
Citation: Clayton, J.D. Generalized

Finsler Geometry and the Anisotropic

Tearing of Skin. Symmetry 2023, 15,

1828. https://doi.org/10.3390/

sym15101828

Academic Editor: Sergei D. Odintsov

Received: 1 September 2023

Revised: 22 September 2023

Accepted: 22 September 2023

Published: 26 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Generalized Finsler Geometry and the Anisotropic Tearing
of Skin
John D. Clayton

Terminal Effects Division, Army Research Laboratory, Aberdeen Proving Ground,
Aberdeen, MD 21005-5066, USA; john.d.clayton1.civ@army.mil

Abstract: A continuum mechanical theory with foundations in generalized Finsler geometry
describes the complex anisotropic behavior of skin. A fiber bundle approach, encompassing
total spaces with assigned linear and nonlinear connections, geometrically characterizes evolving
configurations of a deformable body with the microstructure. An internal state vector is introduced
on each configuration, describing subscale physics. A generalized Finsler metric depends on the
position and the state vector, where the latter dependence allows for both the direction (i.e.,
as in Finsler geometry) and magnitude. Equilibrium equations are derived using a variational
method, extending concepts of finite-strain hyperelasticity coupled to phase-field mechanics to
generalized Finsler space. For application to skin tearing, state vector components represent
microscopic damage processes (e.g., fiber rearrangements and ruptures) in different directions
with respect to intrinsic orientations (e.g., parallel or perpendicular to Langer’s lines). Nonlinear
potentials, motivated from soft-tissue mechanics and phase-field fracture theories, are assigned
with orthotropic material symmetry pertinent to properties of skin. Governing equations are
derived for one- and two-dimensional base manifolds. Analytical solutions capture experimental
force-stretch data, toughness, and observations on evolving microstructure, in a more geometrically
and physically descriptive way than prior phenomenological models.

Keywords: anisotropy; biological tissue; continuum mechanics; Finsler geometry; nonlinear elasticity;
orthotropic symmetry; skin; soft condensed matter
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1. Introduction

Finsler geometry and its generalizations suggest the possibility of enriched de-
scriptions of numerous phenomena in mathematical physics, albeit at the likely expense
of greater complexity in the analysis and calculations compared to Riemannian geome-
try. Fundamentals of Finsler geometry, aptly credited to Finsler [1], are discussed in
the classic monograph of Rund and the more recent text of Bao et al. [2,3]. See also
the overview article by Eringen [4]. A monograph by Bejancu [5] and research cited
therein [6–8] cover more generalized Finsler and pseudo-Finsler geometries, as do
several more recent works [9,10].

Generalized Finsler geometry is predominantly used herein since strict classical
Finsler geometry falls short in describing all phenomena pertinent to the present class
of continuum behaviors. The broad physical sciences witness diverse implementations;
a thorough recapitulation is outside the bounds of the current work. Available books
discuss applications in optics, thermodynamics, and biology [11], as well as modern
physical settings, including spinor-type structures [12]. Finsler geometry and its
generalizations have also been used for describing anisotropic space-time, general
relativity, quantum fields, gravitation, electromagnetism, and diffusion [13–19]. The
current work implements a continuum mechanical framework for the physical response
of solid bodies.
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1.1. Background

Classical continuum mechanics, encompassing nonlinear elasticity and plasticity
theories as example constitutive frameworks, is couched in the context of Riemannian–
Cartan manifolds [20–22]. Non-vanishing torsion and/or curvature tensors may emerge,
depending on linear connections introduced to describe various incompatibilities
and possible sources of residual stresses, including dislocation and disclination in
crystals [21,23–25], inhomogeneous temperature distributions [26,27], or biological
growth [28–30].

In the classical Riemannian context, a continuous material body is treated as a mani-
foldM, differentiable and having dimension of n. Coordinate chart(s) {XA} (A = 1, . . . , n)
provide parameterization. A Riemannian metric is introduced on M; the components
GAB = GAB(X) comprise the metric tensor field. Dependency on components XA is im-
plied by notational dependence on X [22]. The covariant derivative operator ∇, enabled
by a linear connection on manifold M, completes the geometric description. Associ-
ated linear connection coefficients generally consist of n3 independent field components
ΓA

BC = ΓA
BC(X). Although different dimensional spaces are admissible, n = 3 is standard for

the mechanics of solid continua. Bases of coordinates can be holonomic, or less commonly,
anholonomic [31,32]. Anholonomic frames, for which continuous curves overM need not
exist, arise when the deformation gradient is deconstructed in a multiplicative sense [33,34].

In the geometries of Finsler and various extensions, a differentiable M, covered
by chart(s) of coordinates {XA} (A = 1, . . . , n), is given. Denoted by (Z ,M, Π,U ) is a
fiber bundle of the total space Z , having a dimension of n + m. The slit tangent bundle
Z → TM\0 [3] is often associated with the total space with m = n, but such an association
is not mandatory [5,9,10]. Auxiliary coordinates {DK} (K = 1, . . . , m) are assigned for every
fiber U . The total space Z , therefore, has the parameter set {XA, DK}. Laws of transforma-
tion are derived for quantities depending on coordinates (X, D), including holonomic bases.
Coefficients of a nonlinear connection lead to bases that are non-holonomic. These bases
advantageously change on TM in a standard manner for changes in base parameters XA.
To execute all possible forms of covariant differentiation—both horizontal and vertical—at
least two and at most four sets of coefficients of linear connections are required, as outlined
in [5,35].

The metric of the generalized pseudo-Finsler space has a functional dependency
GAB = GAB(X, D), which is always symmetric. In the classical geometry of Finsler, this
metric is positive definite. In pseudo-Finsler geometry, positive definiteness is not essen-
tial [10]. The GAB are obtained as second partial derivatives of 1

2F 2 with respect to DA in
strict Finsler geometry [2,3]. The fundamental Finsler function F is positively homoge-
neous of degree one with respect to D. As such, GAB is homogeneous of the zeroth degree
with respect to D [2,3]. This implies that, for strict Finsler geometry, GAB shall not have
dependence solely on the vector magnitude of an object consisting of the coordinates {DA}.
The existence of F and homogeneity of GAB are not required in more general kinds of
Finsler spaces [5,6,18,36]. The functional dependence on (X, D) for the metric and linear
and nonlinear connection coefficients affects the derived quantities, such as curvature and
torsion forms, as well as Stokes’ theorem [37].

The motivation for the geometry of Finsler in the mechanics of solid continua is as
follows. Auxiliary coordinates {DA} are viewed as vectors at every material particle X. The
concept generalizes micropolar, Cosserat, and broad kinds of micromorphic models [38–43]
couched in Riemannian geometry to the extended Finsler geometry. In the usual theories,
in contrast, the metric tensor is of the classical Riemannian form; coordinates {XA} are
sufficient for functional dependencies. The director triads in micromorphic theories affect
the governing equations and material response. However, these triads do not manifest
in the metrics and connections in the same way as the D of the generalized Finsler space.
Formulae for transformations of coordinates and the divergence theorem are simpler in the
Riemannian versus the Finsler case.
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1.2. Prior Work

The first application of Finsler geometry in the context of continuum mechanics of
solids appears to be the treatment of ferromagnetic elastic–plastic crystals of Amari [44].
Conservation laws and field theories, with application to ferromagnetism, were further
developed by Ikeda [45–48]. Bejancu [5] provided a generalized Finsler treatment of the
kinematics of deformable bodies. More contemporary theories include those of Saczuk and
Stumpf [49–51], with underpinnings in a monograph [52]. Different physical phenomena
(e.g., different physical meanings of {DK} [51]) are encompassed by their models, which
include kinematics, balance laws, and thermodynamics, but their focus is most often
on the mechanics of elastic–plastic crystals and dislocations [49,50,52]. See also a recent
theory presented in [53], which applies generalized Finsler geometry to topological defects,
and the comprehensive review in [54] of prior works on generalized Finsler geometry in
continuum physics.

A new theory of Finsler-geometric continuum mechanics was developed for nonlinear
elastic solids with evolving microstructure, first published in the article [55] with a prelimi-
nary version in a technical report [56]. This variational theory was extended to allow for
explicit inelastic deformation and applied to study phase transitions and shear localiza-
tion in crystalline solids [55,57]. The theory has also been broadened for dynamics and
shock waves [58,59], and most recently has been used to describe ferromagnetic solids [54],
enriching the governing equations of Maugin and Eringen [60,61] with pertinent aspects
arising from Finsler geometry [44,48] .

Prior to this theory [54,55], pragmatic solutions to boundary value problems us-
ing continuum mechanical models incorporating generalized Finsler geometry appeared
intractable due to the complexity of governing equations and unwieldy parameteriza-
tions (e.g., uncertain constitutive functions and material constants). Most aforementioned
work [5,44–49,51,53] presented purely theoretical constructions without attempt to formu-
late or solve physical boundary value problems. A material response was calculated by
Saczuk and Stumpf [50,52], but motion and internal state coordinates were prescribed a
priori, without apparent solution of governing conservation laws for macroscopic and
microscopic momentum and energy. In contrast, the present theory [55,56] appears to be
the first Finsler geometry-based continuum mechanics theory for which analytical and
numerical solutions to the governing equations have been found, as evidenced by solu-
tions to numerous problems for (non)linear elastic materials with evolving microstructure
(e.g., fractures, twinning, phase transitions, dislocations), as evidenced in those and sub-
sequent works [54–59,62]. However, as discussed in Section 1.3, discrete models with a
basis in Finsler geometry have successfully simulated the complex, nonlinear mechanical
response of several real materials, including snakeskin [63].

All prior applications of the present theory [54,55] considered stiff crystalline solids or
generic materials. The current research newly applies the theory to soft biological tissues,
specifically the skin. Furthermore, prior applications in fracture and cavitation [54,55,59,62]
were limited to either locally isotropic damage or to local material separation on a single
cleavage plane. The current treatment advances the description of anisotropic fractures or
ruptures on multiple material surfaces at a single point X. Most cited prior applications
invoked only a single non-trivial state vector component in D (an exception being a
multi-component D for twinning and fracture [59]) and most often conformal Weyl-type
rescaling of GAB with canonically vanishing nonlinear connection (with a few exceptions
studied, [57,62]). The current research incorporates an anisotropic generalized Finsler
metric for multi-dimensional problems and non-trivial nonlinear connections to show
utility by example.
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1.3. Purpose and Scope

The scope of this paper covers two primary purposes:
• The demonstration of the utility of the generalized Finsler geometric theory for

describing anisotropic elasticity and anisotropic structural rearrangements in soft
biological tissue;

• The consolidation and refinement of the theory for the equilibrium (i.e., quasi-static)
case.
The first item furnishes the first known application of Finsler geometry-based con-

tinuum theory to analyze finite-strain mechanics of soft biological tissue. Prior work of
others [63,64] used ideas from Finsler geometry to model nonlinear stress–strain to fail-
ure responses of biological solids, but that work used a discrete, rather than continuum,
theory with material points represented as vertices linked by bonds; interaction poten-
tials comprised bonding energies within a Hamiltonian. In that promising and successful
approach [65–67], a Finsler metric for bond stretch depends on the orientation of local
microstructure entities (e.g., molecular chains or collagen fibers) described by the Finsler
director vector field D. From a different modeling perspective, the current continuum
theory considers, in a novel way, the effects of the microstructure on anisotropy (elastic and
damage-induced) in both a geometric and constitutive sense. The second item includes a
renewed examination of Rund’s divergence theorem [37] in the context of an osculating
Riemannian metric. It is shown that certain choices of metric and connection coefficients,
with the possible addition of a source term to the energy conservation law, can recover
governing equations for biologic tissue growth [30] in the quasi-static limit (Appendix B).

1.3.1. Soft Tissue and Skin Mechanics

Most soft tissues have inherent directionality due to their collagen fiber-based
and/or aligned cellular microstructures [68,69], toward which tools of analysis from
Finsler geometry might be anticipated to aptly apply. The mechanics of skin deforma-
tion [68,70,71], degradation [72,73], and tearing [73,74] are investigated herein. Like
most biological materials, the microstructure of skin is complex. The respective middle
and outer layers of skin are the dermis and epidermis, with elastin, collagen fibers, and
cells embedded in a ground matrix. The underlying hypodermis (i.e., adipose) can be
labeled as an inner layer of the skin. The microstructure dictates nonlinear, anisotropic,
viscoelastic, and tearing behaviors [74–76]. Mechanical behavior at small strains is pri-
marily controlled by the elastin and ground substance, whereby collagen fibers are
coiled or slack [75]. Under increasing tensile stretch, the collagen fibers straighten and
tighten, supporting most of the load, and compliance decreases. Under more severe
stretching, fibers slide, delaminate, and rupture, leading to reduced stiffness, strain
softening, and material failure [72–74,77].

