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Abstract: In this paper, a one-dimensional mathematical model for investigating the vibrations of
structures consisting of elastic and weakly curved rods is proposed. The three-dimensional structure
is replaced by a limit graph, on each arc of which a system of three differential equations is written
out. The differential equations describe the longitudinal and transverse vibrations of an elastic rod,
taking into account the influence of longitudinal and transverse vibrations on each other. Describing
conjugation conditions at joints of four or more rods is an important problem. This article assumes
new conjugation conditions that guarantee the all-around decidability and symmetry of the resulting
boundary value problems for systems of differential equations on a star graph. In addition, the paper
proposes a physical interpretation of the conjugation conditions found. Thus, the work presents one
more area of knowledge where symmetry phenomena occur. The symmetry here is manifested in the
preservation of conjugation conditions when passing to the conjugate operator.

Keywords: boundary vertices of a graph; inner vertex of a star graph; boundary problems;
Laplace operator

1. Introduction

The work is devoted to the description of well-posed boundary value problems for
systems of differential equations on graphs. In contrast to well-known works, on each edge
of the graph, there is a system of three differential equations with various orders that do
not coincide with each other. At the en of each arc of star graph G, let there be a system of

differential equations at n = 1, . . . , m + 1 and zn ∈
(
− ln

2
,

ln
2

)
.


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= Fn
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− d
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(
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(
−dn(zn)

d2wn
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n
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d2wn
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dwn
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= Fn
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(1)

Assume that the coefficients

{µn(zn), an(zn), bn(zn), dn(zn), cn(zn), fn(zn), n = 1, . . . , m + 1}

give simple real-valued functions. Furthermore, the physical meaning of the coefficients is
explained. The required functions

{
wn

1 (zn), wn
2 (zn), wn

3 (zn), n = 1, . . . , m + 1
}

represent
the transverse and longitudinal displacements of rods from their respective axes. The
rods are considered to be connected at their ends in one knot. The other ends of the rods
are hard-fixed. The hard-fixed ends of the rods in the graph correspond to the boundary
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vertices of the graph, and the connecting node corresponds to the inner vertex of the
star graph. The main question that interests us is: what conjugation conditions can be
fulfilled at an interior vertex of the star graph so that the corresponding boundary value
problem for the system of differential equations is symmetric? In case the boundary value
problem is symmetric, then the eigenfrequencies will be real. As far as physical meaning is
concerned, these types of boundary tasks are interesting. The system (1) is introduced in [1]
in connection with the asymptotic analysis of one-dimensional equations of deformation
of thin weakly curved rods. Thus, this paper presents one more area of knowledge where
symmetry plays an important role.

Usually, cross-sections of rods [2] are characterized by space, static moments of plane
sections, the center of gravity position, moments of inertia, radii of inertia, and moments
of resistances. Let z change along the rod. We denote the transverse cross-section of the
rod at point z by ω(z). The coefficients of the system (1) are then input by the formulas
d(z) =

∫∫
ω(z)

η1dη1dη2, f (z) =
∫∫

ω(z)
η2dη1dη2, a(z) =

∫∫
ω(z)

η2
1dη1dη2, b(z) =

∫∫
ω(z)

η1η2dη1dη2,

c(z) =
∫∫

ω(z)
η2

2dη1dη2.

Then, according to [2], d(z) =
∫∫

ω(z)
η1dη1dη2, f (z) =

∫∫
ω(z)

η2dη1dη2 are the static moments

of cross-section area w(z) relative to the axes Oη1 and Oη2, respectively.
The values a(z) =

∫∫
ω(z)

η2
1dη1dη2, c(z) =

∫∫
ω(z)

η2
2dη1dη2 represent the axial moments

of inertia of section ω(z) relative to the axes Oη1 and Oη2, respectively. The centrifugal
moment of the inertia of cross-section ω(z) concerning the two co-orthogonal axes Oη1 and
Oη2 is equal to b(z) =

∫∫
ω(z)

η1η2dη1dη2. If the diameter of the cross-section w(z) is considered

to be a small of order ε, then

1. The static moments of the cross-sectional area d(z), f (z) have an order of smallness ε3;
2. The cross-sectional axial moments of inertia a(z), c(z) have the order of smallness ε4;
3. The centrifugal moment of inertia of the section b(z) has an order of smallness ε4.

Consider separately the third equation of system (1)

− d
dzn

(
µn(zn)

(
−dn(zn)

d2wn
1 (zn)

dz2
n
− fn(zn)

d2wn
2 (zn)

dz2
n

+
dwn

3 (zn)

dzn

))
= Fn

3 (zn).

As there are coefficients ε→+0, dn(zn) = O(ε3), fn(zn) = O(ε3), the first two terms
can be neglected in the last equation. As a result, we have (2)

− d
dz

(
µ(z)

(
dw3(z)

dz

))
= F3(z). (2)

Similar equations describe the longitudinal vibrations of rods (3). Thus, if the cross-
sectional diameter of the rod is ε→ 0, then the influence of the transverse vibrations on the
longitudinal vibrations can be neglected.

Under natural simplifying assumptions, this is the equation of longitudinal vibrations
of the rod [3]. Therefore, the longitudinal offsets w3(z) can be found first. The transverse
offsets can be defined from the first two equations of system (1).

d2

dz2

(
µ(z)

(
a(z)

d2w1(z)
dz2 + b(z)

d2w2(z)
dz2 − d(z)

dw3(z)
dz

))
= F1(z),

d2

dz2

(
µ(z)

(
b(z)

d2w1(z)
dz2 + c(z)

d2w2(z)
dz2 − f (z)

dw3(z)
dz

))
= F2(z).
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The last system of equations falls into two systems, and each of them can be solved
independently from the other. The fourth-order differential equation for transverse dis-
placement along the Oy axis:

d2

dz2

(
µ(z)(b2(z)− a(z)c(z))

d2w2(z)
dz2

)
= F̃2(z), (3)

where

F̃2(z) = b(z)
(

F1(z) +
d2

dz2

(
d(z)

dw3(z)
dz

))
− a(z)

(
F2(z) +

d2

dz2

(
f (z)

dw3(z)
dz

))
.

The fourth-order differential equation for transverse displacement in the 0x-axis:

d2

dz2

(
µ(z)(a(z)c(z)− b2(z))

d2w1(z)
dz2

)
= F̃1(z),

where

F̃1(z) = c(z)
(

F1(z) +
d2

dz2

(
d(z)

dW3(z)
dz

))
− b(z)

(
F2(z) +

d2

dz2

(
f (z)

dW3(z)
dz

))
.

Thus, the transverse displacements in the Ox and Oy axes, in this case, can be com-
puted independently of each other. This confirms Timoshenko’s theory of beam bends,
which proposes that the bends are determined from fourth-order differential equations. If
the section diameter ω(z) is considered to be a small order of ε, then system (1) confirms
Timoshenko’s theory of bending beams [4].

