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Abstract: In this paper, we consider complete homogeneous symmetric functions and provide a
new formula for the number of plane partitions of n. This formula expresses the number of plane
partitions of n in terms of binomial coefficients as a sum over all the partitions of n, considering the
multiplicity of the parts greater than one. We obtain similar results for the number of strict plane
partition of n and the number of symmetric plane partitions of n.
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1. Introduction

We recall that a composition of a positive integer n is a sequence λ = (λ1, λ2, . . . , λk)
of positive integers whose sum is n, i.e.,

n = λ1 + λ2 + · · ·+ λk. (1)

The positive integers in the sequence are called parts [1]. When the order of integers λi
does not matter, Representation (1) is known as an integer partition and can be rewritten as

n = t1 + 2t2 + · · ·+ ntn,

where each positive integer i appears ti times in the partition. For consistency, a partition
of n is written with the summands in nonincreasing order. As usual, we denote by p(n)
the number of integer partitions of n. Partitions can be graphically visualized with Young
diagrams. For example, the five partitions of four can be seen in Figure 1. It is clear that
p(4) = 5. For convenience, we define p(0) = 1.

(4) (3,1) (2,2) (2,1,1) (1,1,1,1)

Figure 1. The partitions of 4.

Euler showed that the generating function of p(n) can be expressed as an elegant
infinite product

∞

∑
n=0

p(n) qn =
1

(q; q)∞
. (2)
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Here and throughout the paper, we use the following customary q-series notation:

(a; q)n =

{
1, for n = 0,
(1− a)(1− aq) · · · (1− aqn−1), for n > 0;

(a; q)∞ = lim
n→∞

(a; q)n.

Because the infinite product (a; q)∞ diverges when a 6= 0 and |q| > 1, whenever (a; q)∞
appears in a formula, we assume |q| < 1. All identities may be understood in the sense of
formal power series in q.

A plane partition π of the positive integer n is a two-dimensional array π = (πi,j)i,j>1
of non-negative integers πi,j such that

n = ∑
i,j>1

πi,j,

which is weakly decreasing in rows and columns:

πi,j > πi+1,j, πi,j > πi,j+1, for all i, j > 1.

It can be considered as the filling of a Young diagram with weakly decreasing rows and
columns, where the sum of all these numbers is equal to n. Different configurations
are counted as different plane partitions. As usual, we denote by PL(n) the number of
plane partitions of n. The plane partitions of four are presented in Figure 2. We see that
PL(4) = 13. For convenience, we define PL(0) = 1.

4 3 1 2 2 2 1 1 1 1 1 1

3
1

2
2

2 1
1

1 1 1
1

2
1
1

1 1
1 1

1 1
1
1

1
1
1
1

Figure 2. The plane partitions of 4.

An equivalent definition is that a plane partition is a finite subset of N×N×N with
the property that if (r, s, t) ∈ π and (1, 1, 1) 6 (h, j, k) 6 (r, s, t), then (h, j, k) must be an
element of π. Here, (h, j, k) 6 (r, s, t) means h 6 r, j 6 s and k 6 t. There is a nice way to
represent a plane partition as a three-dimensional object: this is achieved by replacing each
part k of the plane partition by a stack of k unit cubes. Thus, we obtain a pile of unit cubes.
The piles of cubes corresponding to the plane partitions in Figure 2 are shown in Figure 3.
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Figure 3. The plane partitions of 4 as piles of cubes.

Plane partitions were introduced to mathematics by Major Percy Alexander MacMa-
hon [2] as generalizations of partitions of integers. MacMahon [3] (Section 429) offered a
surprisingly simple formula for the generating function for all plane partitions π contained
in an a× b× c box. According to Macdonald [4] (Equation (2) on p. 81), this formula can
be written as

a

∏
i=1

b

∏
j=1

c

∏
k=1

1− qi+j+k−1

1− qi+j+k−2 .

