 7 is completed from the above developments
(Equations (15)–(17)).

Lemma 2. Let the integrable functions on [0, ∞) be S and Z; then, the following identity for all
w ≤ 0, η ≤ 0 and β ≤ 0 holds true:
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[
(w− $)η

η N3J
β
$+
SZ(w) +

(w− $)β

β N3J
η
$+
SZ(w)− N3J

η
$+
S(w)N3J

β
$+
Z(w)− N3J

η
$+
Z(w)N3J

β
$+
S(w)

]2

≤
(
(w− $)η

η N3J
β
$+
S2(w) +

(w− $)β

β N3J
η
$+
S2(w)− 2N3J

β
$+
S(w)N3J

η
$+
S(w)

)
(18)

×
(
(w− $)η

η N3J
β
$+
Z2(w) +

(w− $)β

β N3J
η
$+
Z2(w)− 2N3J

η
$+
Z(w)N3J

β
$+
Z(w)

)
.

Proof. Multiplying (9) by (w− ρ)β−1, then integrating the resultant with respect to ρ, and
applying the Cauchy–Schwarz inequality, we have the desired inequality (18).

Lemma 3. Let the integrable functions on [0, ∞) be S and A,B ∈ R; then, for all w ≤ 0,
alpha ≤ 0 and β ≤ 0, the following equality holds true:

(w− $)η

η N3J
β
$+
S2(w) +

(w− $)β

β N3J
η
$+
S2(w) + 2N3J

η
$+
S(w)N3J

β
$+
S(w)

=

(
B (w− $)η

η
− N3J

η
$+
S(w)

)(
N3J

β
$+
S(w)−A (w− $)β

β

)
+

(
B (w− $)β

β
− N3J

β
$+
S(w)

)(
N3J

η
$+
S(w)−A (w− $)η

η

)
− (w− $)η

η
− N3J

β
$+
((B −S(w))(S(w)−A))− (w− $)β

β N3J
η
$+
((B −S(w))(S(w)−A)).

Proof. Multiplying (7) by (w− ρ)β−1 and then integrating the resulting identity with respect
to ρ, we have(

N3J
η
$+
S(w)−A (w− $)η

η

) ∫ w

a
(w− ρ)(β−1)(B −S(ρ))dρ

+

(
B (w− $)η

η
−N3 J

η
$+
S(w)

) ∫ w

a
(S(ρ)−A)(w− ρ)(β−1)dρ

− N3J
η
$+
((B −S(w)(S(w)−A))(w− ρ)(β−1)dρ

− (w− $)η

η

∫ w

a
(B −S(ρ))(S(ρ)−A)dρ

=
(w− $)β

β N3J
η
$+
S2(w) +

(w− $)η

η N3J
β
$+
S2(w) + 2N3J

η
$+
S(w)N3J

β
$+
S(w).

The above developments completes the proof of Lemma 3.

Theorem 3. Let S and Z be two integrable function on [0, ∞) satisfying the condition

A ≤ S(w) ≤ B, C ≤ Z(w) ≤ D, A,B, C,D ∈ R, w ∈ [0, ∞),

we have
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[
(w− $)η

η N3J
β
$+
SZ(w) +

(w− $)β

β N3J
η
$+
SZ(w)− N3J

η
$+
S(w)N3J

β
$+
Z(w)− N3J

β
$+
S(w)N3J

β
$+
Z(w)

]2

≤
(
B (w− $)η

η
− N3J

η
$+
S(w)

)(
N3J

β
$+
S(w)−A (w− $)β

β

)
+

(
B (w− $)β

β
− N3J

β
$+
S(w)

)(
N3J

η
$+
S(w)−A (w− $)β

β

)
×
(
D (w− $)η

η
− N3J

η
$+
Z(w)

)(
N3J

β
$+
Z(w)− C (w− $)β

β

)
+

(
D (w− $)β

β
− N3J

β
$+
Z(w)

)(
N3J

η
$+
Z(w)− C (w− $)β

β

)
.

Proof. Since (B −S(w))(S(w)−A) ≥ 0 and (D− Z(w))(Z(w)−C) ≥ 0, then we can write

− (w− $)η

η N3J
β
$+
((B −S(w))(S(w)−A))− (w− $)β

β N3J
η
$+
((B −S(w))(S(w)−A)) ≤ 0, (19)

and

− (w− $)η

η N3J
β
$+
((D − Z(w))(Z(w)− C))− (w− $)β

β N3J
η
$+
((D − Z(w))(Z(w)− C)) ≤ 0. (20)

If we apply Lemma 3 for S and Z, with Lemma 2 and Equations (19) and (20), we
have the desired Theorem 3.