In many engineering calculations, it is presumed that movements are separated:
transverse vibrations do not affect longitudinal ones and vice versa. However, this division
of rod movements is not always justified. Thus, in general, system (1) does not always
decompose into equations of (2) and (3) types.

Consider a mechanical system (Figure 1) consisting of n rods in three dimensions. The
ends of the rods are connected to each other at Xε,o, which is a node. If the parameter ε tend
toward zero, we obtain the limit graph (Figure 2).

Figure 1. A 2-dimensional graph-like manifold with boundary.
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Figure 2. Limit star graph.

The rods are cylinders Xε,e = Ie × εYe with a cross-sectional radius ε of the Ye variety
for each rod e = 1, 2, . . . , n. We denote Xε,o by the central manifold. In the limit, the
family {Xε,o, Xε,e, e = 1, 2, . . . , n} at ε→ 0 converges to the limit graph. The limit operator
represents the limits of the differential operators describing the transverse and longitudinal
vibrations of the rods. The limit operator depends on the choice of coupling boundary
conditions at the central node where the rods connect to the node. The limit operator
depends on the choice of boundary conditions and conjugation conditions at the central
node where the rods connect to the node.

Different types of rod–node connections correspond to different conjugation condi-
tions. In the literature, there are different types of connections between a rod and a node
(Figures 3 and 4). Figure 3 shows the case where the dimensions of the node tend to zero
much more slowly than the dimensions of the cross-sections of the rods. Figure 4 shows
the case where the dimensions of the node tend to zero much faster than the cross-sectional
dimensions of the rods. In [5–9], limiting conjugation conditions corresponding to the two
mentioned connections of knots with rods have been investigated. The slowly decaying
and borderline cases were introduced in [7] (see also [8]) showing the convergence of the
spectrum for compact graphs and manifolds. The notion “plumber’s shop” was introduced
in the article of Rubinstein and Schatzman [5], where the authors used it for the necessary
local estimates of the identification operators from the graph to the graph-like manifold
and vice versa. In work [9], the authors extend the analysis here to non-compact spaces
and show in particular the quasi-unitary quivalence implying, e.g., the convergence of
resolvents and the convergence of the entire spectrum. Other types of boundary conditions
for limit operators have been studied in [10–13]. The authors in the work [14] investigate
the initial boundary value problem describing the oscillation process on a geometric graph
with hysteresis-type boundary conditions.
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Figure 3. The case where the value of a node tends to zero much more slowly than the cross-sectional
values of the rods.

Figure 4. The case where the value of a node tends to zero much faster than the cross-sectional values
of the rods.

2. Lagrange Formula on a Star Graph in a Conjugate Condition at the Internal Vertex

Let Γ = {V, E}, a graph, be a star (Figure 2), where V is the set of its vertices numbered
from 0 to m+ 1, and the set E means its arcs e1, . . . , em. We introduce a vector function [15,16]

Yj(xj) =
[
y1j(xj) y2j(xj) y3j(xj)

]T .

A system of differential equations is given on each arc ej

l1j(Yj) =
d2

dx2
j

(
µj(xj)aj(xj)

d2y1j(xj)

dx2
j

)
+

d2

dx2
j

(
µj(xj)bj(xj)

d2y2j(xj)

dx2
j

)

− d2

dx2
j

(
µj(xj)dj(xj)

dy3j(xj)

dxj

)
,

l2j(Yj) =
d2

dx2
j

(
µj(xj)bj(xj)

d2y1j(xj)

dx2
j

)
+

d2

dx2
j

(
µj(xj)cj(xj)

d2y2j(xj)

dx2
j

)

− d2

dx2
j

(
µj(xj) f j(xj)

dy3j(xj)

dxj

)
,
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l3j(Yj) =
d

dxj

(
µj(xj)dj(xj)

d2y1j(xj)

dx2
j

)
+

d
dxj

(
µj(xj) f j(xj)

d2y2j(xj)

dx2
j

)

− d
dxj

(
µj(xj)

dy3j(xj)

dxj

)
.

Furthermore, we assume that the functions µj(xj), aj(xj), bj(xj), cj(xj), dj(xj), f j(xj)
are real continuous on the arc ej. In this case, xj ∈ [0, lj], and xj belongs to ej. The vertex
(m + 1) ∈ V is called the internal vertex of the star graph. The vertices 0, 1, . . . , m are called
the boundary vertices of the star graph. Denote by

Lj(Yj) =
[
l1j(Yj) l2j(Yj) l3j(Yj)

]T

at j = 1, . . . , m + 1. Introduce formally conjugate differential expressions

l+1j(Yj) =
d2

dx2
j

(
µj(xj)aj(xj)

d2y1j(xj)

dx2
j

)
+

d2

dx2
j

(
µj(xj)bj(xj)

d2y2j(xj)

dx2
j

)

+
d

dxj

(
µj(xj)dj(xj)

d2y3j(xj)

dx2
j

)
,

l+2j(Yj) =
d2

dx2
j

(
µj(xj)bj(xj)

d2y1j(xj)

dx2
j

)
+

d2

dx2
j

(
µj(xj)cj(xj)

d2y2j(xj)

dx2
j

)

+
d

dxj

(
µj(xj) f j(xj)

d2y3j(xj)

dx2
j

)
,

l+3j(Yj) = −
d2

dx2
j

(
µj(xj)dj(xj)

dy1j(xj)

dxj

)
− d2

dx2
j

(
µj(xj) f j(xj)

dy2j(xj)

dxj

)

− d
dxj

(
µj(xj)

dy3j(xj)

dxj

)
.

We will also need a designation L+
j (Yj) =

[
l+1j(Yj) l+2j(Yj) l+3j(Yj)

]T
at j = 1, . . . , m+ 1.

Let us also introduce quasi-derivatives according to the formulas at the point ξ :

D(0)
1j (Yj; ξ) = [y1j]

∣∣∣
xj=ξ

, D(0)
2j (Yj; ξ) = [y2j]

∣∣∣
xj=ξ

, D(0)
3j (Yj; ξ) = [y3j]

∣∣∣
xj=ξ

,

D(1)
1j (Yj; ξ) = [dy1j/dxj]

∣∣∣
xj=ξ

, D(1)
2j (Yj; ξ) = [dy2j/dxj]

∣∣∣
xj=ξ

,

D(2)
1j (Yj; ξ) =

[
µjaj

d2y1j

dx2
j

+ µjbj
d2y2j

dx2
j
− µjdj

dy3j

dxj

]∣∣∣
xj=ξ

,

D(2)
2j (Yj; ξ) =

[
µjbj

d2y1j

dx2
j

+ µjcj
d2y2j

dx2
j
− µj f j

dy3j

dxj

]∣∣∣
xj=ξ

,

D(2)
3j (Yj; ξ) =

[
µjdj

d2y1j

dx2
j

+ µj f j
d2y2j

dx2
j
− µj

dy3j

dxj

]∣∣∣
xj=ξ

,
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D(3)
2j (Yj; ξ) =

[
d

dxj

(
µjbj

d2y1j

dx2
j

)
+

d
dxj

(
µjcj

d2y2j

dx2
j

)
− d

dxj

(
µj f j

dy3j

dxj

)]∣∣∣
xj=ξ

,

D(3)
1j (Yj; ξ) =

[
d

dxj

(
µjaj

d2y1j

dx2
j

)
+

d
dxj

(
µjbj

d2y2j

dx2
j

)
− d

dxj

(
µjdj

dy3j

dxj

)]∣∣∣
xj=ξ

.