Letting a, b, c→ ∞, we obtain an elegant product formula for the generating function for
all plane partitions, i.e.,

∞

∑
n=0

PL(n) qn =
∞

∏
n=1

1
(1− qn)n ,

and the expansion starts as

∞

∏
n=1

1
(1− qn)n = 1 + q + 3 q2 + 6 q3 + 13 q4 + 24 q5 + 48 q6 + 86 q7 + 160 q8 + · · · . (3)

The arrangement of the plane partitions of four in Figure 2 or Figure 3 is not random.
According to M. K. Azarian [5] (Theorem 1.1), p(n) can be interpreted as the number of
different ways to run up a staircase with n steps, taking steps of possibly different sizes,
where the order is not important and there is no restriction on the number or the size of
each step taken. Any partition λ = (λ1, λ2, . . . , λn) can be considered a staircase with n
steps where λk (1 6 k 6 n) is just a label associated with the kth step. On the other hand,
any partitions λ = (λ1, λ2, . . . , λn) can be converted into plane partitions by insertion of
line feeds at some or all places of the commas. The plane partition obtained in this way can
be interpreted as a way to run up the staircase labeled by λ, i.e., the number of parts on the
kth line of the plane partition represents the size of the kth step. We remark that there are
plane partitions that cannot be obtained in this way. For example, the plane partition in
Figure 4 cannot be obtained from the partition (2, 2, 1) by insertion of line feeds at some or
all places of the commas.
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2 1
2

Figure 4. A plane partitions of 5

Since the length of rows in plane partitions must be nonincreasing, there are only p(n)
ways to comply with this rule. Thus, we easily deduce the following inequality for PL(n):

Theorem 1. For n > 0,

PL(n) > ∑
t1+2t2+···+ntn=n

p(t1 + t2 + · · ·+ tn),

with strict inequality if and only if n > 4.

Rewriting the partitions of four as

1 · 0 + 2 · 0 + 3 · 0 + 4 · 1
1 · 1 + 2 · 0 + 3 · 1 + 4 · 0
1 · 0 + 2 · 2 + 3 · 0 + 4 · 0 (4)

1 · 2 + 2 · 1 + 3 · 0 + 4 · 0
1 · 4 + 2 · 0 + 3 · 0 + 4 · 0,

the case n = 4 of Theorem 1 reads as follows:

PL(4) > p(0 + 0 + 0 + 1) + p(1 + 0 + 1 + 0)

+ p(0 + 2 + 0 + 0) + p(2 + 1 + 0 + 0) + p(4 + 0 + 0 + 0)

= 1 + 2 + 2 + 3 + 5 = 13.

In this paper, motivated by Theorem 1, we want to show that PL(n) can be expressed
as a sum over all the partitions of n in terms of binomial coefficients. This new formula
considers the multiplicity of the parts greater than one.

Theorem 2. For n > 0,

PL(n) = ∑
t1+2t2+···+ntn=n

(
1 + t2

t2

)(
2 + t3

t3

)
· · ·
(

n− 1 + tn

tn

)
.

Considering (4), the case n = 4 of Theorem 2 reads as follows:

PL(4) =
(

1 + 0
0

)(
2 + 0

0

)(
3 + 1

1

)
+

(
1 + 0

0

)(
2 + 1

1

)(
3 + 0

0

)
+

(
1 + 2

2

)(
2 + 0

0

)(
3 + 0

0

)
+

(
1 + 1

1

)(
2 + 0

0

)(
3 + 0

0

)
+

(
1 + 0

0

)(
2 + 0

0

)(
3 + 0

0

)
= 4 + 3 + 3 + 2 + 1 = 13.

In this context, we remark that the first differences of PL(n) can be be expressed as a
sum over the partitions of n into parts greater than one in terms of binomial coefficients.

Theorem 3. For n > 0,

PL(n)− PL(n− 1) = ∑
2t2+3t3+···+ntn=n

(
1 + t2

t2

)(
2 + t3

t3

)
· · ·
(

n− 1 + tn

tn

)
.
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According to (3), we have

PL(4)− PL(3) = 13− 6 = 7.

The partitions of four into parts greater than pne are (4) and (2, 2). Therefore, case n = 4 of
Theorem 2 reads as follows:

PL(4)− PL(3) =
(

1 + 0
0

)(
2 + 0

0

)(
3 + 1

1

)
+

(
1 + 2

2

)(
2 + 0

0

)(
3 + 0

0

)
= 4 + 3 = 7.