4. Certain New Fractional Integral Inequalities

Here, we present some new type of inequalities (Theorems 4–6) pertaining to non-
conformable fractional integral operator.

Theorem 4. Let the positive functions defined on [0, ∞) be S and Z. Then, the inequalities holds:

(i) 1
p N3J

η
$+
(S)p + 1

q N3J
η
$+
(Z)q ≥

[
(w−η)η

η

]−1
N3J

η
$+
(S)N3J

η
$+
(Z).

(ii) 1
p N3J

η
$+
(S)p

N3J
η
$+
(Z)p + 1

q N3J
η
$+
(S)q

N3J
η
$+
(Z)q ≥

(
N3J

η
$+
(SZ)

)2
.

(iii) 1
p N3J

η
$+
(S)p

N3J
η
$+
(Z)q + 1

q N3J
η
$+
(S)q

N3J
η
$+
(Z)p ≥ N3J

η
$+
(SZp−1)N3J

η
$+
(SZq−1).

(iv) N3J
η
$+
(S)p

N3J
η
$+
(Z)q ≥ N3J

η
$+
(SZ)N3J

η
$+

(
Sp−1Zq−1), where for p, q > 1, 1

p + 1
q = 1,

Proof. From Young’s inequality, we have

1
p
up +

1
q

vq ≥ uv, for all u, v ≥ 0, p, q > 1,
1
p
+

1
q
= 1.

If we choose, u = S(µ) and v = Z(ρ), µ, ρ > o, then

1
p
(S(µ))p +

1
q
(Z(ρ))q ≥ S(µ)Z(ρ), ∀ S(µ)Z(ρ) ≥ 0. (21)

Multiplication of inequality (21) by (w− µ)η−1, and integrating the resultant inequality
with respect to µ, we get

1
p

∫ w

a
(w− µ)η−1(S(µ))pdµ+

1
q
Z(ρ)q

∫ w

a
(w− µ)η−1dµ ≥ Z(ρ)

∫ w

a
(w− µ)η−1S(µ)dµ. (22)
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Consequently,

1
p N3J

η
$+
(S(w))p +

(w− η)η

qη
Z(ρ)q ≥ Z(ρ)N3J

η
$+
(S(w)). (23)

Analogously, multiplying inequality (23) by (w− ρ)η−1 and integrating the obtained
identity, we obtain

(w− η)η

pη N3J
η
$+
(S(w))p +

(w− η)η

qη N3J
η
$+
(Z(w))q ≥ N3J

η
$+
S(w)N3J

η
$+
Z(w).

This readily follows:

(w− η)η

η

[
1
p N3J

η
$+
(S(w))p +

1
q N3J

η
$+
(Z(w))q

]
≥ N3J

η
$+
S(w)N3J

η
$+
Z(w). (24)

Additionally,

1
p N3J

η
$+
(S(w))p +

1
q N3J

η
$+
(Z(w))q ≥

[
(w− η)η

η

]−1

N3J
η
$+
S(w)N3J

η
$+
Z(w), (25)

which implies (i). Similarly, we can prove the rest of the inequalities by making the correct
choice of parameters as follows:

For (ii) U = S(µ)Z(ρ), v = S(ρ)Z(µ).

For (iii) U = S(µ)
Z(µ)

, v = S(ρ)
Z(ρ)

, Z(µ),Z(ρ) 6= 0.

For (iv) U = S(ρ)
S(µ)

, v = Z(ρ)
Z(µ)

, Z(µ),Z(ρ) 6= 0.

Theorem 5. Let the positive functions defined on [0, ∞) be S and Z. Then, the following inequali-
ties hold true:

(i)

1
p N3J

η
$+
(S)p

N3J
η
$+
(Z)2 +

1
q N3J

η
$+
(S)2

N3J
η
$+
(Z)q ≥ N3J

η
$+
(SZ)N3J

η
$+
(S

2
q Z

2
p ).

(ii)

1
p N3J

η
$+
(S)2

N3J
η
$+
(Z)q +

1
q N3J

η
$+
(S)q

N3J
η
$+
(Z)2 ≥ N3J

η
$+
(S

2
q Z

2
p )N3J

η
$+
(Sp−1Zq−1).