Sometimes, instead of D(s)
kj (Yj; ξ), we will write D(s)

kj (Yj). Denote by

L(Y) =

∣∣∣∣∣∣∣∣
L1(Y1)
L2(Y2)

. . .
Lm+1(Ym+1)

∣∣∣∣∣∣∣∣, Z =

∣∣∣∣∣∣∣∣
Z1
Z2
. . .

Zm+1

∣∣∣∣∣∣∣∣, Y =

∣∣∣∣∣∣∣∣
Y1
Y2
. . .

Ym+1

∣∣∣∣∣∣∣∣.
Introduce a scalar product of

< L(Y); Z >L2(Γ)=
m+1

∑
j=1

< L(Yj); ZJ >L2(ej)
=

m+1

∑
j=1

3

∑
i=1

< lij(Yj); zij >L2(ej)
.

Lemma 1. For any two sets of sufficiently smooth functions Y = {Yj(xj), j = 1, . . . , m + 1},
Z = {Zj(xj), j = 1, . . . , m + 1}, the Lagrange identity is valid

< L(Y); Z >L2(Γ) − < Y, L+(z) >L2(Γ)

=
m+1

∑
j=1

{
D(3)

1j (Yj)D(0)
1j (Zj)− D(2)

1j (Yj)D(1)
1j (Zj) + D(3)

2j (Yj)D(0)
2j (Zj)

−D(2)
2j (Yj)D(1)

2j (Zj) + D(2)
3j (Yj)D(0)

3j (Zj) + D(1)
1j (Yj)D(2)

1j (Zj)− D(0)
1j (Yj)D(3)

1j (Zj)

+D(1)
2j (Yj)D(2)

2j (Zj)− D(0)
2j (Yj)D(3)

2j (Zj)− D(0)
3j (Yj)D(2)

3j (Zj)
}∣∣∣lj

0
.

(4)

Proof of Lemma 1. Consider a scalar product of

< L(Y); Z >=
m+1

∑
j=1

3

∑
i=1

lj∫
0

lij(Yj) · zij(xj)dxj.

Using the fractional integration formula, we obtain the following

lj∫
0

l1j(Yj) · z1j(xj)dxj =
[ d

dt

(
µj(t)

(
aj(t)

d2y1j(t)
dt2 + bj(t)

d2y2j(t)
dt2

−dj(t)
dy3j(t)

dt

))
z1j(t)

]∣∣∣lj

0
−
[
µj(t)

(
aj(t)

d2y1j(t)
dt2 + bj(t)

d2y2j(t)
dt2

−dj(t)
dy3j(t)

dt

)dz1j(t)
dt

]∣∣∣lj

0
+
[dy1j(t)

dt

(
µj(t)aj(t)

d2z1j(t)
dt2

)
+

dy2j(t)
dt

(
µj(t)bj(t)

d2z1j(t)
dt2

)
−y3j(t)

(
µj(t)dj(t)

d2z1j(t)
dt2

)]∣∣∣lj

0
−
[
y1j(t)

d
dt

(
µj(t)aj(t)

d2z1j(t)
dt2

)
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+y2j(t)
d
dt

(
µj(t)bj(t)

d2z1j(t)
dt2

)]∣∣∣lj

0
+

lj∫
0

y1j(xj) · l+1j(z1j)dxj.

The integrals are converted in a similar way
lj∫
0

l2j(Yj) · z1j(xj)dxj,
lj∫
0

l3j(Yj) · z1j(xj)dxj.

Using the above relations, we derive identity (4). Lemma 1 is completely proved. From now
on, we assume that the boundary vertices of the graph satisfy the rigid anchoring conditions

D(0)
1j (Yj; ξ j) = 0, D(0)

2j (Yj; ξ j) = 0, D(1)
1j (Yj; ξ j) = 0, D(1)

2j (Yj; ξ j) = 0, D(0)
3j (Yj; ξ j) = 0,

j = 1, . . . , m + 1.
(5)

Here, ξ j = lj, j = 1, . . . , m. At the same time, ξm+1 = 0. Let for a set of functions
Z = {Zj(xj), j = 1, . . . , m + 1} Equation (5) be also fulfilled. Then, the Lagrange identity
follows from Lemma 1.

< L(Y); Z >L2(Γ) − < Y, L+(z) >L2(Γ)

=
{

D(3)
1m+1(Ym+1)D(0)

1m+1(Zm+1)− D(2)
1m+1(Ym+1)D(1)

1m+1(Zm+1)

+D(3)
2m+1(Ym+1)D(0)

2m+1(Zm+1)− D(2)
2m+1(Ym+1)D(1)

2m+1(Zm+1)

+D(2)
3m+1(Ym+1)D(0)

3m+1(Zm+1) + D(1)
1m+1(Ym+1)D(2)

1m+1(Zm+1)

−D(0)
1m+1(Ym+1)D(3)

1m+1(Zm+1) + D(1)
2m+1(Ym+1)D(2)

2m+1(Zm+1)

−D(0)
2m+1(Ym+1)D(3)

2m+1(Zm+1)− D(0)
3m+1(Ym+1)D(2)

3m+1(Zm+1)
}∣∣∣

lm+1

−
m

∑
j=1

{
D(3)

1j (Yj)D(0)
1j (Zj)− D(2)

1j (Yj)D(1)
1j (Zj)

+D(3)
2j (Yj)D(0)

2j (Zj)− D(2)
2j (Yj)D(1)

2j (Zj) + D(2)
3j (Yj)D(0)

3j (Zj) + D(1)
1j (Yj)D(2)

1j (Zj)

−D(0)
1j (Yj)D(3)

1j (Zj) + D(1)
2j (Yj)D(2)

2j (Zj)− D(0)
2j (Yj)D(3)

2j (Zj)− D(0)
3j (Yj)D(2)

3j (Zj)
}∣∣∣

0

(6)

At the inner vertex of the graph, we require a continuity condition.