The following result shows that the partial sums of PL(n) can be be expressed as a
sum over all the partitions of n in terms of binomial coefficients.

Theorem 4. For n > 0,

n

∑
k=0

PL(k) = ∑
t1+2t2+3t3+···+ntn=n

(
1 + t1

t1

)(
1 + t2

t2

)(
2 + t3

t3

)
· · ·
(

n− 1 + tn

tn

)
.

According to (3), we have

PL(0) + PL(1) + PL(2) + PL(3) + PL(4) = 1 + 1 + 3 + 6 + 13 = 24.

Considering (4), case n = 4 of Theorem 4 reads as follows:

PL(0) + PL(1) + PL(2) + PL(3) + PL(4)

=

(
1 + 0

0

)(
1 + 0

0

)(
2 + 0

0

)(
3 + 1

1

)
+

(
1 + 1

1

)(
1 + 0

0

)(
2 + 1

1

)(
3 + 0

0

)
+

(
1 + 0

0

)(
1 + 2

2

)(
2 + 0

0

)(
3 + 0

0

)
+

(
1 + 2

2

)(
1 + 1

1

)(
2 + 0

0

)(
3 + 0

0

)
+

(
1 + 4

4

)(
1 + 0

0

)(
2 + 0

0

)(
3 + 0

0

)
= 4 + 6 + 3 + 6 + 5 = 24.

Upon reflection, one expects that there might be more general results where our
Theorems 2–4 are the first entries. For any positive integer m, we denote by PL(m)(n)
the number of m-tuples of plane partitions of non-negative integers n1, n2, . . . , nm where
n1 + n2 + · · ·+ nm = n. It is clear that PL(n) = PL(1)(n) and

PL(m)(n) = ∑
n1+n2+···+nm=n

PL(n1) PL(n2) · · · PL(nm).

For any positive integer m, PL(m)(n), the partial sums of PL(m)(n) and the first differ-
ences of PL(m)(n) can be expressed as a sum over all the partitions of n in terms of
binomial coefficients.

Theorem 5. For m > 1 and n > 0,

1. PL(m)(n) = ∑
t1+2t2+···+ntn=n

(
m− 1 + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)
;

2.
n

∑
k=0

PL(m)(k) = ∑
t1+2t2+···+ntn=n

(
m + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)
;

3. PL(m)(n)− PL(m)(n− 1) = ∑
t1+2t2+···+ntn=n

(
m− 2 + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)
.
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The remainder of the paper is organized as follows. In Section 2, we consider the
complete homogeneous symmetric functions and introduce Theorem 6. This general result
allows us provision of an analytic proof of Theorem 5 by considering specializations of
complete homogeneous symmetric functions. In Section 3, we provide other applications
of Theorem 6 by considering the strict plane partitions and the symmetric plane partitions.
In the last section, we consider a sum over all the partitions of n in order to provide a new
expression for the generating function of PL(n). Finding a combinatorial interpretation in
terms of plane partitions for this sum over all partitions of n remains an open problem.

2. Proof of Theorem 5

If λ = (λ1, λ2, . . . , λk) is an integer partition with k 6 n, then the monomial symmetric
function

mλ(x1, x2, . . . , xn) = m(λ1,λ2,...,λk)
(x1, x2, . . . , xn)

is the sum of the monomial xλ1
1 xλ2

2 · · · x
λk
k and all distinct monomials obtained from this by

a permutation of variables. For instance, with λ = (2, 1, 1) and n = 4, we have

m(2,1,1)(x1, x2, x3, x4) = x2
1x2x3 + x1x2

2x3 + x1x2x2
3 + x2

1x2x4 + x1x2
2x4 + x1x2x2

4

+ x2
1x3x4 + x1x2

3x4 + x1x3x2
4 + x2

2x3x4 + x2x2
3x4 + x2x3x2

4.

If every monomial in a symmetric function has total degree k, then we say that this
symmetric function is homogeneous of degree k. Proofs and more details about monomial
symmetric functions can be found in Macdonald’s book [4].