Experiments indicate that skin elasticity has orthotropic symmetry [68,70,71,75]. Or-
thotropy arises from preferred arrangements of the collagen fibers, leading to greater
stiffness in the directions where more fibers are aligned. In the plane of the dermis, fibers
tend to be dispersed about a primary axis along which stiffness is greatest. In vivo, resting
skin tension is greatest along this axis, parallel to Langer’s lines [75]. In typical uniaxial
and biaxial tests [68,70,71,74], extracted skin is unstretched initially, but the greater stiffness
along the primary direction persists, with differences in stiffness also emerging between
orthogonal in-plane and out-of-plane directions [70,75]. As might be expected, damage
processes are also anisotropic due to fiber degradation that differs with respect to the
direction of loading relative to the microstructure [73,74].

Skin, as is most biological tissue, is simultaneously nonlinear elastic, viscoelastic,
and poroelastic [68,76,78,79]; the pertinence of mechanisms depends on the time scale
of loading. The present application considers only monotonic loading at a constant rate
(e.g., no cycling or rate fluctuations). Loading rates are assumed much slower or faster
than viscous relaxation times. Thus, the pseudo-elastic approach is justified to study these
experiments [68], whereby hyperelastic models are deemed reasonable [71,80–83], albeit
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noting that different elastic constants (e.g., static and dynamic moduli) are needed to fit
data at vastly different limiting low and high loading rates [84,85]. In future applications to
problems with time dependence, internal state variables can be extended, leading to kinetic
laws with explicit viscous dissipation [78,86]. The current study is limited to relatively small
samples, tested in vitro, under uniaxial or biaxial extension [68,70,74,87]. The material
is modeled as unstressed initially and homogeneous with regard to elastic properties.
In the future, the current theory can be extended to study residual stress due to growth
or heterogeneous material features, as well as heterogeneous elastic properties. Residual
stresses can be addressed, in the context of Riemannian manifolds, using a material metric
having a non-vanishing Riemann–Christoffel curvature of its Levi–Civita connection [27,30]
or an anholonomic multiplicative term in the deformation gradient [29,88]. These ideas may
be extended to generalized Finsler space (e.g., invoking the current fiber bundle approach)
in future.

An early nonlinear elastic model described orthotropic symmetry using a phenomeno-
logical pseudo-strain energy potential [89]. Another early model delineated the contribu-
tions of elastin and collagen fibers [79]. More recently, a class of nonlinear elastic models
accounting for anisotropy from fiber arrangements using structure tensors has been success-
ful in representing many soft tissues, including arterial walls [80,90], myocardium [82,91],
and skin [71]. Polyconvex energy potentials can be incorporated for stability and to fa-
cilitate the existence of (unique) solutions to nonlinear elastic problems [81,90]. Fiber
dispersion can be incorporated to modulate the degree of anisotropy [71,92]. To date,
most damage models accounting for softening and failure have been phenomenological,
whether implemented at the macroscopic scale (either isotropic or along preferred fiber
directions) or the scale of individual fibers and their distributions [73,77,90,93]. These
damage models, with a basis in continuum damage mechanics [94], are thermodynamically
consistent in the sense that damage is dissipative, but their particular kinetic laws and
(often numerous) parameters are calibrated to experimental data without much physical
meaning. In contrast, the phase-field approach has been recently implemented for soft-
tissue fracture or rupture, incorporating relatively few parameters with physical origin
(e.g., surface energy) and regularization facilitating unique solutions to problems involving
material softening [95,96]. The kinetic law or equilibrium equation for damage is derived
from fundamental principles [97] and drives material to a local minimum-energy state,
in contrast to ad hoc equations simply selected to match data.

1.3.2. Overview of the Current Work

Implementation of the present generalized Finsler theory consists of four key ele-
ments: definition of the internal state D, assignment of the metric tensor, assignment
of the linear and nonlinear connections, and the prescription of the local free energy
potential. For soft tissue mechanics, the state vector represents the fiber rearrangements.
Damage anisotropy is monitored via its direction, with different components of D reflect-
ing fiber reorganization and rupture with respect to orientations of the microstructure
features [73,74]; the magnitude of each component of D measures the local intensity of
damage in a given material direction. The metric tensor with components GAB(X, D)
depends on position X as well as the direction and magnitude of D in the generalized
Finsler space; novel D dependence encompasses the rescaling of the material manifold
as damaged entities open, close, or rearrange in various directions [54,62]. The preferred
linear connection is that of Chern and Rund [3], ensuring compatibility with the diver-
gence theorem used to derive the Euler–Lagrange equations [54,55]. The generalized
Finslerian D dependence of both the metric and linear connection explicitly affect the
governing equations. Roles of nonlinear connections are newly examined; a non-trivial
prescription is shown to influence the fracture energy and stress–strain response.

The free energy density consists of a nonlinear elastic contribution and an internal
structure contribution. The nonlinear elastic potential enriches the orthotropic theory of
Holzapfel, Ogden, Gasser, and others [71,80,82,83,92] with implicit contributions from
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the generalized Finsler metric as well as anisotropic degradation from D. The structural
contribution is motivated by phase-field mechanics [95,98]. A previous model for arterial
dissection [95] accounted for fiber-scale damage anisotropy using a scalar order parameter.
The current theory invokes a more physically descriptive, vector-valued order parameter
(i.e., normalized D) of the generalized Finsler type. With regard to skin experiments, solu-
tions obtained for the current model are shown to admirably match extension and failure
data, including stress–strain behavior and fracture toughness [73,74,99] with parameters
having physical or geometric origins. The general theory is, thus, potentially more physi-
cally realistic, and considered more descriptive from a geometric perspective, than past
models based on phenomenological damage mechanics [90,94,100,101].

This paper is organized as follows. Mathematical preliminaries (e.g., notation and
definitions for objects in referential and spatial configurations) are provided in Section 2.
The Finsler-geometric theory of continuum mechanics is presented in Section 3, including
kinematics of finite deformation and equilibrium equations derived with a variational
approach. The next two sections specialize the theory of modeling soft tissue, specifically
skin. In Section 4, a one-dimensional (1D) model for the base manifoldM is formulated.
Analytical and semi-numerical solutions are obtained for uniaxial extension and compared
to experimental data. In Section 5, a two-dimensional (2D) model forM is formulated,
whereby the skin has orthotropic symmetry; solutions are obtained for biaxial extension
with anisotropic damage in orthogonal material directions. The conclusions follow in
Section 6.

2. Generalized Finsler Space

The content of Section 2 consolidates a more thorough exposition given in a recent
review [54], from which notation is adopted. Other extensive texts include those of Rund,
Bejancu, and Bao et al. [2,3,5]. A new contribution in the present Section 2 is an interpreta-
tion of the divergence theorem [37,54] using an osculating Riemannian metric, whereby for
the further simplifying assumption of the vanishing nonlinear connection, a representation
akin to that of classical Riemannian geometry is obtained.

2.1. Reference Configuration

The very general fiber bundle approach of Bejancu [5] encompasses geometric fun-
damentals of the theory. A reference configuration is linked to a specific time t, where the
material body is viewed as undeformed, relative to some intrinsic state. The manifold,
denoted byM, is differentiable and of dimension n. One can classically immerse the true
continuous body in the Euclidean N space with restriction N ≥ n.

Remark 1. This kind of immersion exclusively holds only for the base spaceM. As defined below,
the fiber bundle’s total space Z does not usually obey, such an
embedding [2,102,103]. Likewise, a Finsler space Fn does not fulfill this type of
Euclidean embedding.

A particle of the material occupies each point X ∈ M. Notation {XA}(A = 1, 2, . . . , n)
defines a chart of material coordinates onM. Coverage ofM by any individual chart
need not be complete. Let D denote a vector field assigned to every particle. Accordingly,
the {DK}(K = 1, 2, . . . , m) are viewed as additional coordinates forM. Parameters {DK}
are, by construction, of sufficient smoothness: field D is presumed differentiable overM,
of any necessary class, with respect to material coordinates {XA}.

LetZ be the total space having dimension n+m. The fiber bundle is Z = (Z , Π,M,U ).
The projection is Π : Z → M. A fiber at point X is U = ZX = Π−1(X). The dimension
of a vector space represented by each fiber is n, where a vector bundle is (Z , Π,M). The
set {XA, DK} serves as a (local) chart for (a portion of) Z . Denote an open neighborhood
about X ∈ M byM′ ⊂M. Let P1 be the projection operator to the first factor, and write
an isomorphism for vector spaces as Φ. Commutation follows for the diagram below [5]:
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Π−1(M′) M′ ×Rm

M′
Π

Φ

P1

2.1.1. Coordinate Transformations

Transformations for charts of both sets of coordinates {X, D} to {X̃, D̃} on total space
Z are defined as [5,10]

X̃A = X̃A(X), D̃ J(X, D) = QJ
K(X)DK. (1)

The transformation matrix QJ
K fulfills Q̃I

KQK
J = δI

J , presumably differentiable and non-
singular. As usual, δI

J = 1 ∀ I = J, δI
J = 0 ∀ I 6= J. Let TZ denote the tangent bundle,

and { ∂
∂XA , ∂

∂DK } denote the holonomic frame field or holonomic basis. Let T∗Z be the
cotangent bundle and {dXA, dDK} its holonomic coordinate basis. The transformation
law for holonomic frames on TZ , for coordinate changes (X, D)→ (X̃, D̃) on Z per base
coordinate changes X → X̃ on manifoldM, consistent with (1) is [5,10]

∂

∂X̃A =
∂XB

∂X̃A
∂

∂XB +
∂DK

∂X̃A
∂

∂DK =
∂XB

∂X̃A
∂

∂XB +
∂Q̃K

J

∂X̃A D̃ J ∂

∂DK , (2)

∂

∂D̃ J =
∂XB

∂D̃ J
∂

∂XB +
∂DK

∂D̃ J
∂

∂DK = Q̃K
J

∂

∂DK . (3)

Likewise, on T∗Z ,

dX̃A =
∂X̃A

∂XB dXB +
∂X̃A

∂DK dDK =
∂X̃A

∂XB dXB, (4)

dD̃ J =
∂D̃ J

∂XB dXB +
∂D̃ J

∂DK dDK =
∂QJ

K
∂XB DKdXB + QJ

KdDK. (5)

Given (1), { ∂
∂XA } and {dDK} map differently than standard vectorial objects on Z .

Define [5,9]
δ

δXA =
∂

∂XA − NK
A

∂

∂DK , δDK = dDK + NK
B dXB. (6)

Non-holonomic basis vectors { δ
δXA } and {δDK} obey [10]

δ

δX̃A =
∂XB

∂X̃A
δ

δXB , δD̃ J = QJ
KδDK;

〈 δ

δXB , dXA〉 = δA
B ,

〈 ∂

∂DK , δD J〉 = δJ
K. (7)

The set { δ
δXA , ∂

∂DK } is implemented over TZ for a local basis; likewise, on T∗Z , a dual
basis is taken to be {dXA, δDK} [3,9]. The NK

B (X, D) are the coefficients of the nonlinear
connection, serving as differentiable functions of their arguments. For (7) to hold under
coordinate changes X → X̃ [3,5],

Ñ J
A =

(
QJ

K NK
B −

∂QJ
K

∂XB DK

)
∂XB

∂X̃A
, (8)

meaning that nonlinear connections do not follow the transformation laws of linear
connections. Nonlinear coefficients do not instill covariant differentiation identical to
linear coefficients.
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Remark 2. The orthogonal decomposition afforded by TZ with the corresponding nonlinear con-
nection is TZ = VZ ⊕ HZ . The vertical vector bundle is VZ with { ∂

∂DA } being its local frame
field, and the horizontal distribution is HZ with the local field of frames { δ

δXA } [5].

Respective fiber dimensions of VZ and HZ are m and n, and are possibly different.
For the remainder of this work, let m = n, so that the horizontal and vertical spaces
have identical dimensionality. Regarding notation, coordinate indices such as J, K, . . . are
interchangeable with A, B, . . . for Einstein’s sums, now spanning 1 to n. Furthermore,
for (1), consider

QA
B =

∂D̃A

∂DB =
∂X̃A

∂XB . (9)

Relation (9) is obtained via soldering forms by Minguzzi [10]. Coordinate differentiation op-
erations are expressed as follows, with f being a differentiable function of arguments (X, D):

∂A f (X, D) =
∂ f (X, D)

∂XA , ∂̄A f (X, D) =
∂ f (X, D)

∂DA ; δA(·) =
δ(·)
δXA = ∂A(·)− NB

A∂̄B(·). (10)

Special cases f → X and f → D are written [54,55]

∂BXA =
∂XA

∂XB = δA
B , ∂̄BXA = 0; ∂BDA =

∂DA

∂XB , ∂̄BDA = δA
B . (11)

2.1.2. Length, Area, and Volume

The Sasaki metric tensor [3,35,104] on Z supplies vectorial scalar products :

GGG(X, D) = G(X, D) + Ǧ(X, D) = GAB(X, D)dXA ⊗ dXB + ǦAB(X, D)δDA ⊗ δDB; (12)

GAB = GAB = G
(

δ

δXA ,
δ

δXB

)
= ǦAB = Ǧ

(
∂

∂DA ,
∂

∂DB

)
= ǦBA = GBA = GBA. (13)

Regarding notation, G and Ǧ have equivalent components, hereafter written as GAB,
but subspaces spanned by these two tensors are orthogonal. Components in covariant form
GAB and their inverse in contravariant form GAB enable respective lowering and raising of
indices; G is the determinant of the n× n non-singular matrices of components of G or Ǧ:

GABGBC = δA
C ; G(X, D) = det[GAB(X, D)] = det[ǦAB(X, D)]. (14)

Remark 3. Let V = VA δ
δXA ∈ HZ denote a generic vector field on Z . Then the magnitude of

V(X, D) is |V| = 〈V,GGGV〉1/2 = 〈V, GV〉1/2 = |V · V|1/2 = |VAGABVB|1/2 = |VAVA|1/2 ≥ 0,
where VA and GAB are evaluated at (X, D).