D(0)
sm+1(Zm+1lm+1) = D(0)

sj (Zj, 0), D(0)
sm+1(Ym+1lm+1) = D(0)

sj (Yj, 0) j = 1, . . . , m, s = 1, 2 (7)

Since it is easier to bend a rod than to stretch it, the longitudinal displacements of the
rod are influenced by the first derivatives of the transverse displacements. In particular,
such an effect has been highlighted by the authors of the paper [17]. From now on, we
will assume that the total longitudinal displacement of the rod end is determined by
the expression

D(0)
3j (Yj, ξ j)− η1jD

(1)
1j (Yj, ξ j)− η2jD

(1)
2j (Yj, ξ j).

where ξ j j are the end rod corresponding to the connection node, η1j, η2j are some constants.
Let there now be several rods connected at the same node. Then, three rods can be selected
as reference rods (independent), and the total longitudinal displacements of the other rods
can be considered dependent on the selected three reference rods. A similar effect only in



Symmetry 2022, 14, 1761 9 of 19

the case of a flat bar connection has been observed in reference work [18]. Let the numbered
i, j, k rods be the base rods.

Then, according to our assumption, the total longitudinal displacement of any rod
with a number s ∈ {1, 2, . . . , m + 1}\{i, j, k} is a linear combination of the total longitudinal
displacements of the rods with numbers i, j, k. Thus, in the inner vertex of the graph

D(0)
3s (Ys, ξs)− η1sD(1)

1s (Ys, ξs)− η2sD(1)
2s (Ys, ξs)

= ∑
t=i,j,k

αst

(
D(0)

3t (Yt, ξt)− η1tD
(1)
1t (Yt, ξt)− η2tD

(1)
2t (Yt, ξt)

)
.

(8)

where αst represent certain constants. Consider that ξm+1 = lm+1, ξi = 0, i = {1, . . . , m}.
To record the conjugation conditions at the inner vertex of the star graph, let us

introduce the following linear forms:

Cj(Yj, Ym+1) = D(0)
1m+1(Ym+1, lm+1)− D(0)

1j (Yj, 0) j = 1, . . . , m,

Cj+m(Yj, Ym+1) = D(0)
2m+1(Ym+1, lm+1)− D(0)

2j (Yj, 0) j = 1, . . . , m,

Cs+2m(Ys, Ym−1, Ym, Ym+1) = D(0)
3s (Ys, ξs)− η1sD(1)

1s (Ys, ξs)− η2sD(1)
2s (Ys, ξs)

−
m+1

∑
t=m−1

αst

(
D(0)

3t (Yt, ξt)− η1tD
(1)
1t (Yt, ξt)− η2tD

(1)
2t (Yt, ξt)

)
, s = 1, . . . , m− 2,

C3m−1(Y1, . . . , Ym, Ym+1) = D(3)
1 m+1(Ym+1, lm+1)−

m

∑
j=1

D(3)
1j (Yj, 0),

C3m(Y1, . . . , Ym, Ym+1) = D(3)
2 m+1(Ym+1, lm+1)−

m

∑
j=1

D(3)
2j (Yj, 0),

C3m+1(Y1, . . . , Ym, Ym+1) = D(2)
3 m+1(Ym+1, lm+1)−

m−2

∑
j=1

αjm+1D(2)
3j (Yj, 0),

C3m+2(Y1, . . . , Ym, Ym+1) = D(2)
3 m(Ym, 0) +

m−2

∑
j=1

αjmD(2)
3j (Yj, 0),

C3m+3(Y1, . . . , Ym, Ym+1) = D(2)
3 m−1(Ym−1, 0) +

m−2

∑
j=1

αjm−1D(2)
3j (Yj, 0),

C3m+4(Y1, . . . , Ym, Ym+1) = D(2)
1 m−1(Ym−1, 0) + η1m−1

m−2

∑
j=1

αjm−1D(2)
3j (Yj, 0),

C3m+5(Y1, . . . , Ym, Ym+1) = D(2)
1 m(Ym,0) + η1m

m−2

∑
j=1

αjmD(2)
3j (Yj, 0),

C3m+6(Y1, . . . , Ym, Ym+1) = −D(2)
1 m+1(Ym+1, lm+1) + η1m+1

m−2

∑
j=1

αjm+1D(2)
3j (Yj, 0),

C3m+7(Y1, . . . , Ym, Ym+1) = D(2)
2 m−1(Ym−1, 0) + η2m−1

m−2

∑
j=1

αjm−1D(2)
3j (Yj, 0),

C3m+8(Y1, . . . , Ym, Ym+1) = D(2)
2 m(Ym, 0) + η2m

m−2

∑
j=1

αjmD(2)
3j (Yj, 0),
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C3m+9(Y1, . . . , Ym, Ym+1) = −D(2)
2 m+1(Ym+1, lm+1) + η2m+1

m−2

∑
j=1

αjm+1D(2)
3j (Yj, 0),

C3m+9+j(Y1, . . . , Ym, Ym+1) = η1jD
(2)
3j (Yj, 0)− D(2)

1j (Yj, 0), j = 1, . . . , m− 2,

C4m+7+j(Y1, . . . , Ym, Ym+1) = η2jD
(2)
3j (Yj, 0)− D(2)

2j (Yj, 0), j = 1, . . . , m− 2.

Then, by substituting relations (7) and (8) in the Lagrange identity (6), we obtain
the equality

< L(Y); Z >L2(Γ) − < Y, L+(z) >L2(Γ)

= −D(0)
1 m+1(Ym+1, lm+1)C3m−1(Z1, . . . , Zm, Zm+1)− D(0)

2 m+1(Ym+1, lm+1)C3m(Z1, . . . , Zm, Zm+1)

+D(0)
1 m+1(Zm+1, lm+1)C3m−1(Y1, . . . , Ym, Ym+1) + D(0)

2 m+1(Zm+1, lm+1)C3m(Y1, . . . , Ym, Ym+1)

+D(0)
3 m+1(Zm+1, lm+1)C3m+1(Y1, . . . , Ym, Ym+1)− D(0)

3 m+1(Ym+1, lm+1)C3m+1(Z1, . . . , Zm, Zm+1)

−D(0)
3 m(Zm, 0)C3m+2(Y1, . . . , Ym, Ym+1) + D(0)

3 m(Ym, 0)C3 m+2(Z1, . . . , Zm, Zm+1)

−D(0)
3 m−1(Zm−1, 0)C3m+3(Y1, . . . , Ym, Ym+1) + D(0)

3 m−1(Ym−1, 0)C3m+3(Z1, . . . , Zm, Zm+1)

+
m−2

∑
j=1

D(1)
1j (Yj, 0)C3m+9+j(Z1, . . . , Zm, Zm+1)−

m−2

∑
j=1

D(1)
1j (Zj, 0)C3m+9+j(Y1, . . . , Ym, Ym+1)

+
m−2

∑
j=1

D(1)
2j (Yj, 0)C4m+7+j(Z1, . . . , Zm, Zm+1)−

m−2

∑
j=1

D(1)
2j (Zj, 0)C4m+7+j(Y1, . . . , Ym, Ym+1)