The kth complete homogeneous symmetric function hk is the sum of all monomials of
total degree k in these variables, i.e.,

hk(x1, x2, . . . , xn) = ∑
λ`k

mλ(x1, x2, . . . , xn) = ∑
16i16i26···6ik6n

xi1 xi2 · · · xik ,

where λ ` n indicates that λ = (λ1, λ2, . . . , λk) is a partition of n. It is well known that the
complete homogeneous symmetric functions are characterized by the following formal
power series identity in t:

∞

∑
k=0

hk(x1, x2, . . . , xn) tk =
n

∏
i=1

1
1− xit

. (5)

Considering the complete homogeneous symmetric functions, we introduce the following
result:

Theorem 6. Let m and n be positive integers. Then,

n

∏
k=1

1
(1− xkz)ak(m)

=
∞

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
j=1

(
aj(m)− 1 + tj

tj

)
x

tj
j

)
zk,

where x1, x2, . . . , xn are independent variables and
(
an(m)

)
n>1 is a sequence of non-negative integers.

Proof. We are to prove the theorem by induction on n. For n = 1, we have

1
(1− x1z)a1(m)

=
a1(m)

∏
k=1

1
1− x1z

=
∞

∑
k=0

hk(x1, . . . , x1︸ ︷︷ ︸
a1(m) times

) zk
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=
∞

∑
k=0

xk
1 hk( 1, . . . , 1︸ ︷︷ ︸

a1(m) times

) zk

=
∞

∑
k=0

(
a1(m)− 1 + k

k

)
xk

1 zk,

and the base case of induction is finished. We suppose that relation

N

∏
k=1

1
(1− xkz)ak(m)

=
∞

∑
k=0

(
∑

t1+t2+···+tN=k

N

∏
j=1

(
aj(m)− 1 + tj

tj

)
x

tj
j

)
zk

is true for any integer N, 1 6 N < n. We can write

n

∏
k=1

1
(1− xkz)ak(m)

=
1

(1− xnz)an(m)

n−1

∏
k=1

1
(1− xkz)ak(m)

=

(
an(m)

∏
k=1

1
1− xnz

)(
n−1

∏
k=1

1
(1− xkz)ak(m)

)

=

 ∞

∑
k=0

hk(xn, . . . , xn︸ ︷︷ ︸
an(m) times

) zk

(n−1

∏
k=1

1
(1− xkz)ak(m)

)

=

 ∞

∑
k=0

xk
n hk( 1, . . . , 1︸ ︷︷ ︸

an(m) times

) zk

(n−1

∏
k=1

1
(1− xkz)ak(m)

)

=

(
∞

∑
k=0

xk
n

(
an(m)− 1 + k

k

)
zk

)(
∞

∑
k=0

(
∑

t1+t2+···+tn−1=k

n−1

∏
j=1

(
aj(m)− 1 + tj

tj

)
x

tj
j

)
zk

)

=
∞

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
j=1

(
aj(m)− 1 + tj

tj

)
x

tj
j

)
zk,

where we invoke the well-known Cauchy multiplications of two power series.

We are now in the position to prove Theorem 5. By Theorem 6, with xk replaced by
qk−1 and z replaced by q, we obtain

n

∏
k=1

1
(1− qk)ak(m)

=
∞

∑
k=0

qk ∑
t1+t2+···+tn=k

qt2+2t3+···+(n−1)tn
n

∏
j=1

(
aj(m)− 1 + tj

tj

)

=
∞

∑
k=0

∑
t1+t2+···+tn=k

qt1+2t2+3t3+···+ntn
n

∏
j=1

(
aj(m)− 1 + tj

tj

)
.

The limiting case n→ ∞ of this relation reads as

∞

∏
k=1

1
(1− qk)ak(m)

=
∞

∑
k=0

qk ∑
t1+2t2+···+ktk=k

k

∏
j=1

(
aj(m)− 1 + tj

tj

)
. (6)

By this identity, with aj(m) replaced by jm, we obtain

∞

∑
k=0

PL(m)(k) qk =
∞

∑
k=0

qk ∑
t1+2t2+···+ktk=k

k

∏
j=1

(
jm− 1 + tj

tj

)
,
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and the first identity of Theorem 5 follows easily by equating the coefficients of qk in
this relation.