When interpreted as a block diagonal 2n× 2n matrix, the determinant of GGG is [49,50,52]

G(X, D) = det[GAB(X, D)] det[ǦAB(X, D)] = |det[GAB(X, D)]|2 = |G(X, D)|2. (15)

Let dX be a local line element for the base manifoldM, referred to as the basis of
{ δ

δXA }, and let dD be a corresponding line element for the fiber U , referred to as { ∂
∂DA }.

Their lengths are, squared,

|dX|2 = 〈dX,GGGdX〉 = GABdXAdXB, |dD|2 = 〈dD,GGGdD〉 = GABdDAdDB. (16)

The respective volume element dV ofM, volume form dΩ ofM, and the area form
Ω for its boundary ∂M, are defined as follows [37], where n = dimM = dim ∂M+ 1:

dV =
√

G dX1dX2 . . . dXn, dΩ =
√

G dX1 ∧ dX2 ∧ . . . ∧ dXn, (17)
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Ω =
√

B dU1 ∧ . . . ∧ dUn−1. (18)

Local coordinates on the hypersurface ∂M, oriented and (n− 1)-dimensional, are
given as parametric equations XA = XA(Uα) (α = 1, . . . , n − 1), BA

α = ∂XA

∂Uα , and
B = det(BA

α GABBB
β ).

2.1.3. Covariant Derivatives

Basis vector gradients in horizontal form are acquired from affine (i.e., linear) connec-
tion coefficients, written generically as HA

BC and KA
BC, where∇(·) is the covariant derivative:

∇δ/δXB
δ

δXC = HA
BC

δ

δXA , ∇δ/δXB
∂

∂DC = KA
BC

∂

∂DA . (19)

Analogously, vertical gradients employ generic connection coefficients, VA
BC and YA

BC:

∇∂/∂DB
∂

∂DC = VA
BC

∂

∂DA , ∇∂/∂DB
δ

δXC = YA
BC

δ

δXA . (20)

For example, let V = VA δ
δXA ∈ HZ be a vector field. Then the (total) covariant derivative

of V is

∇V = ∇δ/δXB V ⊗ dXB +∇∂/∂DB V ⊗ δDB

= (δBVA + HA
BCVC)

δ

δXA ⊗ dXB + (∂̄BVA + YA
BCVC)

∂

∂DA ⊗ δDB

= VA
|B

δ

δXA ⊗ dXB + VA|B
∂

∂DA ⊗ δDB.

(21)

Denoted by (·)|A is a horizontal covariant derivative with respect to {XA}. Denoted by
(·)|B is a vertical covariant derivative with respect to {DB}.

Remark 4. The ordering of lower indices on connections matches some works [4,22,31,98] and is
the transpose of others [2,5,34]. For symmetric connections, it is inconsequential.

The horizontal covariant derivative, in components of the horizontal metric tensor
G = GAB dXA ⊗ dXB (i.e., the horizontal part of GGG), is

GAB|C = δCGAB − HD
CAGDB − HD

CBGAD

= ∂CGAB − ND
C ∂̄DGAB − HD

CAGDB − HD
CBGDA.

(22)

For the determinant of the metric G = det(GAB), identified as a scalar density [37],

(
√

G)|A = ∂A(
√

G)− NB
A∂̄B(

√
G)−

√
GHB

AB. (23)

The Levi–Civita connection coefficients are written as γA
BC; these are also known as

Christoffel symbols of the second kind. Cartan’s tensor is CA
BC, and horizontal coefficients

of the Chern–Rund and Cartan connections are ΓA
BC. All have null torsion due to symmetry:

γA
BC = 1

2 GAD(∂CGBD + ∂BGCD − ∂DGBC) = GADγBCD, (24)

CA
BC = 1

2 GAD(∂̄CGBD + ∂̄BGCD − ∂̄DGBC) = GADCBCD, (25)

ΓA
BC = 1

2 GAD(δCGBD + δBGCD − δDGBC) = GADΓBCD. (26)
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Remark 5. The coefficients of Cartan, Chern, and Rund are compatible with regard to the covariant
differential of G = GAB dXA ⊗ dXB since HA

BC = ΓA
BC ⇒ GAB|C = 0 for (22). Similarly,

the tensor of Cartan is compatible with the vertical covariant differential of the metric G: YA
BC =

CA
BC ⇒ GAB|C = 0.

From direct calculations with respective (24), (25), and (26), traces of linear connections
are related to partial gradients of G = det(G):

∂A(ln
√

G) = γB
AB, ∂̄A(ln

√
G) = CB

AB, δA(ln
√

G) = 1
2 GBCδAGCB = ΓB

AB. (27)

Remark 6. Similar to the previous remark, HA
BC = ΓA

BC ⇒ G|A = 2G(ln
√

G)|A = 0 and
YA

BC = CA
BC ⇒ G|A = 2G(ln

√
G)|A = 0.

Nonlinear connection coefficients NA
B (X, D) admissible under (1) and (8) can be ob-

tained in various settings. If TZ is limited to sections that are locally flat [3,10], NA
B = 0 in

a preferred coordinate chart {X, D}, but ÑA
B in (8) does not vanish for heterogeneous trans-

formations under which ∂BQJ
K is nonzero. A Lagrangian L(X, D), real and differentiable,

can be introduced, from which NA
B = GA

B , where [5]

GA
B = ∂̄BG

A = ∂̄B[GAE(DC ∂̄E∂CL− ∂EL)]. (28)

Remark 7. Let GAB(X, D) be a positive homogeneous function of degree zero with respect to D.
Then GA below are spray components [3,10], and NA

B = GA
B are so-called canonical coefficients of

the nonlinear connection that obey (8):

GA = 1
2 γA

BCDBDC, GA
B = ∂̄BGA. (29)

For classification, let KA
BC = HA

BC and YA
BC = VA

BC. An extended and complete
Finsler connection is written as the triplet (NA

B , HA
BC, VA

BC). The Chern–Rund connection is
(GA

B , ΓA
BC, 0). Cartan’s connection is (GA

B , ΓA
BC, CA

BC). Berwald’s connection is (GA
B , GA

BC, 0),
where GA

BC = NA
BC = ∂̄BNA

C = ∂̄B∂̄CGA.

2.1.4. A Divergence Theorem

Let M denote a differentiable manifold with the dimension of n. Let ∂M be its
(n− 1)-dimensional boundary, a hypersurface positively oriented and of class C1. The
coordinate-free theorem of Stokes for any C1 differentiable (n− 1) form ααα onM can be
written as ∫

M
dααα =

∫
∂M

ααα. (30)

Theorem 1. LetM, dimM = n, as the base space for a generalized Finsler bundle of the to-
tal spaceZ . The boundary ∂M is of positive orientation and class C1, having dim ∂M = n− 1. Let
ααα(X, D) = VA(X, D)NA(X, D)Ω(X, D) denote a differentiable (n − 1) form. Let
V = VA δ

δXA ∈ HZ denote a vector field, and VA denote its contravariant components. Denote
the positive-definite field GAB(X, D) as components of the metric on the horizontal space having
G = det(GAB) > 0. Let HA

BC = HA
CB be the symmetric and affine horizontal connection such

that (
√

G)|A = 0. Lastly, C1 functional relations D = D(X) are presumed available for vertical
coordinates of fibers for all X ∈ M. Stokes’ theorem (30) can then be expressed explicitly as follows
for an assigned chart {XA}, appealing to definitions of forms for volumes and areas in the second
of (17) and (18): ∫

M
[VA
|A + (VACC

BC + ∂̄BVA)DB
; A] dΩ =

∫
∂M

VANA Ω. (31)

The horizontal covariant derivative is VA
|A = δAVA + HB

BAVA, the definition DB
; A = ∂ADB + NB

A

with ∂ADB = ∂DA/∂XB, and NA is a unit outward normal component of N = NA dXA to ∂M.
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Proof. The proof, not repeated here, is given in the review [54], suggested but not derived
formally in an earlier work [55]. The proof of (31) [54] extends that of Rund [37], which
considered a strict Finsler space Fn with the metric obtained from a fundamental func-
tion F and used Cartan’s connection (GA

B , ΓA
BC, CA

BC). The proof in [54] extends Rund’s
proof to general Finsler spaces having arbitrary positive-definite GAB(X, D) and arbitrary
NA

B (X, D). �

Remark 8. As per the theorem of Stokes, (31) applies if the base spaceM and boundary ∂M is
interchanged with a compact region ofM′ ⊂M and its boundary of positive orientation.

Remark 9. The affine horizontal coefficients HA
BC = ΓA

BC of Cartan, Chern, and Rund uniquely
fulfill symmetry and metric-compatibility requirements.

Remark 10. An alternative basis and the dual of that basis onM could be prescribed for the vector
field V and normal field N, given certain stipulations [54]. However, geometric interpretation of
covariant differentiation on the left side of (31) suggests { δ

δXA } should be used for V, by which,
the dual basis {dXB} should be used for N to ensure invariance: 〈V, N〉 → VANB〈 δ

δXA , dXB〉. If
instead V is referred to the holonomic basis { ∂

∂XA }, then NA
B = 0 should be imposed for invariance

with NBdXB. As noted prior to (28), this choice would restrict (31) to homogeneous transformations
of coordinates {X, D}.

As assumed in Theorem 1 [37,54,55], C1 functions D = D(X) must exist over all
X ∈ M. Relations of generalized Finsler geometry [5] still apply, but additional relations
emerge naturally when metric GAB is interpreted as an osculating Riemannian metric [2,44].
Specifically, an alternative representation of (31) is newly proven in the following.

Corollary 1. Given C1 functions D = D(X), set G̃AB(X) = GAB(X, D(X)) as components of
the osculating Riemannian metric derived from G = GAB dXA ⊗ dXB. Then (31) is equivalent to∫

M
ṼA

: A dΩ =
∫

∂M
ṼAÑA Ω, (32)

where the vector ṼA(X) = VA(X, D(X)), unit normal ÑA(X) = NA(X, D(X)), and covariant

derivative ṼA
: A = ∂AṼA + γ̃B

BAṼA with connection γ̃B
BA(X) = ∂A(ln

√
G̃(X)) = γ̃B

AB(X) and
G̃ = det(G̃AB).

Proof. The right of (32) is identical to the right of (31), given the change of variables. On
the left of (32), from chain-rule differentiation, vanishing (23), and (27),

∂AṼA = ∂AVA + ∂̄BVA∂ADB, (33)

ṼAγ̃B
BA = ṼA∂A(ln

√
G̃) = VA[∂A(ln

√
G) + ∂̄B(ln

√
G)∂ADB]

= VA[δA(ln
√

G) + NB
A∂̄B(ln

√
G) + CC

BC∂ADB]

= VA[δA(ln
√

G) + CC
BC(NB

A + ∂ADB)]

= VA[HB
AB + CC

BCDB
; A] = VA[HB

BA + CC
BCDB

; A].

(34)

Adding (33) to (34), and canceling ±NB
A∂̄BVA terms, produces

ṼA
: A = {∂AVA + ∂̄BVA∂ADB − NB

A∂̄BVA}+ {NB
A∂̄BVA + VA[HB

BA + CC
BCDB

; A]}
= δAVA + VA HB

BA + ∂̄BVA(∂ADB + NB
A) + VACC

BCDB
; A

= VA
|A + (∂̄BVA + VACC

BC)DB
; A.

(35)

Integrands on the left sides of (31) and (32) are, thus, verified to match, completing
the proof. �
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Remark 11. Coefficients of the Levi–Civita connection of G̃AB satisfy the symmetry and metric-
compatibility requirements used to prove (32):

γ̃A
BC = 1

2 G̃AD(∂CG̃BD + ∂BG̃CD − ∂DG̃BC) = G̃ADγ̃BCD. (36)

Remark 12. Given (36), the form of the divergence theorem in (32) appears analogous to that of a
Riemannian manifold with boundary. It is not identical, however, since the non-holonomic basis
{ δ

δXA } is used for V. As in Remark 2.1.3, the holonomic basis { ∂
∂XA } could be used in a preferred

chart {X, D(X)}, wherein NA
B = 0; under such special conditions the distinction vanishes.