−D(1)
1 m−1(Ym−1, 0)C3m+4(Z1, . . . , Zm, Zm+1)− D(1)

1 m(Ym, 0)C3m+5(Z1, . . . , Zm, Zm+1)

−D(1)
1 m+1(Ym+1, lm+1)C3m+6(Z1, . . . , Zm, Zm+1)− D(1)

1 m−1(Ym−1, 0)C3m+7(Z1, . . . , Zm, Zm+1)

−D(1)
1 m(Ym, 0)C3m+8(Z1, . . . , Zm, Zm+1)− D(1)

1 m+1(Ym+1, lm+1)C3m+9(Z1, . . . , Zm, Zm+1)

+D(1)
1 m−1(Zm−1, 0)C3m+4(Y1, . . . , Ym, Ym+1) + D(1)

1 m(Zm, 0)C3m+5(Y1, . . . , Ym, Ym+1)

+D(1)
1 m+1(Zm+1, lm+1)C3m+6(Y1, . . . , Ym, Ym+1) + D(1)

1 m−1(Zm−1, 0)C3m+7(Y1, . . . , Ym, Ym+1)

+ D(1)
1 m(Zm, 0)C3m+8(Y1, . . . , Ym, Ym+1) + D(1)

1 m+1(Zm+1, lm+1)C3m+9(Y1, . . . , Ym, Ym+1). (9)

Taking into account the last identity, we introduce the main object of study of the
article. We also consider the inhomogeneous operator equation L(Y) = F with conjugation
conditions in the interior vertex Cj(Y) = 0, j = 1, . . . , 5m + 5 and with rigid fixing condi-
tions in the boundary vertices (5) on the star graph Γ. The number of boundary conditions is
also 5m + 5. The operator corresponding to the above inhomogeneous problem is denoted
by B.

Theorem 1. The domains of definition of operators B and B∗ coincide, i.e., they are given by the
same conjugation conditions and fixation conditions.

The proof of Theorem 1 immediately follows from the Lagrange relationship, which is
written in the form (9).

Remark 1. The meaning of Theorem 1 is that the operators B and B∗ are self-adjoint in the sense
of definitions.

Remark 2. The mechanical interpretation of a part of conjugation conditions Cj(Y) = 0,
j = 1, . . . , 3m− 2 is given above when introducing relations (7) and (8). The conjugation condi-
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tions Cj(Y) = 0, j = 3m− 1, . . . , 5m + 5 also have a mechanical interpretation, indicating the
distribution of forces and moments between the rods in the function. The conjugation conditions
given in Theorem 1 seem to be new.

In fact, Theorem 1 is one of the main results of this paper. It states that we have
found self-adjoint conjugate conditions in the interior vertex of the graph. The conjugation
conditions we have found generalize the well-known Kirchhoff conditions, which are
written for second-order differential equations. We have been able to generalize Kirchhoff
conditions for systems of differential equations consisting of differential equations of
different orders. In [10–13], different variants of Kirchhoff analogs conditions of the graph’s
inner vertex for the second-order differential equations are given. In a sense, Theorem 1
generalizes the results of [10–13] for systems of differential equations on a star graph.

3. The Reversibility of Operator B

The operator B depends on the real parameters η1j, η2j, αst at all valid indexes. For
operator B to be reversible, it is necessary to impose constraints on the specified parameters.
In this section, we will find out the values of the above parameters that make possible the
existence of the inverse operator B−1. Let ξm+1 = 0, ξ j = bj, j = 1, . . . , m. Denote by

pj(tj) = µj(tj)

∣∣∣∣∣∣
aj(tj) b(tj) dj(tj)
b(tj) cj(tj) f j(tj)
dj(tj) f j(tj) 1

∣∣∣∣∣∣, q1
1j(tj) =

∣∣∣∣cj(tj) f j(tj)
f j(tj) 1

∣∣∣∣,
q2

1j(tj) =

∣∣∣∣bj(tj) dj(tj)
f j(tj) 1

∣∣∣∣, q3
1j(tj) =

∣∣∣∣bj(tj) dj(tj)
cj(tj) f j(tj)

∣∣∣∣,
q1

2j(tj) =

∣∣∣∣bj(tj) f j(tj)
dj(tj) 1

∣∣∣∣, q2
2j(tj) =

∣∣∣∣aj(tj) dj(tj)
dj(tj) 1

∣∣∣∣, q3
2j(tj) =

∣∣∣∣aj(tj) dj(tj)
bj(tj) f j(tj)

∣∣∣∣,
q1

3j(tj) =

∣∣∣∣bj(tj) cj(tj)
dj(tj) f j(tj)

∣∣∣∣, q2
3j(tj) =

∣∣∣∣aj(tj) bj(tj)
dj(tj) f j(tj)

∣∣∣∣, q3
3j(tj) =

∣∣∣∣aj(tj) dj(tj)
bj(tj) cj(tj)

∣∣∣∣.
Then, the solutions of the homogeneous system of differential equations

l1j(Yj) = 0, l2j(Yj) = 0, l3j(Yj) = 0 (10)

with rigid anchoring conditions at the boundary vertices

D(0)
1j (Yj; ξ j) = 0, D(0)

2j (Yj; ξ j) = 0, D(1)
1j (Yj; ξ j) = 0, D(1)

2j (Yj; ξ j) = 0, D(0)
3j (Yj; ξ j) = 0

at j = 1, . . . , m + 1 will be

y1j(xj) = K1j

xj∫
ξ j

(tj − ξ j)tj
q1

1j(tj)

pj(tj)
dtj + N1j

xj∫
ξ j

(tj − ξ j)
q1

1j(tj)

pj(tj)
dtj

−K2j

xj∫
ξ j

(tj − ξ j)tj
q2

1j(tj)

pj(tj)
dtj − N2j

xj∫
ξ j

(tj − ξ j)
q2

1j(tj)

pj(tj)
dtj + K3j

xj∫
ξ j

(tj − ξ j)
q3

1j(tj)

pj(tj)
dtj,

We see solution y2j(xj)

y2j(xj) = −K1j

xj∫
ξ j

(tj − ξ j)tj
q1

2j(tj)

pj(tj)
dtj − N1j

xj∫
ξ j

(tj − ξ j)
q1

2j(tj)

pj(tj)
dtj
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+K2j

xj∫
ξ j

(tj − ξ j)tj
q2

2j(tj)

pj(tj)
dtj + N2j

xj∫
ξ j

(tj − ξ j)
q2

2j(tj)

pj(tj)
dtj − K3j

xj∫
ξ j

(tj − ξ j)
q3

2j(tj)

pj(tj)
dtj,

y3j(xj) = −K1j

xj∫
ξ j

tj
q1

3j(tj)

pj(tj)
dtj − N1j

xj∫
ξ j

q1
3j(tj)

pj(tj)
dtj

+K2j

xj∫
ξ j

tj
q2

3j(tj)

pj(tj)
dtj + N2j

xj∫
ξ j

q2
3j(tj)

pj(tj)
dtj − K3j

xj∫
ξ j

q3
3j(tj)

pj(tj)
dtj.