The proof of the second identity of Theorem 5 is quite similar to the proof of the first
identity. We take into account the fact that the generating function for the partial sums of
PL(m)(n) is given by

∞

∑
n=0

qn
n

∑
k=0

PL(m)(k) =
1

1− q

∞

∑
n=0

PL(m)(n) qn

=
1

(1− q)m+1

∞

∏
n=2

1
(1− qn)nm .

We let δi,j to be the Kronecker delta function. By (6), with aj(m) replaced by jm + δ1,j,
we obtain

1
(1− q)m+1

n

∏
k=2

1
(1− qk)km

=
∞

∑
k=0

qk ∑
t1+t2+···+tn=k

qt2+2t3+···+(n−1)tn

(
m + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)

=
∞

∑
k=0

∑
t1+t2+···+tn=k

qt1+2t2+3t3+···+ntn

(
m + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)
.

The limiting case n→ ∞ of this relation reads as

∞

∑
k=0

qk
k

∑
j=0

PL(m)(j) =
∞

∑
k=0

qk ∑
t1+2t2+···+ktk=k

(
m + t1

t1

) k

∏
j=2

(
jm− 1 + tj

tj

)
,

and the second identity of Theorem 5 follows easily by equating the coefficients of qk in
this relation.

In order to prove the last identity of Theorem 5, we consider the fact that the generating
function for the first differences of PL(n) is given by

∞

∑
n=0

(
PL(m)(n)− PL(m)(n− 1)

)
qn = (1− q)

∞

∑
n=0

PL(m)(n) qn

=
1

(1− q)m−1

∞

∏
n=2

1
(1− qn)nm .

By (6), with aj(m) replaced by jm− δ1,j, we obtain

1
(1− q)m−1

n

∏
k=2

1
(1− qk)km

=
∞

∑
k=0

qk ∑
t1+t2+···+tn=k

qt2+2t3+···+(n−1)tn

(
m− 2 + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)

=
∞

∑
k=0

∑
t1+t2+···+tn=k

qt1+2t2+3t3+···+ntn

(
m− 2 + t1

t1

) n

∏
j=2

(
jm− 1 + tj

tj

)
.

The limiting case n→ ∞ of this relation reads as

∞

∑
k=0

(
PL(m)(k)− PL(m)(k− 1)

)
qk =

∞

∑
k=0

qk ∑
t1+2t2+···+ktk=k

(
m− 2 + t1

t1

) k

∏
j=2

(
jm− 1 + tj

tj

)
,
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and the last identity of Theorem 5 follows easily by equating the coefficients of qk in
this relation.

3. Further Applications of Theorem 6

In this section, we introduce two applications of Theorem 6 related to plane partitions
with restrictions.

3.1. Strict Plane Partitions

A strict plane partition π of the positive integer n is a plane partition π = (πi,j)i,j>1 of
n which is decreasing in rows, i.e., πi,j > πi+1,j, for all i, j > 1. We denote by SPL(n) the
number of strict plane partitions of n. The strict plane partitions of four are presented in
Figure 5. We see that SPL(4) = 7. For convenience, we define SPL(0) = 1.

4 3 1 2 2 2 1 1 1 1 1 1

3
1

2 1
1

Figure 5. The strict plane partitions of 4.

According to Gordon and Houten [6], the generating function for the number of strict
plane partition of n is given by

∞

∑
n=0

SPL(n) qn =
∞

∏
n=1

1
(1− qn)dn/2e ,

and the expansion starts as

∞

∏
n=1

1
(1− qn)dn/2e = 1 + q + 2 q2 + 4 q3 + 7 q4 + 12 q5 + 21 q6 + 34 q7 + 56 q8 + · · · . (7)

For any positive integer m, we denote by SPL(m)(n) the number of m-tuples of strict
plane partitions of non-negative integers n1, n2, . . . , nm where n1 + n2 + · · ·+ nm = n. It is
clear that SPL(n) = SPL(1)(n) and

SPL(m)(n) = ∑
n1+n2+···+nm=n

SPL(n1) SPL(n2) · · · SPL(nm).