2.1.5. Finsler and Pseudo-Finsler Spaces

The preceding presentation holds for generalized Finsler geometry, by which a
Lagrangian function is not necessary to obtain components of the metric tensor [5,6,36].
Subclasses of generalized spaces of Finsler necessitate the existence of a Lagrangian L.
Denote the tangent bundle for M excluding the D = 0 zero section as Z = TM\0.
Function L(X, D) : Z → R is positively homogeneous of second order with respect
to D and differentiable to any required class in {XA} and {DA}, C∞ being the usual
assumption [3], C5 usually acceptable [10]. In this case, (M,L) fulfills the requirements for
a pseudo-Finsler space if n× n matrix GAB is both non-singular over Z and obtained from
Lagrangian L:

GAB(X, D) = ∂̄A∂̄BL(X, D), L = 1
2 GABDADB. (37)

When GAB(X, D) is strictly positive definite on Z , a pseudo-Finsler space becomes a
Finsler space, written as the set (M,F ) or simply Fn where n = dimM. The fundamen-
tal function F (X, D) for the Fn is first-order positively homogeneous with respect to D,
whereby [2,3]

F (X, D) =
√

2L(X, D) = |GAB(X, D)DADB|1/2

↔ L(X, D) = 1
2F 2(X, D); F (X, D) > 0 ∀D 6= 0.

(38)

In Finsler geometry [2,3,5], conditions L = L and GA = GA in (28) and (29), and

GAB = 1
2 ∂̄A∂̄B(F 2), GA

B = γA
BCDC − CA

BCγC
DEDDDE = ΓA

BCDC;

CABC = 1
4 ∂̄A∂̄B∂̄C(F 2).

(39)

Reductions and embeddings for Finsler spaces are discussed elsewhere [2,3,10,54,102,103].

2.2. Spatial Configuration

A description of a fiber bundle analogous to that of Section 2.1 is invoked for the
spatial or current representation of a continuum. Let m and n denote the differentiable,
spatial base manifold, and its dimension. Immersion in an external Euclidean N space is
possible for the base manifold under stipulation N ≥ n.

Remark 13. Definitions in Section 2.2 parallel those of Section 2.1. Upper-case symbols and indices
for referential quantities are now exchanged with lower-case ones for most spatial variables.

In the current configuration, x ∈ m depicts a point or particle location. A chart of
spatial coordinates on m is {xa}(a = 1, 2, . . . , n). Every point on the spatial base manifold
supports a local vector written as d, with {dk}(k = 1, 2, . . . , m) auxiliary coordinates for
m. The total space of dimension n + m is z, and z = (z, π,m, u) is the fiber bundle. Let
π : z → m be the projection. A fiber is u = zx = π−1(x). Composite chart {xa, dk} is
associated with z. The vector bundle is (z, π,m); every fiber comprises a vector space of
dimension n.
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Denote the motion function by ϕ, which globally maps reference material points to
spatial points. Denote Ξ = (ϕ, θ) as the set of functions that correspondingly updates
total spaces among configurations. General functional forms are ϕ(X, D) : M→ m and
Ξ(X, D) : Z → z. As described in Section 3.1, ϕ(X, D) and Ξ(X, D) can have more specific
representations [54]. Time (t) dependence is possible in the most general theories [50,58,59].
However, explicit time dependence is excluded from the current theoretical presentation
that focuses on equilibrium configurations [55,62]. The following diagram commutes [5]:

Z z

M m

Π

Ξ

π

ϕ

2.2.1. Coordinate Transformations

Let {x, d} to {x̃, d̃} be a change of coordinates for z; the Finsler relationships akin
to (1) are

x̃a = x̃a(x), d̃j(x, d) = qj
k(x)dk. (40)

Differentiable matrix qj
k is non-singular with inverse q̃i

k, whereby q̃i
kqk

j = δi
j. Tangent bundle

Tz has { ∂
∂xa , ∂

∂dk } for its holonomic basis. The cotangent bundle T∗z has {dxa, ddk}. Bases of
non-holonomic vectors are { δ

δxa } and {δdk}; these map conventionally as x → x̃:

δ

δxa =
∂

∂xa − Nk
a

∂

∂dk , δdk = ddk + Nk
b dxb. (41)

The set { δ
δxa , ∂

∂dk } is used as a local basis on Tz, and {dxa, δdk} is used for T∗z. The orthogo-
nal decomposition of the tangent bundle, given its nonlinear connection, is
Tz = Vz ⊕ Hz. Notation is as expected for the former vertical vector bundle and the
latter horizontal distribution. Nonlinear connection coefficients transform as

Ñ j
a =

(
qj

k Nk
b −

∂qj
k

∂xb dk

)
∂xb

∂x̃a . (42)

Henceforth, set m = n. Thus, j, k, . . . → a, b, . . . for the index notation with sums
covering 1 to n on repeated indices. Furthermore, per (40), the transformation for da is akin
to that of vectors of contravariant form on m:

qa
b =

∂d̃a

∂db =
∂x̃a

∂xb . (43)

Condensed notation is used for derivatives with respect to coordinates on m, z:

∂a f (x, d) =
∂ f (x, d)

∂xa , ∂̄a f (x, d) =
∂ f (x, d)

∂da ; δa(·) =
δ(·)
δxa = ∂a(·)− Nb

a ∂̄b(·); (44)

∂bxa =
∂xa

∂xb = δa
b , ∂̄bxa = 0; ∂bda =

∂da

∂xb , ∂̄bda = δa
b . (45)

2.2.2. Length, Area, and Volume

A scalar product for vectors on z is obtained from the metric tensor of Sasaki [104]:

ggg(x, d) = g(x, d) + ǧ(x, d) = gab(x, d)dxa ⊗ dxb + ǧab(x, d)δda ⊗ δdb; (46)

gab = gab = g
(

δ

δxa ,
δ

δxb

)
= ǧab = ǧ

(
∂

∂da ,
∂

∂db

)
= ǧba = gba = gba. (47)
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Denote by dx and dd, respectively, line elements of m and u. The former has the basis
vector { δ

δxa }, the latter { ∂
∂da }. Line lengths squared satisfy

|dx|2 = 〈dx,gggdx〉 = gabdxadxb, |dd|2 = 〈dd,gggdd〉 = gabddaddb. (48)

Let dimm = n with dim ∂m = n− 1 the dimension of the boundary. The local volume
(scalar) element and volume form, followed by the local area form, are respectively

dv =
√

g dx1dx2 . . . dxn, dω =
√

g dx1 ∧ dx2 ∧ . . . ∧ dxn, ω =
√

b du1 ∧ . . . ∧ dun−1. (49)

The surface embedding in manifold m is xa = xa(uα) (α = 1, . . . , n − 1), ba
α = ∂xa

∂uα , and
b = det(ba

αgabbb
β).

2.2.3. Covariant Derivatives

Let ∇(·) denote the operator for covariant differentiation. Generic affine coefficients
Ha

bc and Ka
bc are used for horizontal derivatives, Va

bc and Ya
bc for vertical derivatives:

∇δ/δxb
δ

δxc = Ha
bc

δ

δxa , ∇δ/δxb
∂

∂dc = Ka
bc

∂

∂da ; (50)

∇∂/∂db
∂

∂dc = Va
bc

∂

∂da , ∇∂/∂db
δ

δxc = Ya
bc

δ

δxa . (51)

For example, on z the covariant differential is obtained like (21), now for V = Va δ
δxa ∈ Hz:

∇V = ∇δ/δxb V ⊗ dxb +∇∂/∂db V ⊗ δdb = Va
|b

δ

δxa ⊗ dxb + Va|b
∂

∂da ⊗ δdb. (52)

Herein, (·)|a and (·)|b denote differentiation horizontally with respect to xa and vertically
with respect to db. Let γa

bc be coefficients of the Levi–Civita connection on z, Ca
bc be the

coefficients of the Cartan tensor on z, and Γa
bc be the coefficients of Cartan, Chern, and Rund

(horizontal) on z:
γa

bc =
1
2 gad(∂cgbd + ∂bgcd − ∂dgbc) = gadγbcd, (53)

Ca
bc =

1
2 gad(∂̄cgbd + ∂̄bgcd − ∂̄dgbc) = gadCbcd, (54)

Γa
bc =

1
2 gad(δcgbd + δbgcd − δdgbc) = gadΓbcd. (55)

2.2.4. A Divergence Theorem

The generalized Finsler bundle of the total space z is assigned base manifold m noting
dimm = n. The boundary denoted by ∂m is of class C1 and is of positive orientation.
A vector field V = Va δ

δxa ∈ Hz has contravariant components Va. The (n − 1) form
ααα(x, d) = Va(x, d)na(x, d)ω(x, d) is differentiable. Metric tensor components gab(x, d),
which are positive definite, apply for the horizontal distribution, and g = det(gab) > 0.
The affine horizontal connection Ha

bc = Ha
cb is chosen to ensure (

√
g)|a = 0 (e.g., Ha

bc = Γa
bc).

The existence is required for fiber coordinates d = d(x), representing functions of class C1

∀x ∈ m. Forms for area and volume are defined in (49). Then (30) is in the coordinate form
with respect to {xa}, ∫

m
[Va
|a + (VaCc

bc + ∂̄bVa)db
; a] dω =

∫
∂m

Vana ω. (56)

Denoted by na is the covector of the unit length normal to ∂m, Va
|a = δaVa + VaHb

ba,

and db
; a = ∂adb + Nb

a . The proof matches that of Theorem 1 upon changes in variables; a
corollary akin to Corollary1 also holds.



Symmetry 2023, 15, 1828 15 of 53

3. Finsler-Geometric Continuum Mechanics

The original theory of Finsler-geometric continuum mechanics [55,56] is formulated for
finite strains with conservation of momenta applying at equilibrium states (i.e., quasi-static
conditions). Subtle differences exist among certain assumptions for different instantiations,
incrementally revised in successive works. Most differences are explained in a review [54].

3.1. Motion and Deformation

Let ϕ :M→ m denote the motion of a material particle and Φ : m→M the inverse
motion. These functions are differentiable of class C3 and are one-to-one:

xa = ϕa(X), XA = ΦA(x), (a, A = 1, 2, . . . , n) (57)

with (Φ ◦ ϕ)(X) = X. Write Ξ = (ϕ, θ) to represent the motion in total, whereby Ξ : Z → z.
Refer to Figure 1.

Remark 14. The material field D and spatial field d are alternatively called director vectors or
internal state vectors. They need not be unit vectors herein. The physical meanings of these fields
depend on the particular application of the theory [54].

The class C3 motion functions for the internal state fields are

da = θa(X, D), DA = ΘA(x, d), (a, A = 1, 2, . . . , n). (58)

Remark 15. Herein, the dimensions of fibers are m = n, so n = dimU = dimM = dim
m = dim u. Allowance for m 6= n is conceivable [5,45]. But taking m = n allows for a clearer
interpretation of physics on the vertical vector bundle. Furthermore, m = n enables (9) and (43)
that simplify notation and calculations. For usual three-dimensional solid bodies, n = 3, as implied
in parts of prior work [54], but other dimensions are permissible (e.g., two-dimensional membranes
(n = 2) and one-dimensional rods (n = 1)).

From (57) and (58), a differentiable function h(x, d) : z→ R obeys the following laws
of transformation for configurational changes in coordinates of partial differentiation:

∂(h ◦ Ξ)
∂XA =

∂h
∂xa

∂ϕa

∂XA +
∂h
∂da

∂θa

∂XA ,
∂(h ◦ Ξ)

∂DA =
∂h
∂da

∂θa

∂DA . (59)

Remark 16. Bases, metrics, and connections can be prescribed independently for Z and z. This
allowance is in accordance with the field theory of classical continua [20,105]. Unlike Chapter 8 of
Bejancu [5], fields of frames are not required to convect from TZ to Tz in sync with Ξ. As such,
( δ

δxa , ∂
∂da , gab, Ha

bc, Ka
bc, Va

bc, Ya
bc, Na

b ) need not be obtained via push-forward operations by Ξ from
( δ

δXA , ∂
∂DA , GAB, HA

BC, KA
BC, VA

BC, YA
BC, NA

B ). But choosing Na
b as the push-forward of NA

B [5] is
beneficial since

Nb
a

∂ϕa

∂XA = NB
A

∂θb

∂DB −
∂θb

∂XA ⇒ δ(h ◦ Ξ)
δXA =

δh
δxa

∂ϕa

∂XA =
δh
δxa

δϕa

δXA =
δh
δxa Fa

A, (60)

by which δA(·) = Fa
Aδa(·) is a simple relation among δ derivatives on Z and z.