where K1j, N1j, K2j, N2j, K3j are arbitrary constants.
In accordance with the above representation of the solution, let us introduce the

following solutions to the homogeneous system of differential Equation (10):

θ1
sj(xj) = (−1)s−1

xj∫
ξ j

(tj − ξ j)tj
q1

sj(tj)

pj(tj)
dtj, θ2

sj(xj) = (−1)s−1

xj∫
ξ j

(tj − ξ j)
q1

sj(tj)

pj(tj)
dtj,

θ3
sj(xj) = (−1)s

xj∫
ξ j

(tj − ξ j)tj
q2

sj(tj)

pj(tj)
dtj, θ4

sj(xj) = (−1)s

xj∫
ξ j

(tj − ξ j)
q2

sj(tj)

pj(tj)
dtj,

θ5
sj(xj) = (−1)s−1

xj∫
ξ j

(tj − ξ j)
q3

sj(tj)

pj(tj)
dtj, s = 1, 2,

θ1
sj(xj) = (−1)s

xj∫
ξ j

tj
q1

sj(tj)

pj(tj)
dtj, θ2

sj(xj) = (−1)s

xj∫
ξ j

q1
sj(tj)

pj(tj)
dtj,

θ3
sj(xj) = (−1)s−1

xj∫
ξ j

tj
q2

sj(tj)

pj(tj)
dtj, θ4

sj(xj) = (−1)s−1

xj∫
ξ j

q2
sj(tj)

pj(tj)
dtj,

θ5
sj(xj) = (−1)s

xj∫
ξ j

q3
sj(tj)

pj(tj)
dtj, s = 3.

Denote by Θs
j (xj) the following vector

Θs
j (xj) = [θs

1j(xj), θs
2j(xj), θs

3j(xj)]
T .

For further purposes, it is convenient to introduce a matrix M = [mik] with the
following elements

m1 5(j−1)+s = −D(3)
1j (Θs

j , 0), j = 1, . . . , m− 2,

m1 5(j−1)+s = 0, j = m− 1, m, m1 5m+s = D(3)
1 m+1(Θ

s
m+1, lm+1), s = 1, . . . , 5,

Hereon in, consider that index j changes only after the index s.

m2 5(j−1)+s = −D(3)
2j (Θs

j , 0), j = 1, . . . , m− 2,

m2 5(j−1)+s = 0, j = m− 1, m, m1 5m+s = D(3)
2m+1(Θ

s
m+1, lm+1), s = 1, . . . , 5,
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m3 5(j−1)+s = −αjm+1D(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m3 5(j−1)+s = 0, j = m− 1, m, m3 5m+s = D(3)
3 m+1(Θ

s
m+1, lm+1), s = 1, . . . , 5,

m4 5(j−1)+s = αjmD(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m4 5(j−1)+s = 0, j = m− 1, m, m4 5m+s = D(3)
3 m(Θ

s
m+1, lm+1), s = 1, . . . , 5,

m5 5(j−1)+s = αjm−1D(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m5 5(j−1)+s = 0, j = m− 1, m, m5 5m+s = D(3)
3 m−1(Θ

s
m+1, lm+1), s = 1, . . . , 5,

m6 5(j−1)+s = η1m−1αjm−1D(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m6 5(j−1)+s = 0, j = m + 1, m, m6 5(m−2)+s = D(2)
1 m−1(Θ

s
m−1, 0), s = 1, . . . , 5,

m7 5(j−1)+s = η1mαjmD(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m7 5(j−1)+s = 0, j = m + 1, m− 1, m7 5(m−1)+s = D(2)
1 m(Θ

s
m, 0), s = 1, . . . , 5,

m8 5(j−1)+s = η1m+1αjm+1D(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m8 5(j−1)+s = 0, j = m, m− 1, m8 5m+s = D(2)
1 m+1(Θ

s
m+1, lm+1), s = 1, . . . , 5,

m9 5(j−1)+s = η2mαjmD(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m9 5(j−1)+s = 0, j = m + 1, m, m9 5(m−2)+s = D(2)
2 m−1(Θ

s
m−1, 0), s = 1, . . . , 5,

m10 5(j−1)+s = η2mαjmD(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m10 5(j−1)+s = 0, j = m + 1, m− 1, m10 5(m−1)+s = D(2)
2 m(Θ

s
m, 0), s = 1, . . . , 5,

m11 5(j−1)+s = η2m+1αjm+1D(2)
3j (Θs

j , 0), j = 1, . . . , m− 2,

m11 5(j−1)+s = 0, j = m, m− 1, m11 5m+s = D(2)
2 m+1(Θ

s
m+1, lm+1), s = 1, . . . , 5,

m11+p 5(j−1)+s = 0, j = 1, . . . , p− 1, p + 1, . . . , m + 1,

m11+p 5(p−1)+s = η1pD(2)
3p (Θ

s
p, 0)− D(2)

1p (Θ
s
p, 0), s = 1, . . . , 5, p = 1, . . . , m− 2,

m9+m+p 5(j−1)+s = 0, j = 1, . . . , p− 1, p + 1, . . . , m + 1,

m9+m+p 5(p−1)+s = η2pD(2)
3p (Θ

s
p, 0)− D(2)

2p (Θ
s
p, 0), s = 1, . . . , 5, p = 1, . . . , m− 2,

m7+2m+p 5(j−1)+s = 0, j = 1, . . . , p− 1, p + 1, . . . , m, m7+2m+p 5(p−1)+s = −D(0)
1p (Θ

s
p, 0),

m7+2m+p 5m+s = D(0)
1 m+1(Θ

s
m+1, lm+1), s = 1, . . . , 5, p = 1, . . . , m.

m7+3m+p 5(j−1)+s = 0, j = 1, . . . , p− 1, p + 1, . . . , m, m7+3m+p 5(p−1)+s = −D(0)
2p (Θ

s
p, 0),

m7+3m+p 5m+s = D(0)
2 m+1(Θ

s
m+1, lm+1), s = 1, . . . , 5, p = 1, . . . , m.

m7+4m+p 5(j−1)+s = 0, j = 1, . . . , p− 1, p + 1, . . . , m− 2,

m7+4m+p 5(p−1)+s = D(0)
3p (Ys, ξs)− η1pD(1)

1p (Θ
s
p, 0)− η2pD(1)

2p (Θ
s
p, 0),

m7+4m+p 5(t−1)+s = −αpt(D(0)
3t (Θs

t , 0)− η1tD
(1)
1t (Θs

t , 0)− η2tD
(1)
2t (Θs

t , 0)), t = m− 1, m,

m7+4m+p 5m+s = −αpm+1(D(0)
3m+1(Θ

s
m+1, lm+1)− η1m+1D(1)

1m+1(Θ
s
m+1, lm+1)−
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−η2m+1D(1)
2m+1(Θ

s
m+1, lm+1)), s = 1, . . . , 5, p = 1, . . . , m− 2.