For any positive integer m, SPL(m)(n), the partial sums of SPL(m)(n) and the first dif-
ferences of SPL(m)(n) can be expressed as a sum over all the partitions of n in terms of
binomial coefficients.

Theorem 7. For m > 1 and n > 0,

1. SPL(m)(n) = ∑
t1+2t2+···+ntn=n

(
m− 1 + t1

t1

) n

∏
j=2

(
dj/2em− 1 + tj

tj

)
;

2.
n

∑
k=0

SPL(m)(k) = ∑
t1+2t2+···+ntn=n

(
m + t1

t1

) n

∏
j=2

(
dj/2em− 1 + tj

tj

)
;

3. SPL(m)(n)− SPL(m)(n− 1) = ∑
t1+2t2+···+ntn=n

(
m− 2 + t1

t1

) n

∏
j=2

(
dj/2em− 1 + tj

tj

)
.

Proof. The proof of this theorem is quite similar to the proof of Theorem 5. Therefore, we
omit the details.

If m = 1, then we have (
m− 2 + t1

t1

)
= 0.
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Thus, the sum in the right hand side of the last identity of Theorem 7 runs over all the
partitions of n into parts greater than one. The case m = 1 of Theorem 7 reads as follows:

Corollary 1. For m > 1 and n > 0,

1. SPL(n) = ∑
t1+2t2+···+ntn=n

n

∏
j=3

(
dj/2e − 1 + tj

tj

)
;

2.
n

∑
k=0

SPL(k) = ∑
t1+2t2+···+ntn=n

(
1 + t1

t1

) n

∏
j=3

(
dj/2e − 1 + tj

tj

)
;

3. SPL(n)− SPL(n− 1) = ∑
2t2+···+ntn=n

n

∏
j=3

(
dj/2e − 1 + tj

tj

)
.

According to (7), we have

SPL(4) = 7,

SPL(0) + SPL(1) + SPL(2) + SPL(3) + SPL(4) = 1 + 1 + 2 + 4 + 7 = 15,

SPL(4)− SPL(3) = 7− 4 = 3.

Considering (4), the case n = 4 of Corollary 1 can be written as

SPL(4) =
(

1 + 0
0

)(
1 + 1

1

)
+

(
1 + 1

1

)(
1 + 0

0

)
+

(
1 + 0

0

)(
1 + 0

0

)
+

(
1 + 0

0

)(
1 + 0

0

)
+

(
1 + 0

0

)(
1 + 0

0

)
= 2 + 2 + 1 + 1 + 1 = 7,

4

∑
k=0

SPL(k) =
(

1 + 0
0

)(
1 + 0

0

)(
1 + 1

1

)
+

(
1 + 1

1

)(
1 + 1

1

)(
1 + 0

0

)
+

(
1 + 0

0

)(
1 + 0

0

)(
1 + 0

0

)
+

(
1 + 2

2

)(
1 + 0

0

)(
1 + 0

0

)
+

(
1 + 4

4

)(
1 + 0

0

)(
1 + 0

0

)
= 2 + 4 + 1 + 3 + 5 = 15.

The partitions of four into parts greater than one are

2 · 0 + 3 · 0 + 4 · 1 and 2 · 2 + 3 · 0 + 4 · 0.

When we take into account Corollary 1, we can write

SPL(4)− SPL(3) =
(

1 + 0
0

)(
1 + 1

1

)
+

(
1 + 0

0

)(
1 + 0

0

)
= 2 + 1 = 3.

3.2. Symmetric Plane Partitions

A symmetric plane partition π of the positive integer n is a plane partition π = (πi,j)i,j>1
of n such that πi,j = πj,i, for all i, j > 1. We denote by sPL(n) the number of symmetric
plane partitions of n. The symmetric plane partitions of six are presented in Figure 6. We
see that sPL(6) = 6. For convenience, we define sPL(0) = 1.
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6
4 1
1

3 1
1 1

2 2
2

2 1 1
1
1

1 1 1
1 1
1

Figure 6. The symmetric plane partitions of 6.

According to Gordon [7], the generating function for the number of symmetric plane
partition of n is given by

∞

∑
n=0

sPL(n) qn =
∞

∏
n=1

1
(1− qn)an

,

where

an =

{
1, n odd,
bn/4c, n even.