(iii)

N3J
η
$+
(S)2

N3J
η
$+

(
1
p
Zq +

1
q
Zp
)
≥ N3J

η
$+
(S

2
p Z)N3J

η
$+
(S

2
q Z),

for p, q > 1 satisfying 1
p + 1

q = 1.

Proof. We can prove the results following similar procedures as in the previous Theorem 4
with an appropriate choice of parameters:
(i)

U = S(µ)Z
2
p (ρ), V = S

2
q (ρ)Z(µ).

(ii)

U =
S

2
p (µ)

S(ρ)
, V =

Z
2
q (µ)

Z(ρ)
,S(ρ),Z(ρ) 6= 0.
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(iii)

U =
S

2
p (µ)

Z(ρ)
, V =

S
2
q (µ)

Z(ρ)
,Z(ρ) 6= 0.

Theorem 6. Let the positive functions defined on [0, ∞) be S and Z. For w > 0 with conditions

A ≤ min
0≤µ≤w

S(µ)

Z(µ)
, B = max

0≤µ≤w

S(µ)

Z(µ)
, (26)

the following inequalities hold true:
(i)

0 ≤ N3J
η
$+
(S)2

N3J
η
$+
(Z)2 ≤ (A+ B)2

4AB

(
N3J

η
$+
(SZ)

)2
.

(ii)

0 ≤
√

N3J
η
$+
(S)2

N3J
η
$+
(Z)2 − N3J

η
$+
(SZ) ≤ (

√
B −
√
A)2

4AB

(
N3J

η
$+
(SZ)

)
.

(iii)

0 ≤ N3J
η
$+
(S)2

N3J
η
$+
(Z)2 − N3J

η
$+
(SZ)2 ≤ (B −A)2

4AB

(
N3J

η
$+
(SZ)

)2
.

Proof. From (26) and(
S(µ)

Z(µ)
−A

)(
B − S(µ)

Z(µ)

)
Z2(µ) ≥ 0, 0 ≤ µ ≤ w, (27)

we have
S2(µ) +ABZ2(µ) ≤ (A+ B)S(µ)Z(µ). (28)

Multiplying the above inequality (28) by (w− µ)η−1 and then integrating the obtained
result with respect to µ, we get∫ w

a
(w− µ)η−1S2(µ)dµ +AB

∫ w

a
(w− µ)η−1Z2(µ)dµ ≤ (A+ B)

∫ w

a
(w− µ)η−1S(µ)S(µ).

This implies

N3J
η
$+
(S)2(w) +ABN3J

η
$+
(Z)2(w) ≤ (A+ B)N3J

η
$+
(SZ)(w). (29)

On the other hand, it follows from

AB > 0, and
(√

N3J
η
$+
(S)2 −

√
ABN3J

η
$+
(Z)2

)2
≥ 0

⇒ 2
(√

N3J
η
$+
(S)2

√
ABN3J

η
$+
(Z)2

)
≤N3 J

η
$+
(S)2 +ABN3J

η
$+
(Z)2. (30)

Then, from the last two inequalities (29) and (30), we obtain

4ABN3J
η
$+
(S)2

N3J
η
$+
(Z)2 ≤ (A+ B)2

(
N3J

η
$+
(SZ)

)2
,

which readily follows (i); using the same operations as of (i), we can prove (ii) and (iii).

5. Chebyshev-Type Inequalities

Theorem 7. Let the integrable functions be L+η,0[$, κ], which are synchronous on [$, κ]. Then,

N3J
η
$+
(SZ)(κ) ≥

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ)N3J

η
$+
(Z)(κ). (31)
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Proof. Since S and Z are synchronous on [$, κ], we have

(S(a)−S(b))(Z(a)− Z(b)) ≥ 0 a, b ∈ [$, κ],

or equivalently
S(a)Z(a) +S(b)Z(b) ≥ S(a)Z(b) +S(b)Z(a).

If we multiply both sides of the above inequality by (κ − a)−η , we have

S(a)Z(a)(κ − a)−η +S(b)Z(b)(κ − a)−η ≥ S(a)Z(b)(κ − a)−η +S(b)Z(a)(κ − a)−η .

Upon integrating the inequality obtained with respect to a, one has

∫ κ

$
(κ − a)−ηS(a)Z(a)da +S(b)Z(b)

∫ κ

$
(κ − a)−ηda

≥ Z(b)
∫ κ

$
(κ − a)−ηS(a)da +S(b)

∫ κ

$
(κ − a)−ηZ(a)da.