The two-point tensor F : HZ → Hz is the deformation gradient, implicit in (60).
By definition,

F =
δϕϕϕ

δX
=

δϕa

δXA
δ

δxa ⊗ dXA =
∂ϕa

∂XA
δ

δxa ⊗ dXA, (61)

with (57) used in the rightmost equality. The gradient of inverse motion f : Hz → HZ
follows by definition as
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f =
δΦΦΦ
δx

=
δΦA

δxa
δ

δXA ⊗ dxa =
∂ΦA

∂xa
δ

δXA ⊗ dxa. (62)

Remark 17. Accordingly, Fa
A(X) f A

b (x(X)) = δa
b and Fa

A(X) f B
a (x(X)) = δB

A. Usual stipulations
that the motion functions in (57) be regular hold. Thus det(Fa

A) > 0 and det( f A
a ) > 0.

Line element differentials introduced in (16) and (48) obey the following formulae:

dx = dxa δ

δxa = Fa
AdXA δ

δxa = FdX, dX = dXA δ

δXA = f A
a dxa δ

δXA = fdx. (63)

Advancing (63), with the definition of the determinant, recall (17) (reference) and (49)
(spatial) for elements and forms of volume. Denoting Jacobian determinants of trans-
formations as J = det(Fa

A)
√

g/G and j = 1/J = J−1 > 0 (e.g., [22,98]), coordinate
transformations give

dv = JdV = [det(Fa
A)
√

g/G]dV, dV = jdv = [det( f A
a )
√

G/g]dv, (64)

ϕ∗dω = JdΩ, Φ∗dΩ = jdω. (65)

Strain can be quantified using the Lagrangian deformation tensor C = CABdXA ⊗ dXB

(symmetric in covariant form via CAB = CBA):

|dx|2 = Fa
AgabFb

BdXAdXB = CABdXAdXB = 〈dX, CdX〉, CAB = Fa
AgabFb

B = GACCC
B . (66)

From (64), det(CAB) = det(CC
AGCB) = J2G. Then from the first of (50) and (60) [56,62],

∇δ/δXA
δ

δxc =
δxa

δXA∇δ/δxa
δ

δxc = δA ϕaHb
ac

δ

δxb = Fa
A Hb

ac
δ

δxb . (67)

Similarly, the second of (50) gives∇δ/δXA
∂

∂dc = Fa
AKb

ac
∂

∂db , although this is not needed later.

Figure 1. Total deformation Ξ = (ϕ, θ) : Z → z of material manifoldM (dimM = n = m = 2) with
base-space coordinates {XA} to spatial representation m with base-space coordinates {xa}. Internal
structure fields are (D, d) on total spaces (Z , z); arrows depict local components of state vectors D
and d for neighborhoods centered at X and x.

3.2. Particular Assumptions
3.2.1. Director Fields

The divergence theorem (31) is invoked to obtain conservation laws for macroscopic
and microscopic momenta in Section 3.3.3. Its derivation [37,54] requires the existence of
functional relations

DA = DA(X), da = da(x). (68)



Symmetry 2023, 15, 1828 17 of 53

The latter relation of (68) arises from the former via the application of (56) and (57)
(i.e., switching of independent variables). Then (57), (58), and (68) produce the follow-
ing various dependencies of director motion functions:

da = θa(X, D) = θ̂a(X, D(X)) = θ̄a(X), DA = ΘA(x, d) = Θ̂A(x, d(x)) = Θ̄A(x). (69)

Remark 18. In some prior work [55,56], other functional forms of motion functions with internal
state vectors as arguments were implemented. These likely more complex alternatives are admissible
but inessential [54]. The current theory, like some others [44,50,52], does not always require θ or Θ
to be specified explicitly, although the use of the former is implied later in Section 5.

The canonical and pragmatic rendering for θ(X, D), upon considering the existence of
functions DA(X), becomes [62]

d = D ◦Φ ⇔ d(x) = D(Φ(x)) ⇒ θa(D(X)) = DA(X)〈δda,
∂

∂DA 〉 = DA(X)δa
A, (70)

where δa
A is viewed as a shifter between Vz and VZ . Accordingly, δa

A = 1 ∀ a = A,
δa

A = 0 ∀ a 6= A.

Remark 19. Invoking (70), ∂Aθa(D(X)) = 0 by definitions of θa = θa(D(X)) and
∂A(·) = (∂(·)/∂XA)|D=const in (10). Also, ∂̄Aθa(D(X)) = δa

A by (11) and (70). Then (60)
reduces to Na

b = NA
B f B

b δa
A, and conveniently for the degenerate case: NA

B = 0⇔ Na
b = 0.

3.2.2. Connections and Metrics

Invocation of (31) with permissible GAB(X, D) necessitates affine connection coeffi-
cients with metric compatibility for GAB implying HA

BC = ΓA
BC, where ΓA

BC is the connection
of Cartan, Chern, and Rund in (26). For vertical affine connections, VA

BC = 0 is elementary,
which is consistent with the coefficients of Chern and Rund [2,3,106]. Setting NA

B = GA
B

via (29) further invokes the prescriptions of Chern and Rund, but this is inessential for
generalized Finsler geometry. Choices KA

BC = HA
BC [55,56] and YA

BC = VA
BC are logical,

given (9), but these are not mandatory. Setting KA
BC = 0 leading to metricity with regard to

δAB, the metric of the Cartesian space may also be of utility [54].
Let the metric tensor of Sasaki, GGG in (12), be assigned. From GAB of (13), pragmatic

connection coefficients over Z are summarized in (71); complementary connections over z
given ggg, where gab(x, d) is found in (47) (i.e., the spatial Sasaki metric), follow thereafter:

HA
BC = ΓA

BC, VA
BC = YA

BC = 0; Ha
bc = Γa

bc, Va
bc = Ya

bc = 0; Na
b = NA

B f B
b δa

A. (71)

Remark 20. Note that KA
BC and Ka

bc are left unspecified to admit mathematical descriptions of
different physics, in contrast to YA

BC and Ya
bc set equal to their purely vertical counterparts for

simplicity. Since nonlinear connection NA
B is also not explicitly chosen in (71) but is left general to

admit more physics than considered previously [54], (8) need not always hold for any transformation.
Thus NA

B must be checked for correct behaviors under coordinate changes. Once the former NA
B is

chosen, Na
b in (71) presumes (70) is invoked with (60).

Remark 21. If the fields GAB(X, D) and gab(x, d) are known, relations in Sections 2.1 and 2.2 can
be used to procure affine connections in (71). Zero-degree homogeneity of GAB with regard to D is
not required but is admitted. The GAB entries are not required to be consistent with L or F (i.e.,
a Lagrangian function or fundamental scalar of Finsler), though this is admissible per Section 2.1.5.
Physical arguments and material symmetries suggest GGG dependencies with respect to X and D.
Similar statements describe spatial metric ggg and components gab.

The decomposition of GAB as ḠAC, a Riemannian term, and an internal state term ĜC
B is

useful for describing fundamental physics and solving boundary value problems [55–57,62]:
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G = ḠĜ; GAB(X, D) = ḠAC(X)ĜC
B (X, D);

Ḡ = ḠAB dXA ⊗ dXB; Ĝ = ĜA
B

δ

δXA ⊗ dXB.
(72)

More specific functional forms in (72) are advocated here, implied by past applications [54]:

GAB(X, D) = ḠAC(X)ĜC
B (D(X)) = ĜC

A(D(X))ḠCB(X);

ḠAB = ḠBA, ĜC
AGBC = ĜC

B GCA.
(73)

Remark 22. Components of ḠAB are chosen to best represent the physics under consideration.
Typically, rectangular, spherical, polar, or cylindrical systems for M are witnessed in elastic-
ity. Components of ĜC

B are chosen, corresponding to the way internal structure D manifests in
length, area, and volume, as observed in Z , meaning the total space of the body with the evolving
microstructure [54,55,62].

Ideas apply analogously to the spatial metric gab(x, d) upon variable changes X → x
and D → d. For example, the spatial analog of (73) is

gab(x, d) = ḡac(x)ĝc
b(d(x)) = ĝc

a(d(x))ḡcb(x); ḡab = ḡba, ĝc
agbc = ĝc

bgca. (74)

All metrics in (73) and (74) are assumed invertible with positive determinants. A sym-
metric tensor C̄ [62] and volume ratio J̄ > 0 are defined to exclude the internal state-
dependence of strain:

C̄(X) = C̄AB(X) dXA ⊗ dXB, C̄AB = Fa
A ḡabFb

B, C̄A
B = ḠACC̄CB; (75)

J̄(X) =
√

det(C̄A
B (X)); J̄ = J

√
Ĝ/ĝ, Ĝ = det(ĜA

B ), ĝ = det(ĝa
b). (76)

3.3. Energy and Equilibrium
3.3.1. Variational Principle

A variational principle [54–56] is implemented. Let Ψ denote the total energy func-
tional ofM′ ⊂ M (a compact base space domain) having ∂M′ as its boundary of posi-
tive orientation. Free energy density ψ, on a referential volume basis of material, is the
integrand in

Ψ[ϕϕϕ, D] =
∫
M′

ψ(Fa
A, DA, DA

|B, XA) dΩ. (77)

One surface force is p = padxa, the traction vector for the mechanical force divided by
referential area. A second is z = zAδDA, serving as the conjugate thermodynamic traction
to the vector of the internal state. Denote a generic local, vector-valued volumetric source
term conjugate to structure variations by R = RAδDA, extending prior theory [54–56]
to accommodate more physics [30,107] (Appendix B). A variational principle for Finsler-
geometric continuum mechanics, holding X fixed but with x = ϕ(X) and D independently
variable parameters, is

δΨ[ϕϕϕ, D] =
∮

∂M′
(〈p, δϕϕϕ〉+ 〈z, δD〉)Ω +

∫
M′
〈R, δD〉 dΩ. (78)

In coordinates with variation of D in parentheses to distinguish from the basis {δDA},

δ
∫
M′

ψ dΩ =
∮

∂M′
{paδϕa}Ω +

∮
∂M′
{zCδ(DC)}Ω +

∫
M′
{RCδ(DC)}dΩ. (79)

Several results used in Section 3.3.3 are now noted, with α = 1 or α = 2 derived in
Appendix A via (71):
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δFa
A = δA(δϕa), δDA

|B = [δ(DA)]|B − (∂̄C NA
B − ∂̄CKA

BDDD)δ(DC), (80)

δ(dΩ) = 1
2 αGAB∂̄CGABδ(DC)dΩ = α∂̄C(ln

√
G)δ(DC)dΩ = αCA

CAδ(DC)dΩ. (81)

3.3.2. General Energy Density

As evident in (78), the independent variables entering the total free energy density
function ψ per unit reference volume, consist of the gradient of deformation, the director
vector of the internal state, its horizontal covariant derivative, and the reference position of
the material particle:

ψ = ψ(F, D,∇D, X) = ψ(Fa
A, DA, DA

|B, XA). (82)

Deformation gradient dependence via F measures strain energy of elasticity. The state
dependence via D renders the evolving microstructural contributions. The energy arising
from the heterogeneity of the microstructure (e.g., internal material surfaces) is captured by
the dependence on the internal state gradient:

∇D = DA
|B

∂

∂DA ⊗ dXB + DA|B
∂

∂DA ⊗ δDB; (83)

DA
|B = δBDA + KA

BCDC = ∂BDA − NA
B + KA

BCDC, DA|B = ∂̄BDA + VA
BCDC = δA

B . (84)

The dependence on X permits heterogeneous properties. Prior work [54,55] motivates (82).

Remark 23. The vertical gradient DA|B = δA
B , calculated from VA

BC = 0 by (71), provides no
information, so it is excluded from the arguments of energy density in (82).

The expansion of the integrand on the left in (79), with δXA = 0 by definition, is

δψ =
∂ψ

∂Fa
A

δFa
A +

∂ψ

∂DA δ(DA) +
∂ψ

∂DA
|B

δDA
|B = PA

a δFa
A + QAδ(DA) + ZB

AδDA
|B;

PA
a =

∂ψ

∂Fa
A

, QA =
∂ψ

∂DA , ZA
B =

∂ψ

∂DB
|A

.
(85)

Denoted by P is the mechanical stress tensor (i.e., the first Piola–Kirchhoff stress, a two-
point tensor, and generally non-symmetric). The internal thermodynamic force vector Q is
complementary to D, and the internal stress tensor Z is complementary to gradient ∇D.

3.3.3. Euler–Lagrange Equations

Connection coefficients in (71) are employed along with (57), (67), (68), (80), and (81).
Inserting (85) on the left side of (79), then integrating repeatedly by parts with (31)
(i.e., application of the theorem of Stokes in coordinate form, Theorem 1), gives

δ
∫
M′

ψ dΩ =
∫
M′
{PA

a δFa
A + QAδ(DA) + ZB

AδDA
|B}dΩ +

∫
M′

ψδ(dΩ)

=−
∫
M′
{∂APA

a + ∂̄BPA
a ∂ADB + PB

a ΓA
AB − PA

c Γc
baFb

A + PA
a CC

BC(∂ADB + NB
A)}δϕadΩ

−
∫
M′
{∂AZA

C + ∂̄BZA
C ∂ADB + ZB

CΓA
AB − ZA

B KB
AC −QC

+ ZB
A[∂̄C NA

B − ∂̄CKA
BDDD + δA

C CD
ED(∂BDE + NE

B )]− αψCA
CA}δ(DC)dΩ

+
∮

∂M′
{PA

a δϕa}NAΩ +
∮

∂M′
{ZA

C δ(DC)}NAΩ.