The expansion starts as

∞

∏
n=1

1
(1− qn)an

= 1 + q + q2 + 2 q3 + 3 q4 + 4 q5 + 6 q6 + 8 q7 + 12 q8 + · · · . (8)

We recall that the number of symmetric plane partition of n is equal to the number
of strict plane partitions of n into odd parts [7]. The strict plane partitions of six into odd
parts are presented in Figure 7.

5 1
5
1 3 3 3 1 1 1

3 1 1
1 1 1 1 1 1 1

Figure 7. The strict plane partitions of 6 into odd parts.

For any positive integer m, we denote by sPL(m)(n) the number of m-tuples of symmet-
ric plane partitions of non-negative integers n1, n2, . . . , nm where n1 + n2 + · · ·+ nm = n.
It is clear that sPL(n) = sPL(1)(n) and

sPL(m)(n) = ∑
n1+n2+···+nm=n

sPL(n1) sPL(n2) · · · sPL(nm).

For any positive integer m, sPL(m)(n), the partial sums of sPL(m)(n) and the first differences
of sPL(m)(n) can be expressed as a sum over all the partitions of n in terms of binomial
coefficients.

Theorem 8. For m > 1 and n > 0,

1. sPL(m)(n) = ∑
t1+2t2+···+ntn=n

(
m− 1 + t1

t1

) n

∏
j=2

(
ajm− 1 + tj

tj

)
;

2.
n

∑
k=0

sPL(m)(k) = ∑
t1+2t2+···+ntn=n

(
m + t1

t1

) n

∏
j=2

(
ajm− 1 + tj

tj

)
;

3. sPL(m)(n)− sPL(m)(n− 1) = ∑
t1+2t2+···+ntn=n

(
m− 2 + t1

t1

) n

∏
j=2

(
ajm− 1 + tj

tj

)
.

Proof. The proof of this theorem is quite similar to the proof of Theorem 5. Therefore, we
omit the details.

If j = 1 and m = 1, then (
bj/2cm− 1 + t2j

t2j

)
= 0.
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Thus, the sum in the right hand side of identities of Theorem 8 runs over all the partitions
of n into parts 6= 2. If m = 1, then we have(

m− 2 + t1

t1

)
= 0.

Thus, the sum in the right hand side of the last identity of Theorem 7 runs over all the
partitions of n into parts greater than two. The case m = 1 of Theorem 8 reads as follows:

Corollary 2. For m > 1 and n > 0,

1. sPL(n) = ∑
t1+3t3+4t4+···+ntn=n

bn/2c

∏
j=3

(
bj/2c − 1 + t2j

t2j

)
;

2.
n

∑
k=0

sPL(k) = ∑
t1+3t3+4t4+···+ntn=n

(
1 + t1

t1

) bn/2c

∏
j=3

(
bj/2c − 1 + t2j

t2j

)
;

3. sPL(n)− sPL(n− 1) = ∑
3t3+4t4+···+ntn=n

bn/2c

∏
j=3

(
bj/2c − 1 + t2j

t2j

)
.

According to (8), we have

sPL(6) = 6,
6

∑
k=0

sPL(k) = 1 + 1 + 1 + 2 + 3 + 4 + 6 = 18,

sPL(6)− sPL(5) = 6− 4 = 2.

The partitions of six into parts 6= 2 are

1 · 0 + 3 · 0 + 4 · 0 + 5 · 0 + 6 · 1,

1 · 1 + 3 · 0 + 4 · 0 + 5 · 1 + 6 · 0,

1 · 2 + 3 · 0 + 4 · 1 + 5 · 0 + 6 · 0,

1 · 0 + 3 · 2 + 4 · 0 + 5 · 0 + 6 · 0,

1 · 3 + 3 · 1 + 4 · 0 + 5 · 0 + 6 · 0,

1 · 6 + 3 · 2 + 4 · 0 + 5 · 0 + 6 · 0.