From the above developments, we have

N3J
η
$+
(SZ)(κ) +

[
(κ − $)1−η

1− η

]
S(b)Z(b) ≥ Z(b)N3J

η
$+
(S)(κ) +S(b)N3J

η
$+
(Z)(κ). (32)

Multiplying inequality (32) by (κ − b)−η and integrating the resultant inequality with
respect to b, we obtain

N3J
η
$+
(SZ)(κ)

∫ κ

$
(κ − b)−ηdb +

[
(κ − $)1−η

1− η

] ∫ κ

$
(κ − b)−ηS(b)Z(b)db

≥ N3J
η
$+
S(κ)

∫ κ

$
(κ − b)−ηZ(b)db + N3J

η
$+
Z(κ)

∫ κ

$
(κ − b)−ηS(b)db.

This readily gives

2
[
(κ − $)1−η

1− η

]
N3J

η
$+
(SZ)(κ) ≥ 2N3J

η
$+
S(κ)N3J

η
$+
Z(κ).

and we have the desired inequality ((31)).

Remark 2. Let S,Z ∈ L−η,0 be synchronous functions on [$, κ]; then, we have

N3J
η
κ−(SZ)($) ≥

[
(κ − $)1−η

1− η

]−1

N3J
η
κ−S($)N3J

η
κ−Z($). (33)

Remark 3. If we take η = 0 in the above Theorem 7 (or in Remark 2), then the inequality (31) or
inequality (33) reduces to the classical Chebyshev inequality.

Theorem 8. Let S and Z be two function from L+η,0[$, κ]
⋂L+β,0[$, κ], which are synchronous on

[$, κ]; then, the following inequality holds true:

(κ − $)1−β

1− β N3J
η
$+
(SZ)(κ) +

(κ − $)1−η

1− η N3J
η
$+
(SZ)(κ)

≥ N3J
η
$+
(S)(κ)N3J

η
$+
(Z)(κ) + N3J

η
$+
(Z)(κ)N3J

η
$+
(S)(κ). (34)
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Proof. Multiplying the inequality (32) by (κ − b)−β yields

(κ − b)−β
N3J

η
$+
(SZ)(κ) +

(κ − $)1−η

1− η
(κ − b)−βS(b)Z(b)

≥ N3J
η
$+
(S)(κ)(κ − b)−βZ(b) + N3J

η
$+
(Z)(κ)(κ − b)−βS(b).

Integrating the above inequality with respect to b yields inequality (34).

Remark 4. If we take η = β, then we obtain Theorem 7.

Theorem 9. Let {Si}i=1,2,3,4,...,n be a positive function L+η,0[$, κ]; then, we have[
N3J

η
$+

(
n

∏
i=1

SiSn+1

)]
≥
[
(κ − $)1−η

1− η

]−n(n+1

∏
i=1

Si

)
(κ). (35)

Proof. The theorem can be proven by the method of induction on n ∈ N. For n = 1,
the above inequality trivially holds. For n = 2, since S1 and S2 are synchronous and
positive functions and by the hypothesis of theorem 7, the inequality (35) readily follows.
Now, let us assume that the inequality (35) holds true for n ∈ N. Let S = ∏n

i=1Si and
Z = Sn+1, as S and Z be increasing functions on [$, κ]; therefore, under the assumption of
the inequality (31) and induction hypothesis, we have

N3J
η
$+

(
n

∏
i=1

SiSn+1

)
≥
[
(κ − $)1−η

1− η

]−1

N3J
η
$+

(
n

∏
i=1

Si

)
(κ)N3J

η
$+
(Sn+1)(κ)

≥
[
(κ − $)1−η

1− η

]−1

N3J
η
$+

(
n+1

∏
i=1

Si

)
(κ).

This concludes the desired proof.

Theorem 10. Let S,Z : [0, ∞) → R and S,Z ∈ L+$ [$, κ], be increasing and differentiable
functions, respectively. Z

′
is bounded below by m = infw∈[0,∞) Z

′
(t); then, we have

N3J
η
$+
(SZ)(κ) ≥

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(Z)(κ)

−m
[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(w)(κ) + mN3J

η
$+
(wS)(κ),

where w(x) = x is the identity function.