(86)
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Local Euler–Lagrange equations corresponding to δϕϕϕ and δD (i.e., admissible varia-
tions of parameters) for every X ∈ M′, and boundary conditions of natural form over ∂M′

are obtained as follows. Steps parallel those outlined in [55,56] with minor departures [54].
The first of these culminating Euler–Lagrange equations is the macroscopic balance

of linear momentum, derived by setting the first integral on the right-hand side of (86) to
zero, which is consistent with the right side of (79). Localizing the outcome and presuming
the result must hold for any admissible variation δϕa,

∂APA
a + ∂̄BPA

a ∂ADB + PB
a ΓA

AB − PA
c Γc

baFb
A = −PA

a CC
BC(∂ADB + NB

A). (87)

The second Euler–Lagrange equation describes the equilibrium of the internal state.
It is alternatively labeled a micro-momentum balance. It is derived by setting the second
volume integral of the right in (86), equal to the term on the far right in (79), and then
localizing, giving for any admissible variation δ(DC):

∂AZA
C + ∂̄BZA

C ∂ADB + ZB
CΓA

AB − ZA
B KB

AC − (QC − RC)

= αψCA
CA − ZB

A[∂̄C NA
B − ∂̄CKA

BDDD + δA
C CD

ED(∂BDE + NE
B )].

(88)

Natural boundary conditions on ∂M′ are derived by setting the second-to-last and
last boundary integrals in (86), equal to the remaining first and second boundary integrals,
respectively, on the right side of (79), and localizing the results, yielding for any admissible
variations, δϕa and δ(DC),

pa = PA
a NA, zA = ZB

ANB. (89)

Remark 24. With natural boundary conditions (89) or (ϕϕϕ(X), D(X)) enforced along
X ∈ ∂M′ (i.e., essential conditions), and with the local force density vector R(X) for each X ∈ M′,
(87), and (88) collectively form 2n coupled PDEs in 2n degrees-of-freedom xa = ϕa(X) and DA(X).
These apply at each X ∈ M′, and extend to all X ∈ M where material exists.

Remark 25. Consider simplified cases when Riemannian metrics are used: null D dependence of
G and no dependence of g on d. Then ΓA

BC = γA
BC, Γa

bc = γa
bc, and CA

BC = 0. The right side of
(87) vanishes, so (87) is the classic equilibrium equation for continua without body force [22,23,33].
Also, taking NA

B and KA
BC independent of D, (88) is similar to equilibrium equations for gradient

materials [108], including the phase-field theory [97,109].

Remark 26. Some prior work [55] set GAB(X, D) dependency in ψ, extending (82), and additional
stress was obtained for the metric dependence on D instead of the implicit dependence via QA. The
present approach is favored for brevity [54], but the former is admissible.

Proposition 1. Euler–Lagrange equations can be expressed in the following alternative way:

∂APA
a + ∂̄BPA

a ∂ADB + PB
a γA

AB − PA
c Γc

baFb
A = −PA

a CC
BC∂ADB, (90)

∂AZA
C + ∂̄BZA

C ∂ADB + ZB
CγA

AB − ZA
B KB

AC − (QC − RC)

= αψCA
CA − ZB

A(∂̄C NA
B − ∂̄CKA

BDDD + δA
C CD

ED∂BDE).
(91)

Proof. From (10) and (27),

ΓA
AB = ΓA

BA = ∂B(ln
√

G)− NA
B ∂̄A(ln

√
G) = γA

BA − NA
B CC

AC. (92)

Substituting (92) with symmetry γA
BC = γA

CB into (87) and (88) yields (90) and (91). �

Remark 27. Notably, (90) and (91) show how the nonlinear connection terms NA
B cancel, simplify-

ing calculations. Nonlinear connection NA
B still ultimately affects governing equations via influence
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on DA
|B = ∂BDA − NA

B + KA
BCDC, thus affecting ZB

A = ∂ψ/∂DA
|B, and through ∂̄C NA

B in (91).

Spatial Na
b can enter Γa

bc in (90). The linear connection KA
BC and its gradient ∂̄DKA

BC in (91) are
somewhat unique to the Finsler-geometric continuum mechanics. The emergence of CA

BA, the trace
of the tensor of Cartan, for all forms of these Euler–Lagrange equations, is also a distinctive feature.
This term, of course, vanishes when GAB is independent of D (i.e., a Riemannian rather than the
Finslerian metric).

3.3.4. Spatial Invariance and Material Symmetry

First consider rotations of the spatial frame of reference, given by orthonormal trans-
formation qa

b in (40) whereby det(qa
b) = 1 and q̃a

b = gacqd
c gbd (i.e., q−1 = qT [22]). Since

F → qF under such coordinate changes, ψ in (82) should obey more restricted forms to
maintain proper observer independence. Two possibilities are

ψ = ψ̂[C(F, g), D,∇D, X] = ψ̂(CAB, DA, DA
|B, XA), (93)

ψ = ψ̄[C̄(F, ḡ), D,∇D, X] = ψ̄(C̄AB, DA, DA
|B, XA), (94)

noting that (82) can be consistently expressed from (57), (58), (73), and (74), as

ψ(F, D,∇D, X) = ψ̌(F, D, Ḡ(X), Ĝ(D), ḡ(ϕ(X)), ĝ(θ(X, D)),∇D, X). (95)

From (66), (75), (93), and (94), the first Piola–Kirchhoff stress PA
a of (85) is calculated

using the chain rule:

PA
a =

∂ψ

∂Fa
A
= 2gabFb

B
∂ψ̂

∂CAB
= 2ḡabFb

B
∂ψ̄

∂C̄AB
. (96)

The resulting Cauchy stress tensors with spatial components σab and σ̄ab are symmetric in
contravariant form, matching traditional conservation of angular momentum [20,22,33]:

σab =
1
J

gacPA
c Fb

A =
2
J

Fa
AFb

B
∂ψ̂

∂CAB
= σba, σ̄ab =

1
J̄

ḡacPA
c Fb

A =
2
J̄

Fa
AFb

B
∂ψ̄

∂C̄AB
= σ̄ba. (97)

Now consider changes in the material frame of reference, given by the transformation
QA

B of (1) and (9) with inverse Q̃B
A. Under affine changes in coordinates XA → QC

AXA,
it follows that dXA → QC

AdXA, Fa
A → Q̃A

C Fa
A, GAB → Q̃A

C Q̃B
DGAB, CAB → Q̃A

C Q̃B
DCAB,

ḠAB → Q̃A
C Q̃B

DḠAB, C̄AB → Q̃A
C Q̃B

DC̄AB, DA → QC
ADA, δDA → QC

AδDA, and DA
|B →

QC
AQ̃B

DDA
|B. Energy densities ψ, ψ̂, and ψ̄ should be invariant under all transformations

Q̃A
B (e.g., rotations, reflections, inversions) belonging to the symmetry group Q of the

material [33,61,81,110] (e.g., ψ→ ψ). The present focus is on polynomial invariants [81,110]
with basis P of invariant functions with respect to Q̃ ∈ Q and energy offsets ψ̂0 = constant,
ψ̄0 = constant:

P̂ = {I1, I2, . . . , Iυ}; Iα = Iα(C, D,∇D), ψ̂ = ψ̂(I1, I2, . . . , Iυ, X) + ψ̂0; (98)

P̄ = { Ī1, Ī2, . . . , Īζ}; Īα = Īα(C̄, D,∇D), ψ̄ = ψ̄( Ī1, Ī2, . . . , Īζ , X) + ψ̄0. (99)

The total number of applicable invariants is υ or ζ for (93) or (94). Stress of (96) becomes

PA
a = 2gabFb

B

υ

∑
α=1

ψ̂α
∂Iα

∂CAB
= 2ḡabFb

B

ζ

∑
α=1

ψ̄α
∂ Īα

∂C̄AB
; ψ̂α =

∂ψ̂

∂Iα
, ψ̄α =

∂ψ̄

∂ Īα
. (100)

Remark 28. A thorough and modern geometric treatment of material symmetry, uniformity,
and homogeneity in continuous media is included in a recent monograph [111].
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4. One-Dimensional Base Manifold

The framework of Sections 2 and 3 is applied for n = 1, a 1D base manifoldM. In
Section 4.1, geometry and kinematics are presented, including assumptions that enable
tractable solutions to several classes of boundary value problems while at the same time
maintaining sufficient generality to address broad physical behaviors. The resulting 1D
governing equations are derived in Section 4.2. General solutions are obtained for two
problem classes in Section 4.3. Constitutive functions for soft biological tissue, namely a
1D strip of skin under axial extension, are given in Section 4.4. Model parameters and
analytical solutions for 1D skin stretching and tearing are reported in Section 4.5.

4.1. Geometry and Kinematics

Let X = X1. A reference domain {M : X ∈ [−L0, L0]} is considered, where the total
length relative to a Euclidean metric is 2L0, and boundary ∂M is the endpoints X = ±L0.
The referential internal state vector reduces to the single component D = D1, which is
assumed to have physical units, like X, of length. The spatial coordinate is x = x1, and the
spatial state component is d = d1. A normalization constant (i.e., regularization length) l
is introduced, and the physically meaningful domain for the internal state is assumed as
D ∈ [0, l]. The associated order parameter is

ξ(X) =
D(X)

l
=

d(ϕ(X))

l
, l > 0, (101)

with a meaningful domain ξ ∈ [0, 1], and where (68) and (70) are invoked. For generic f
and h, differentiable in their arguments, let

f ′(X) =
d f (X)

dX
, f ′′(X) =

d2 f (X)

dX2 ; ḣ(ξ) =
dh(ξ)

dξ
, ḧ(ξ) =

d2h(ξ)
dξ2 . (102)

For 1D manifolds, the following metrics apply from (73) and (74):

G11(X, D) = G(X, D) = Ḡ(X)Ĝ(D) = Ĝ(D),

g11(x, d) = g(x, d) = ḡ(x)ĝ(d) = ĝ(d).
(103)

Since ḡ = Ḡ = 1 for isometric 1D Riemannian spaces, setting

ĝ(d(ϕ(X))) = Ĝ(D(X))↔ g(ξ) = G(ξ) (104)

renders m andM isometric when φ(X) = X + c0 ⇔ F(X) = 1, regardless of local values
of D, d, or ξ at corresponding points x = ϕ(X).

Remark 29. This assumption (104), used in Section 4, may be relaxed in future applications to
address residual stress (e.g., from growth [30]; see Appendix B), especially for n = dimM > 1.

Henceforth, in Section 4, the functional dependence on D or d is replaced with that on
ξ. Then

D′ =
ξ ′

l
,

∂ f (X, D)

∂D
=

1
l

∂ f (X, ξ(D))

∂ξ
. (105)

The following functional forms are assumed for the referential nonlinear connection NA
B

and linear connection KA
BC, with N0 = constant and K̂(X) both dimensionless:

NA
B → N1

1 = N = −N0lξ ′,

KA
BC → K1

11(X, ξ) = K(X, ξ) =
K̂(X)

lξ
⇒ ∂̄1K1

11D = −K1
11.

(106)
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Spatial coefficients Ka
bc do not affect the governing equations and, thus, are left unspecified.

Conditions (71) apply in 1D, leading to, with (101)–(106),

ΓA
BC → Γ1

11 =
1

2G
δ1G =

1
2G

(∂1G− N1
1 ∂̄1G) = −N∂̄1(ln

√
G) = −NC1

11 = −N
χ

l
, (107)

χ(ξ) =
Ġ(ξ)

2G(ξ)
=

ġ(ξ)
2g(ξ)

= lC1
11(ξ), (108)

Na
b →

N
F

= −N0lξ ′

F
= −N0l

dξ

dx
, Γa

bc → −
N
F

ġ
2g

= −N
F

χ

l
. (109)

The deformation gradient, deformation tensor, Jacobian determinant, and director
gradient are

Fa
A → F1

1 = F =
dϕ

dX
= ϕ′,

CA
B → C1

1 = C = G11g11F1
1 F1

1 = F2 = (ϕ′)2, J = F =
√

C;
(110)

DA
|B → D1

|1 =
dD
dX
− N + KD = (1 + N0)lξ ′ + K̂. (111)

From (104), C̄ = C̄1
1 = C1

1 = C and J̄ = J in 1D reductions of (75) and (76).

4.2. Governing Equations

A generic energy density is assigned and equilibrium equations are derived for the 1D
case, given prescriptions of Section 4.1.

4.2.1. Energy Density

In 1D, CAB consists of a single invariant C, and DA and DA
|B likewise. Dependencies

in (82) are suitably represented by F, ξ, and (ξ ′, X) with (101) and (111). Since C̄ = C = F2,
all energy densities ψ of (82) in (93)–(95) are expressed simply as

ψ = ψ(C, ξ, ξ ′, X). (112)

Let µ0 denote a constant, which is later associated with an elastic modulus, with units of
energy density.