Considering Corollary 2, we can write

sPL(6) =
(

0 + 1
1

)
+

(
0 + 0

0

)
+

(
0 + 0

0

)
+

(
0 + 0

0

)
+

(
0 + 0

0

)
+

(
0 + 0

0

)
= 1 + 1 + 1 + 1 + 1 + 1 = 6,

6

∑
k=0

sPL(k) =
(

1 + 0
0

)(
0 + 1

1

)
+

(
1 + 1

1

)(
0 + 0

0

)
+

(
1 + 2

2

)(
0 + 0

0

)
+

(
1 + 0

0

)(
0 + 0

0

)
+

(
1 + 3

3

)(
0 + 0

0

)
+

(
1 + 6

6

)(
0 + 0

0

)
= 1 + 2 + 3 + 1 + 4 + 7 = 18.

The partitions of six into parts > 2 are

3 · 0 + 4 · 0 + 5 · 0 + 6 · 1,

3 · 2 + 4 · 0 + 5 · 0 + 6 · 0,
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Considering Corollary 2, we can write

sPL(6)− sPL(5) =
(

0 + 1
1

)
+

(
0 + 0

0

)
= 2.

4. Concluding Remarks

From (5), with xj replaced by qj−1 for each j ∈ {1, 2, . . . , n}, we obtain a well-known
identity, which was proven by Cauchy [8] (Theorem 26).

Theorem 9 (Cauchy). If n is any non-negative integer and |q| and |t| are both less than one, then

∞

∑
k=0

[
n + k

k

]
tk =

1
(t; q)n+1

.

The limiting case n→ ∞ of Theorem 9 is given by the following theorem of Euler [8]
(Theorem 25):

Theorem 10 (Euler). If |q| < 1 and |t| < 1, then

∞

∑
k=0

tk

(q; q)k
=

1
(t; q)∞

.

By this theorem, with t replaced by q, we obtain a well-known expression for the
generating function of p(n), i.e.,

∞

∏
n=1

1
1− qn =

∞

∑
n=0

qn

(q; q)n
.

We remark an analogous result for the generating function of PL(n).

Theorem 11. For |q| < 1,

∞

∏
n=1

1
(1− qn)n =

∞

∑
n=0

∑
t1+2t2+···+ntn=n

qn

(q; q)t1(q; q)t2 · · · (q; q)tn

.

Proof. Considering the q-binomial coefficients

[
n
k

]
=

[
n
k

]
q
=

{
(q;q)n

(q;q)k(q;q)n−k
, n, k integers, 0 6 k 6 n,

0, otherwise,

as specializations of complete homogeneous symmetric functions, namely

hk(1, q, . . . , qn) =

[
n + k

k

]
, (9)

we can write

n

∏
i=1

1
(1− qi−1z)i =

n

∏
i=1

(
n

∏
j=i

1
1− qj−1z

)

=
n

∏
i=1

(
∞

∑
k=0

hk(qi−1, qi, . . . , qn−1) zk

)

=
n

∏
i=1

(
∞

∑
k=0

(qi−1)khk(1, q, . . . , qn−i) zk

)
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=
n

∏
i=1

(
∞

∑
k=0

q(i−1)k
[

n− i + k
k

]
zk

)

=
∞

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
i=1

q(i−1)ti

[
n− i + ti

ti

])
zk.

Replacing z by q, we obtain

n

∏
i=1

1
(1− qi)i

=
∞

∑
k=0

∑
t1+t2+···+tn=k

qt1+2t2+···+ntn

[
n− 1 + t1

t1

][
n− 2 + t2

t2

]
· · ·
[

n− n + tn

tn

]

=
∞

∑
N=0

∑
t1+2t2+···+ntn=N

[
n− 1 + t1

t1

][
n− 2 + t2

t2

]
· · ·
[

n− n + tn

tn

]
qN .

The limiting case n→ ∞ of this equation can be written as

∞

∏
i=1

1
(1− qi)i =

∞

∑
N=0

∑
t1+2t2+···+NtN=N

qN

(q; q)t1(q; q)t2 · · · (q; q)tN

.

This concludes the proof.

Relevant to Theorem 11, it would be very appealing to have combinatorial interpreta-
tions for

∑
t1+2t2+···+ntn=n

qn

(q; q)t1(q; q)t2 · · · (q; q)tn

in terms of plane partitions.
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