Proof. If h is differentiable and increasing on [0, ∞) with P(u) = mu and h(u) = Z(u)−
P(u). Then, applying the results of Theorem 31, we have

N3J
η
$+
(Sh)(κ) ≥

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(h)(κ)

=

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(Z)(κ)−

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(P)(κ). (36)

since N3J
η
$+
(P)(κ) = mN3J

η
$+
(t)(κ) and N3J

η
$+
(SP)(κ) = mN3J

η
$+
(wS)(κ).

From the above developments, we have
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N3J
η
$+
(SZ)(κ) = N3J

η
$+
(Sh)(κ) + N3J

η
$+
(SP)(κ)

≥
[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(Z)(κ)−

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ)N3J

η
$+
(P)(κ) + N3J

η
$+
(SP)(κ)

≥
[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(Z)(κ)−m

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(t)(κ) + mN3J

η
$+
(tS)(κ).

This completes the desired proof.

Theorem 11. Let S,Z : [0, ∞) → R and S,Z ∈ L+$ [$, κ], be increasing and differentiable
functions, respectively. Z

′
is bounded below by m = infw∈[0,∞) Z

′
(t); then, we have

Let S,Z : [0, ∞) → R and S,Z ∈ L+$ [$, κ] be two differentiable functions. If S
′

bounded
below by m1 = infw∈[0,∞) S

′
(w) and Z

′
bounded below by m2 = infw∈[0,∞) Z

′
(w). Then we have

N3J
η
$+
(SZ)(κ) ≥

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(Z)(κ)−m2

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(w)(κ)

−m1

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(Z)(κ) N3J

η
$+
(w)(κ) + m1m2

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(w)(κ) N3J

η
$+
(w)(κ)

+ m2 N3J
η
$+
(wS)(κ) + m1 N3J

η
$+
(wZ)(κ)−m1m2 N3J

η
$+
(w2)(κ),

where w(u) = u is the identity function.

Proof. Let h1 and h2 be differentiable and increasing functions on [0, ∞) with P1(u) = m1u
and h1(u) = Z(u)− P1(u); similarly, P2(u) = m2u and h2(u) = Z(u)− P2(u). Then, applying
the results of Theorem 7, we have

N3J
η
$+
(h1h2)(κ) ≥

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(h1)(κ) N3J

η
$+
(h2)(κ)

≥
[
(κ − $)1−η

1− η

]−1[
N3J

η
$+
(S)(κ)− N3J

η
$+
(P1)(κ)

][
N3J

η
$+
(Z)(κ)− N3J

η
$+
(P2)(κ)

]
≥
[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) N3J

η
$+
(Z)(κ)−m2

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(S)(κ) O+ I$(w)(κ)

−m1

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(Z)(κ) N3J

η
$+
(w)(κ)−m1m2

[
(κ − $)1−η

1− η

]−1

N3J
η
$+
(w)(κ) N3J

η
$+
(w)(κ). (37)

Moreover,

N3J
η
$+
(h1P2)(κ) = m2N3J

η
$+
(wh1)(κ) = m2N3J

η
$+
(wS)(κ)−m1m2N3J

η
$+
(w2)(κ). (38)

Similarly,

N3J
η
$+
(h2P1)(κ) = m1N3J

η
$+
(wZ)(κ)−m1m2N3J

η
$+
(w2)(κ), (39)

and
N3J

η
$+
(P1P2)(κ) = m1m2N3J

η
$+
(w2)(κ). (40)

From the equality,

SZ = (h1 + P1)(h2 + P2) = h1h2 + h1P2 + h2P1 + P1P2,
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we have

N3J
η
$+
(SZ)(κ) = N3J

η
$+
(h1h2)(κ) + N3J

η
$+
(h1P2)(κ) + N3J

η
$+
(P1h2)(κ) + N3J

η
$+
(P1P2)(κ),

and this equality together with (37)–(40) implies the required result.

Remark 5. If we take m1 = 0, then we obtain Theorem 10.

Remark 6. If we consider −S and Z, or S and −Z instead of S and Z, under the assumptions of
the synchronous functions, we will have new results with changes in the direction of the inequalities.

6. Conclusions

The Grüss inequality and the Chebyshev inequality have been extensively studied,
and numerous generalizations, extensions, and variants of these two valuable inequalities
have been established. Using a generalized integral operator, namely the non-conformable
operator, several generalizations of the Grüss inequality as well as the Chebyshev-type
inequality are presented in this paper. The findings provide novel approaches to the
Grüss inequality thanks to the peculiarities of the fractional operator and some inequalities
employed in the proofs. In future research work, different forms of fractional integral
operators can be used to enhance the outcomes of researchers working on this topic.
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