Remark 30. For comparison with data from experiments in the ambient Euclidean 3-space, µ0 can
be assigned units of energy per unit (3D) volume, such that Ψ =

∫
M ψdΩ represents the energy

per unit cross-sectional area normal to X. For a 1DM, this cross-sectional area is, by definition,
constant.

Denote by Υ0 a constant, related to surface energy, with units of energy per unit (2D
fixed cross-sectional) area. Let W be the strain energy density and the Λ energy density
associated with the microstructure. Let w denote a dimensionless strain energy function,
y denote a dimensionless interaction function (e.g., later representing elastic degradation
from microstructure changes), λ denote a dimensionless phase energy function, and ι
denote a dimensionless gradient energy function assigned a quadratic form. Free energy
density (112) is then prescribed in intermediate functional form, as follows:

ψ(C, ξ, ξ ′, X) = W(C, ξ) + Λ(ξ, ξ ′, X) =
µ0

2
w(C)y(ξ) +

Υ0

l
[λ(ξ) + ι(ξ ′, X)], (113)

ι = |D1
|1|2 − K̂2 = D1

|1G11G11D1
|1 − K̂2

= [(1 + N0)lξ ′ + K̂]2 − K̂2, (N0 = constant, K̂ = K̂(X)).
(114)



Symmetry 2023, 15, 1828 24 of 53

Note that ι(0, X) = 0. For null ground-state energy and stress, ψ(1, 0, 0, X) = 0 and
∂ψ
∂C (1, 0, 0, X) = 0:

w(1) = 0,
dw
dC

(1) = 0,
d2w
dC2 ≥ 0; λ(0) = 0. (115)

The third of (115) ensures the convexity of w. Thermodynamic forces originating
in (85) are derived as

P = P1
1 =

∂ψ

∂F
= 2

g
G

F
∂ψ

∂C
= 2
√

C
∂ψ

∂C
= µ0y

√
C

dw
dC

, (116)

Q = Q1 =
∂ψ

∂D
=

1
l

∂ψ

∂ξ
=

µ0

2l
w

dy
dξ

+
Υ0

l2
dλ

dξ
=

Υ0

l2

(
A0wẏ + λ̇

)
, A0 =

µ0l
2Υ0

, (117)

Z = Z1
1 =

∂ψ

∂D1
|1

=
Υ0

l
∂ι

∂D1
|1

= 2
Υ0

l
D1
|1 = 2

Υ0

l
[(1 + N0)lξ ′ + K̂]. (118)

The volumetric source term in (78) is prescribed as manifesting from changes in
energy density, proportional to changes in the local referential volume form (e.g., physically
representative of local volume changes from damage/tearing, similar to the effects of tissue
growth on energy (Appendix B)):

R = R1 = βψ∂̄1(ln
√

G) =
β

l
ψχ, (β = constant). (119)

4.2.2. Linear Momentum

The macroscopic momentum balance, (87) or (90) is, upon the use of relations in
Sections 4.1 and 4.2.1,

dP
dX

= P(N0 − 1)χ
dξ

dX
= −(1− N0)

P
2G

dG
dX

. (120)

This separable ordinary differential equation (ODE) of the first order is integrated directly:∫ P

P0

d(lnP) = −(1− N0)
∫ G

G0

d(ln
√
G) ⇒ P = P0

(√
G0/G

)1−N0
. (121)

The integration limit on G(ξ(X)) is G0 = G(0), and P0 is a constant stress linked to ξ = 0.

Remark 31. If G is Riemannian, then G = G0 and P = P0 = constant. In the Finslerian setting,
P can vary with X if ξ varies with X, and N0 differs from unity. However, if P vanishes on ∂M
(i.e., at X = ±L0), then P0 = 0 necessarily, so P(X) = 0 ∀X ∈ M, meaning this 1D domain
cannot support residual stress. The same assertion applies when (104) is relaxed and N0 vanishes.

From (116) and (121), when µ0 is nonzero,

√
C(X)

dw(C(X))

dC
y(ξ(X))

[
G(ξ(X))

G0

](1−N0)/2

=
P0

µ0
= constant, (122)

where the value of P0, constant for a given static problem, depends on the boundary conditions.
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4.2.3. Micro-Momentum

Define K̄(X) = lK̂(X). Then upon use of relations in Sections 4.1 and 4.2.1, and
dividing by 2Υ0(1+ N0), the microscopic momentum balance, as expressed in (88) or (91), is

d2ξ

dX2 + χ(ξ)

[
1− (1 + N0)(α− β)

2

](
dξ

dX

)2
+

K̄(X)

l2 χ(ξ)

[
1

1 + N0
− (α− β)

]
dξ

dX

+
dK̄(X)

dX
1

l2(1 + N0)
− 1

2l2(1 + N0)

[
dλ(ξ)

dξ
+ (α− β)χ(ξ)λ(ξ)

]
=

A0w(C(X))

2l2(1 + N0)

[
dy(ξ)

dξ
+ (α− β)χ(ξ)y(ξ)

]
.

(123)

This is a nonlinear and non-homogeneous second-order ODE with variable coefficients.
General analytical solutions are not feasible. However, the following assumption is made in
Section 4 to reduce the nonlinearity (second term on the left side) and render some special
solutions possible:

β = α− 2/(1 + N0). (124)

Remark 32. Assumption (124) generalizes, yet is consistent with, physically realistic choices for
fractures, shear bands, cavitation, and phase transitions [55,56,62]: α = 2, β = 0, N0 = 0.

Applying (124) with notations of (102), (123) reduces to the form studied in the re-
mainder of Section 4:

l2(1 + N0)ξ
′′ − λ̇

2
− χλ

1 + N0
− K̄χξ ′ + K̄′ =

A0w
2

[
ẏ +

2χy
1 + N0

]
. (125)

This is a linear second-order ODE, albeit generally non-homogeneous with variable co-
efficients. For the special case that Υ0(1 + N0) = 0, terms on the left of (123) all vanish,
and equilibrium demands

µ0w(C(X))

[
dy(ξ)

dξ
+

2χ(ξ)y(ξ)
1 + N0

]
= 0. (126)

4.3. General Solutions
4.3.1. Homogeneous Fields

Consider cases wherein ξ(X)→ ξH = constant ∀X ∈ [−L0, L0]. Assign the notation
fH(X) = f (X, ξH). Then stress and momentum conservation in (116) and (121) combine to

PH = µ0
√

C
dw
dC

yH = P0

(
G0

GH

)(1−N0)/2
= constant. (127)

If µ0, yH, and dw/dC are nonzero, the convexity of w suggests C = CH = F2
H =

constant. Accordingly, ϕH(X) = FHX + c0. If µ0 = 0, yH = 0, or dw/dC = 0, then PH = 0,
and ϕH(X) is arbitrary. Assume now that none of the former are zero, such that F = FH,
C = CH, w = wH = w(CH) are constants. Then equilibrium Equation (125), with K̄′H = K′0,
becomes a dimensionless constant:

− λ̇H

2
− χHλH

1 + N0
+ K′0 =

A0wH

2

[
ẏH +

2χHyH

1 + N0

]
. (128)

Remark 33. If ϕH is imposed by displacement boundary conditions, then CH is known, as is wH.
In that case, (128) is an algebraic equation that can be solved implicitly for ξH, the value of which is
substituted into (127) for stress PH. If PH is imposed by traction boundary conditions, then (127)
and (128) are to be solved simultaneously for CH and ξH.
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4.3.2. Stress-Free States

Now consider cases wherein P = 0 ∀X ∈ [−L0, L0]. Relation (120) is trivially satisfied.
Assume µ0 is nonzero. Then (122) requires, since C > 0, G > 0,

dw(C(X))

dC
y(ξ(X)) = 0. (129)

This is obeyed for any y(ξ) at C = 1 (i.e., rigid-body motion) via (115). Assume further that
w = 0, again satisfied at C = 1 via (115). Then the right side of (125) vanishes, leaving

ξ ′′ − K̄χ

l2(1 + N0)
ξ ′ − λ̇

2l2(1 + N0)
− χλ

l2(1 + N0)2 +
K̄′

l2(1 + N0)
= 0, (130)

with functional dependencies ξ(X), χ(ξ), K̄(X), and λ(ξ). The ODE is linear or nonlinear
depending on forms of λ and χ; analytical solutions can be derived for special cases.

If K̄ = constant, (130) is autonomous. If K̄ = 0, then (130) is

d2ξ

dX2 = ζ
dζ

dξ
=

1
2l2(1 + N0)

[
dλ

dξ
+

2χ(ξ)λ(ξ)

1 + N0

]
, (131)

where ζ = ξ ′ ⇒ ξ ′′ = ζdζ/dξ. The right equation can be separated and integrated as

1
2

ζ2 =
1

2l2(1 + N0)

∫ [dλ

dξ
+

2χ(ξ)λ(ξ)

1 + N0

]
dξ + c1

⇒ dξ

dX
= ± 1

l
√

1 + N0

(∫ [dλ

dξ
+

2χ(ξ)λ(ξ)

1 + N0

]
dξ + c1

)1/2

.

(132)

This first-order ODE can be separated and solved for ξ = arg[X(ξ)], where

X(ξ) = ±l
√

1 + N0

∫ dξ

{
∫
[dλ/dξ + 2χ(ξ)λ(ξ)/(1 + N0)]dξ + c1}1/2 + c2. (133)

Integration constants are c1 and c2, determined by boundary conditions.
Now allow arbitrary K̄(X) but restrict χ = 0 (e.g., G = G0). Assume λ(ξ) is quadratic,

such that λ̇ = 2ω0 + 2ω1ξ. Now (130) is linear:

d2ξ

dX2 −
ω1

l2(1 + N0)
ξ =

1
l2(1 + N0)

(
ω0 −

dK̄
dX

)
. (134)

This ODE is non-homogeneous but has constant coefficients. Assume ω1 > 0 and
N0 > −1. Then

ξ(X) = c1exp
[
(X/l)

√
ω1/(1 + N0)

]
+ c2exp

[
−(X/l)

√
ω1/(1 + N0)

]
+ ξp(X), (135)

where c1 and c2 are new constants and ξp is the particular solution from ω0 and
K̄(X) = lK̂(X).

4.4. Constitutive Model

The framework is applied to a strip of skin loaded in the tension along the X direction.

Remark 34. A 1D theory cannot distinguish between uniaxial strain conditions, uniaxial stress
conditions, or anisotropy. Thus, parameters entering the model (e.g., µ0, Υ0) are particular to those
loading conditions and material orientations from experiments to which they are calibrated (e.g.,
uniaxial stress along a preferred fiber direction).
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The nonlinear elastic potential of Section 4.4.2 is specialized to 1D in the context
of a 3D model [71,82,83,92]. The internal structure variable ξ = D/l accounts for local
rearrangements that lead to softening and degradation under the tensile load [72–74,77]:
fiber sliding, pull-out, and breakage of collagen fibers, as well as the rupture of the elastin
fibers and ground matrix.

Remark 35. Specifically, D is a representative microscopic sliding or separation distance among
microstructure constituents, and l is the value of this distance at which the material can no longer
support the tensile load. In the context of cohesive theories of the fracture [73,112,113], D can be
interpreted as a crack-opening displacement.

Remark 36. Some physics represented by the present novel theory, not addressed by nonlinear
elastic-continuum damage [73,90] or phase-field [95,114] approaches, are summarized as follows.
The Finslerian metrics G(ξ) = g(ξ) account for local rescaling of material and spatial manifolds
M and m due to microstructure changes (e.g., expansion due to tearing or cavitation). A nonlinear
connection N0 rescales the quadratic contribution of the gradient of ξ to the surface energy by a
constant, and the linear connection K̂ rescales the linear contribution of the gradient of ξ to surface
energy by a continuous and differentiable function of X, enabling a certain material heterogeneity.

4.4.1. Metrics

From (16), (48), (66), (103), (104), and (110), the difference in squared lengths of line
elements dx and dX is

(|dx|2 − |dX|2)(C, ξ) = G(ξ)(C− 1)dX dX. (136)

Herein, the metric is assigned an exponential form that is frequent in generalized Finsler
geometry [7,55] and Riemannian geometry [27,30]:

G(ξ) = exp
(

2k
r

ξr
)
⇒ χ(ξ) =

Ġ
2G

=
ġ

2g
= kξr−1. (137)

For ξ ∈ [0, 1], two constants are k, which is positive for expansion, and r > 0.

Remark 37. Local regions ofM at X and m at x = ϕ(X) are rescaled isometrically by G(ξ(X)).
Physically, this rescaling arises from changes in structure associated with degradation, to which
measure 1

2 ln G(ξ) is interpreted as a contributor to remnant strain. For Riemannian metrics,
G = Ḡ = ḡ = g = 1, in which case (136) is independent of ξ and this remnant strain always vanishes.