We can now formulate the theorem on the reversibility of operator B.

Theorem 2. If det M 6= 0, then a bounded operator B−1 exists in space L2(Γ).

Proof of the Theorem 2. Consider the inhomogeneous operator equation L(Y) = F with
conjugation conditions in the interior vertex Cj(Y) = 0, j = 1, . . . , 5m + 5 and with rigid
fixing conditions in the boundary vertices (5) on the star graph Γ. To prove Theorem 2,
it suffices to prove the single-valued solvability of this boundary value problem for any
right-hand side F ∈ L2(Γ).

It is known that the following system of equations

D(2)
1j (Yj; ξ) =

xj∫
ξ j

(tj − ξ j) f1j(tj)dtj,

D(2)
2j (Yj; ξ) =

xj∫
ξ j

(tj − ξ j) f2j(tj)dtj,

D(2)
3j (Yj; ξ) =

xj∫
ξ j

f3j(tj)dtj.

.

with initial conditions

D(0)
1j (Yj; ξ j) = 0, D(0)

2j (Yj; ξ j) = 0, D(1)
1j (Yj; ξ j) = 0, D(1)

2j (Yj; ξ j) = 0, D(0)
3j (Yj; ξ j) = 0.

is uniquely solvable. Denote the only solution to the above problem by Y0
j (xj),

j = 1, . . . , m + 1. It is a partial solution of the inhomogeneous operator equation L(Y) = F.
The solution to the required problem is found at j = 1, . . . , m + 1 as follows

Yj(xj) = Y0
j (xj) + K1jΘ1

j (xj) + N1jΘ2
j (xj) + K2jΘ3

j (xj) + N2jΘ4
j (xj) + K3jΘ5

j (xj).

We have to prove that the numbers K1j, N1j, K2j, N2j, K3j, j = 1, . . . , m + 1 are
determined from the conjugation conditions in the inner vertex. If the conditions of
Theorem 2 are fulfilled, a vector h is uniquely found from a system of linear algebraic
equations M h = g for any g ∈ C5m+5. The elements of vector h can be interpreted as
numbers K1j, N1j, K2j, N2j, K3j, j = 1, . . . , m + 1. In this case, g is the numeric column
that depends on partial solutions Y0

j (xj). Thus, the existence of a solution to the required
problem is proved. The uniqueness of the solution follows from general statements about
systems of linear differential equations. Since the coefficients in the system of linear
differential equations represent continuous functions, it follows that the corresponding a
priori estimates are correct. This means that the boundedness of the inverse operator B−1.
Theorem 2 is fully proved.

Theorem 2 immediately implies the following corollary.

Corollary 1. Let det M 6= 0. Then, for any F ∈ L2(Γ) and arbitrary constants ϕi, i = 1, . . . ,
5m + 5, ψ5(j−1)+s, s = 1, . . . , 5, j = 1, . . . , m + 1 the solution of the problem

L(Y) = F, Cj(Y) = ϕj, j = 1, . . . , 5m + 5,

D(0)
1j (Yj; ξ j) = ψ5(j−1)+1, D(0)

2j (Yj; ξ j) = ψ5(j−1)+2,

D(1)
1j (Yj; ξ j) = ψ5(j−1)+3, D(1)

2j (Yj; ξ j) = ψ5(j−1)+4,

D(0)
3j (Yj; ξ j) = ψ5(j−1)+5, j = 1, . . . , m + 1
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exists and is unique.

4. Everywhere Solvable Reversible Boundary Value Problems for Systems of
Differential Equations on a Star Graph

In this section, we describe all possible universally solvable reversible boundary
value problems for the equation L(Y) = F. In the previous paragraphs, we wrote out
conjugation conditions using linear forms C1(·), . . . , C5m+5(·) and fixation conditions using
linear forms D(0)

1j (0), D(0)
2j (0), D(1)

1j (0), D(1)
2j (0), D(0)

3j , j = 1, . . . , m + 1. Under the above
boundary conditions, the solvability and reversibility of the corresponding problem are
proved everywhere.

How do we obtain new conjugation conditions and new anchoring conditions that
guarantee all-around solvability and reversibility? This paragraph answers this question.

Let us choose arbitrarily two sets of linear bounded functionals in the function space
L2(Γ). The first set of linear functionals is denoted by

ϕj(·), j = 1, . . . , 5m + 5.

It is convenient to denote the second set of linear continuous functionals by

ψ5(j−1)+s(·), s = 1, . . . , 5, j = 1, . . . , m + 1.

Let us write a new boundary value problem corresponding to the chosen sets of linear
continuous functionals.

Consider the inhomogeneous operator equation L(Y) = F with conjugation conditions
in the interior vertex Cj(Y) = ϕj(L(Y)), j = 1, . . . , 5m + 5 and with fixation conditions in
the boundary vertices on the star graph Γ

D(0)
1j (Yj; ξ j) = ψ5(j−1)+1(L(Y)), D(0)

2j (Yj; ξ j) = ψ5(j−1)+2(L(Y)),

D(1)
1j (Yj; ξ j) = ψ5(j−1)+3(L(Y)), D(1)

2j (Yj; ξ j) = ψ5(j−1)+4(L(Y)),

D(0)
3j (Yj; ξ j) = ψ5(j−1)+5(L(Y)), j = 1, . . . , m + 1.

(11)

The written boundary value problem is everywhere solvable in the space L2(Γ). The
inversion of the problem also follows from Theorem 2. Indeed, if the expression L(Y) is
replaced by F, in the boundary conditions, we find ourselves in the conditions of Theorem 2.
Therefore, a solution to the new problem exists and is unique. The boundedness of the
inverse operator in L2(Γ) space follows from the boundedness of the chosen functionals
ϕj(·) and ψ5(j−1)+s(·). Thus, we have proved the conclusion.

Theorem 3. Let ϕj(·), j = 1, . . . , 5m + 5 and ψ5(j−1)+s(·), s = 1, . . . , 5, j = 1, . . . , m + 1
represent arbitrary sets of linear bounded functionals in space L2(Γ). Then, the operator K, given by
the differential expression KY = L(Y) on the domain of definition

D(K) =
{

Y ∈ L2(Γ), L(Y) ∈ L2(Γ) : Cj(Y) = ϕj(L(Y)),

j = 1, . . . , 5m + 5, conditions (11)
}

.

has a bounded inverse in L2(Γ) space.

Remark 3. The converse (in a sense) to Theorem 3 is true. However, we do not clarify this issue in
this paper.
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5. Examples

In this paragraph, we will give illustrative examples to show the meaning of Theorem 3.
To do this, let us write down the general form of a linear bounded functional in the
space L2(Γ).

ϕk(F) =< F, Φj >L2(Γ)=
m+1

∑
s=1

ls∫
0

F(xs)Φk(xs)dxs

We substitute F with L(Y) and transform according to the Lagrange formula. In this
case, the functions Y are considered to satisfy the rigid fixing conditions (5). Functionals
are selected so that the ratios are true

L+(Φk) = 0, k = 1, . . . , 5m + 5.

We also assume that the functions Φk, k = 1, . . . , 5m+ 5 also satisfy the rigid anchoring
conditions (5). In this case, the value of the functional ϕk(F) will be the same as the right-
hand side of equality (9), where the vector of function Z should be replaced by the vector
of function Φk. According to Corollary 1, for each fixed k, we can arbitrarily choose values
of linear forms Cj(Φk), j = 1, . . . , 5m + 5. Let Cj(Φk) = 0, j, k = 1, . . . , 5m + 5. Thus, the
unambiguous choice of functions Φk, k = 1, . . . , 5m + 5 is fulfilled. As a result, we have

ϕk(L(Y)) = D(0)
1 m+1(Φkm+1, lm+1)C3m−1(Y1, . . . , Ym, Ym+1)

+D(0)
2 m+1(Φkm+1, lm+1)C3m(Y1, . . . , Ym, Ym+1)

−D(0)
3 m(Φkm, 0)C3m+2(Y1, . . . , Ym, Ym+1)

−D(0)
3 m−1(Φkm−1, 0)C3m+3(Y1, . . . , Ym, Ym+1)

−
m−2

∑
j=1

D(1)
1j (Φkj, 0)C3m+9+j(Y1, . . . , Ym, Ym+1)

−
m−2

∑
j=1

D(1)
2j (Φkj, 0)C4m+7+j(Y1, . . . , Ym, Ym+1)

+D(1)
1 m−1(Φkm−1, 0)C3m+4(Y1, . . . , Ym, Ym+1)

+D(1)
1 m(Φkm, 0)C3m+5(Y1, . . . , Ym, Ym+1)

+D(1)
1 m+1(Φkm+1, lm+1)C3m+6(Y1, . . . , Ym, Ym+1)

+D(1)
1 m−1(Φkm−1, 0)C3m+7(Y1, . . . , Ym, Ym+1)

+D(1)
1 m(Φkm, 0)C3m+8(Y1, . . . , Ym, Ym+1)

+D(1)
1 m+1(Φkm+1, lm+1)C3m+9(Y1, . . . , Ym, Ym+1).

Here, some constants are denoted by D(0)
1 m+1(Φkm+1, lm+1)+D(0)

2 m+1(Φkm+1, lm+1) and
so on. That is, the value of the functional ϕk(L(Y)) represents a linear combination of the
values of Cj(Y), j = 1, . . . , 5m + 5.

Thus, the conjugation condition Ck(Y)− ϕk(L(Y)) = 0 at a fixed k after making the
aforesaid choice of functions Φk, k = 1, . . . , 5m + 5 will be

5m+5

∑
j=1

ak jCj(Y) = 0,

where ak j are some constants.
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Given the above reasoning, Theorem 3 will become as follows.

Theorem 4. Let the set of numbers ak j, k, j = 1, . . . , 5m + 5 be implemented in the above-
mentioned way. Then, on the star graph Γ, the inhomogeneous operator equation L(Y) = F with
conjugation conditions at the inner vertex

5m+5

∑
j=1

ak jCj(Y) = 0, k = 1, . . . , 5m + 5

and with fixing conditions (5) in the boundary vertices is uniquely solvable for any function F from
the space L2(Γ).

Thus, this example generalizes the conjugation conditions under fixed anchoring
conditions. Now, we give another example where the anchoring conditions are generalized.

Let the vector function Y also satisfy the conjugation conditions.

Cj(Y) = 0, j = 1, . . . , 5m + 5, (12)

and otherwise be arbitrary. The set of functions Φk, k = 1, . . . , 5m + 5 satisfy the relation
L+(Φk) = 0 and the same conjugation conditions (12) and rigid anchoring conditions (5).
In this case, the function Φk is uniquely defined. That is, the function Φk, k = 1, . . . , 5m + 5
is the same as in Example 1.

In this case, the value of the functional ϕk(L(Y)) is a linear combination of the form values.

D(0)
1j (Yj; ξ j), D(0)

2j (Yj; ξ j), D(1)
1j (Yj; ξ j), D(1)

2j (Yj; ξ j), D(0)
3j (Yj; ξ j), j = 1, . . . , m + 1.

As a result, a statement can be formulated.

Theorem 5. There exists a set of numbers bs
kj that depends on boundary values of functions Φk,

k = 1, . . . , 5m + 5. Then, on the star graph Γ, the inhomogeneous operator equation L(Y) = F
with anchoring conditions in the boundary vertices

m+1

∑
j=1

(
b1

kjD
(0)
1j (Yj; ξ j) + b2

kjD
(0)
2j (Yj; ξ j) + b3

kjD
(1)
1j (Yj; ξ j)

+b4
kjD

(1)
2j (Yj; ξ j) + b5

kjD
(0)
3j (Yj; ξ j)

)
= 0, k = 1, . . . , 5m + 5.

and with conjugation conditions (12) in the interior vertex is uniquely solvable for any function F
from the space L2(Γ).

6. Conclusions

The paper presents boundary value problems for systems of differential equations on
a star graph. A distinctive feature of this paper is that the system consists of differential
equations of different orders. In this process, it was necessary to work out a technique for
making conjugation conditions at the nodes where several spatial rods are joined.

The result of this work can be used to calculate eigenvalues and eigenforms of spatially
connected rod systems. Up to now, only plane eigenforms separately for longitudinal and
for transverse vibrations have been used in engineering practice. In the present study, the
determination of spatial eigenforms of vibrations of a rod system is proposed.

Furthermore, it is necessary to evaluate how much the eigenfrequencies and spatial
eigenforms of the model problem on a graph approximate the original three-dimensional
problem for a structure consisting of several rods. Similar asymptotic problems for the
Laplace operator have been studied in [7,11]. In our case, instead of a Laplace operator,
we consider equations of linear elasticity theory for a system of rods connected in a node.



Symmetry 2022, 14, 1761 18 of 19

Similar tasks have been investigated in [19–23]. However, the results require further
progress.

Note that this paper obtains new classes of conjugacy conditions in the inner vertex
of a star graph in the case of systems of differential equations. In this case, the boundary
conditions in the boundary vertices of the star graph are considered fixed. In particular,
only the case of rigidly fixed boundary vertices is considered. In this case, the boundary
conditions in the boundary vertices of the star graph are considered fixed. In particular, only
the case of rigidly fixed boundary vertices is considered. We have not investigated other
types of boundary fixings. Other types of boundary clauses for second-order differential
equations are investigated in [10–13]. In the future, for systems of differential equations on
graphs, we should study all possible kinds of boundary clauses.
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