The ratio of constants is determined by the remnant strain contribution at failure:
ε̂ = k

r = 1
2 ln G(1). Since ξ ∈ [0, 1], a smaller r at a fixed k

r gives a sharper increase in
1
2 ln G versus ξ; values of k and r are calibrated to data in Section 4.5; choices of N0 and
K̄ are explored parametrically therein. Nonlinear connection N0 = constant and linear
connection K̂(X) = K̄(X)/l affect the contribution of the state gradient ξ ′ to surface energy
ι via (113) and (114). Constraint N0 > −1 is applied to avoid model singularities and
encompass the trivial choice N0 = 0. The value of N0 uniformly scales the contribution of
(ξ ′)2 to ι and ψ. Function K̂ scales, in a possibly heterogeneous way, the contribution of ξ ′

to ι and ψ. Even when ξ ′ vanishes, N0 and K̄ can affect solutions.

4.4.2. Nonlinear Elasticity

Strain energy density W in (113) is dictated by the normalized (dimensionless)
function w(C):

w(C) = (
√

C− 1)2 +
a1

2b1

[
exp{b1(C− 1)2} − 1

]
, (138)
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where dimensionless constants are a1 ≥ 0 and b1 > 0, and µ0 > 0 is enforced along with
Υ0 > 0 in (113). This adapts prior models for collagenous tissues [71,82,83,92] to the 1D
case. The first term on the right, linear in C, accounts for the ground matrix and elastin. The
second (exponential) term accounts for the collagen fibers, which, in the absence of damage
processes, stiffen significantly at large C. Such stiffening is dominated by the parameter b1,
whereas a1 controls the fiber stiffness at a small stretch

√
C ≈ 1 [71].

The elastic degradation function y(ξ) and independent energy contribution λ(ξ)
in (113) are standard from phase-field theories [95,114], where ϑ ∈ [0, ∞) is a constant with
ϑ = 2 typical for brittle fracture and ϑ = 0 7→ y = 1 for purely elastic response:

y(ξ) = (1− ξ)ϑ, ẏ(ξ) = −ϑ(1− ξ)ϑ−1; λ(ξ) = ξ2, λ̇(ξ) = 2ξ. (139)

When ϑ > 0, y(1) = 0, no strain energy W or tensile load P is supported at X when
D(X) = l. Verification of (115) for prescriptions (138) and (139) is straightforward [81,82].
Stress P, which is conjugate to F =

√
C, and force Q, which is conjugate to D = lξ, are

from (116), (117), (138), and (139):

P(C, ξ) = µ0(1− ξ)ϑ
[
(
√

C− 1) + a1
√

C(C− 1)exp{b1(C− 1)2}
]
, (140)

Q(C, ξ) =
2Υ0

l2

[
ξ − A0ϑ

2
(1− ξ)ϑ−1

(
(
√

C− 1)2 +
a1

2b1

[
exp{b1(C− 1)2} − 1

])]
. (141)

Remark 38. Ideal elasticity (i.e., no structure-mediated metric variation or degradation) is obtained
when k = 0⇒ G = 1⇒ χ = 0, ϑ = 0↔ y = 1⇒ ẏ = 0, and K̄′ = 0. In this case, as λ̇(0) = 0
by (139), trivial solutions to (121) and (123) are P(X) = P0 = constant, ξ(X) = 0 ∀X ∈ M.

4.5. Specific Solutions

Inputs to the model are nine constants l > 0, k, r > 0, N0 > −1, µ0 > 0, a1 ≥ 0, b1 > 0,
ϑ ≥ 0, Υ0 > 0, and the function K̄(X). These are evaluated for stretching and tearing of
skin [73,74,113] by applying the constitutive model of Section 4.4 to the general solutions
derived in Section 4.3.

4.5.1. Homogeneous Fields

Here, the skin specimen is assumed to degrade homogeneously in a gauge section
of initial length 2L0 (i.e., diffuse damage), an idealization fairly characteristic of certain
experiments [63,68,72,74,87]. As per Section 4.3.1, assume deformation control, with
F = FH =

√
CH ≥ 1 increased incrementally from unity. The analytical solution for

ξ = ξH is then the implicit solution of (128) upon substituting (137)–(139), here for ϑ > 0:

ξH + [k/(1 + N0)]ξ
1+r
H = 1

2 A0ϑ(1− ξH)
ϑ−1{(√CH − 1)2 + [a1/(2b1)]

×
[
exp{b1(CH − 1)2} − 1

]
}{1− 2kξr−1

H (1− ξH)/[(1 + N0)ϑ]}+ K′0.
(142)

This dimensionless solution does not depend on µ0, Υ0, or l individually, but only on the
dimensionless ratio A0 = µ0l

2Υ0
. However, stress PH = P(CH, ξH) is found from (140), which

depends on µ0. The value of µ0 is comparable to the low-stretch tensile modulus in some
experiments [71,75], acknowledging significant variability in the literature.

Stress P is shown in Figure 2a, first assuming N0 = 0 and K′0 = 0 for simplicity.
The Finsler model, with A0 = 8.5× 10−2, corresponding to baseline parameters given in
Table 1, successfully matches experimental data [74]. Stretch corresponding to Figure 5e
in the referenced experimental work [74] is defined as engineering strain plus 1.2 here
in Figure 2a of Section 4.5.1 and similarly later in Section 5.5.1 to account for pre-stress
(≈0.7 MPa) and pre-strain (≈0.2). Thus

√
C = 1 consistently for stress-free reference states

among models and experiments. Stress-free states at null strain are consistent with the
data in Figure 3a of the same referenced external work [74]. Alternatively, 2 σ0

µ0
(
√

C− 1),
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with σ0 = constant, can be added to w of (138) giving a pre-stress of P(C=1,ξ=0) = σ0 to fit
data with pre-stress. This, however, would require relaxation of the second of (115).

Remark 39. The ideal elastic solution (ξ = 0) is shown for comparison. Excluding structure
evolution corresponding to collagen fiber rearrangements, sliding, and breakage, the model is too
stiff relative to the data for which such microscopic mechanisms have been observed [74]. The ideal
elastic model is unable to replicate the linearizing, softening, and failure mechanisms with increasing
stretch

√
C reported in experiments on the skin and other soft tissues [63,64,68,74,87].

In Figure 2b, the effects of ϑ on P are revealed for ε̂ = 0.1, r = 2, N0 = 0, and K′0 = 0,
noting ϑ = 0 produces the ideal nonlinear elastic solution ξH = 0 in (142). Peak stress
increases with decreasing ϑ; the usual choice from phase-field theory ϑ = 2 provides close
agreement with data in Figure 2a. In Figure 2c, the effects of Finsler metric scaling factors
ε̂ = k

r and r on stress P are demonstrated, where, at fixed r, peak stress increases (decreases)
with increasing (decreasing) ε̂ and k. Baseline choices ε̂ = 0.1 and r = 2 furnish agreement
with the experiment in Figure 2a. A remnant strain of 0.1 is of the same order of magnitude
observed in cyclic loading experiments [72,78]. Complementary effects on the evolution of
the structure versus stretch are shown in Figure 2e: modest changes in ξ produce significant
changes in P. In Figure 2d, the effects of connection coefficients N0 and K′0 are revealed,
holding material parameters at their baseline values in Table 1. For this homogeneous
problem, maximum P decreases with increasing N0 and K′0. The corresponding evolution of
ξ is shown in Figure 2f. When K′0 < 0, a viable solution ξH ∈ [0, 1] exists only for

√
C > 1.

The total energy per unit cross-sectional area of the specimen is Ψ̄, found upon
integration of ψ(CH, ξH) in (113) onMwith the local element of volume dV =

√
G(ξH)dX:

Ψ̄
L0

= µ0

[
(1− ξH)

ϑ{(
√

CH − 1)2 +
a1

2b1

[
exp{b1(CH − 1)2} − 1

]
}+ ξ2

H
A0

]

× exp
(

k
r

ξr
H

)
.

(143)

Table 1. Baseline model parameters for rabbit skin tissue: 1D and 2D theories.

Parameter Units Definition Value (1D) Value (2D)

l mm length scale 0.04 0.04
k · · · metric scaling factor 0.2 0.2
m · · · metric scaling factor · · · 0.3
r · · · metric scaling exponent 2 2
µ0 N/mm2 shear modulus (axial 1D) 0.2 0.2
κ0 N/mm2 bulk modulus (κ0 = k0µ0) · · · 1.2
a1 · · · nonlinear elastic constant 2.8 2.8
a2 · · · nonlinear elastic constant · · · 6
b1 · · · nonlinear elastic constant 0.055 0.055
b2 · · · nonlinear elastic constant · · · 0.17
ϑ · · · degradation exponent 2 2
ς · · · degradation exponent · · · 2
Υ0 mJ/mm2 isotropic surface energy 0.47 0.47
γξ · · · anisotropic energy factor · · · 1
γη · · · anisotropic energy factor · · · 0.84
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Figure 2. Extension and tearing of skin for the imposed axial stretch ratio
√

C, 1D model: (a) stress P
comparison with data [74] (see text Section 4.5.1 for the definition of experimental stretch ratio) of
Finsler model (baseline) and ideal nonlinear elasticity (null structure change) (b) effect on stress P
of energy degradation exponent ϑ with ε̂ = 0.1, r = 2, N0 = 0, and K′0 = 0 (c) effect on stress P of
Finsler metric scaling ε̂ = k

r and r with ϑ = 2, N0 = 0, and K′0 = 0 (d) effect on stress P of nonlinear
connection N0 and linear connection K′0 with ϑ = 2, ε̂ = 0.1, and r = 2 (e) effect on the internal
structure ξ = D/l of Finsler metric scaling ε̂ = k

r and r with ϑ = 2, N0 = 0, and K′0 = 0 (f) effect
on the internal structure ξ = D/l of nonlinear connection N0 and linear connection K′0 with ϑ = 2,
ε̂ = 0.1, and r = 2.

4.5.2. Stress-Free States

The stress-free solutions of Section 4.3.2 are applied to evaluate the remaining un-
known parameters l and Υ0, given µ0 and A0 from Section 4.5.2. Assume the specimen tears
completely at its midpoint at X = 0, such that ξ(0) = 1. No load is supported anywhere,
and only rigid body motion is possible at other locations X where ξ(X) > 0. Assume
the specimen is clamped at its ends where it is gripped, such that ξ(−L0) = ξ(L0) = 0.
Symmetry conditions ξ(−X) = ξ(X) are imposed, with ξ ′(0) discontinuous, such that a
solution needs to be calculated only for the half-space X ∈ [0, L0].
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First, let K̄ = lK̂ = 0, so that (133) holds. Assume c1 = 0 corresponding to ξ ′ = 0 where
ξ = 0 since the anti-derivative in (132) vanishes at ξ = 0 when λ = ξ2,
χ = kξr−1, r > 0. It is verified a posteriori [55,59,62] that this closely approximates
true boundary conditions ξ(±L0) = 0 as well as ξ ′(±L0) = 0 for L0 � l. Then the
physically valid (negative) root for the half-domain giving X ≥ 0 in (133) becomes, with
(137) and (139),

X(ξ)

L0
= − l

L0

√
1 + N0

∫ z=ξ

z=1

dz
z
√

1 + 2kzr/[(1 + N0)(2 + r)]
. (144)

The lower limit follows from X(1) = 0, obviating c2 in (133). Analytical solution ξ = arg X(ξ)
is exact, but it is most easily evaluated by quadrature when k is nonzero, decrementing z
from 1 to 0 in small negative steps. The profile of ξ(X) depends on X/L0 and l/L0, but not
l or L0 individually.

Remark 40. This new 1D solution, (144), agrees with more specific solutions derived in past work:
N0 = 0 and r = 1 [55,56] with slight correction [59] and N0 = 0 and r = 2 [59].

Normalized surface energy per two-sided cross-sectional area, γ̄, is obtained by inte-
gration of ψ = Λ in (113) overM:

γ̄ =
1

2Υ0

∫ L0

−L0

ψ
√

G dX

=
1
2l

∫ L0

−L0

{ξ2 + (1 + N0)lξ ′[2K̂ + (1 + N0)lξ ′]} exp[(k/r)ξr]dX.
(145)

This energy likewise depends on l/L0 but not l or L0 individually. Baseline values of k and
r are now taken from Table 1. The solution (144) is shown for N0 = 0 and different l/L0
in Figure 3a. The smaller (larger) the regularization length ratio l/L0, the sharper (more
diffuse) the zone centered at the midpoint of the domain over which prominent structure
changes occur.

The normalized energy density (145) is shown in Figure 3b versus l/L0 for several N0.
Increasing N0 increases this energy, as might be anticipated from (113) with (114) when
K̂ = 0. A stress-free ruptured state is energetically favorable to a stressed homogeneous
state (§4.5.1) from applied deformation CH when Ψ̄ > 2γ̄Υ0, with Ψ̄ given by (143). The
ratio Ψ̄/(2γ̄Υ0) is shown in Figure 3c versus

√
C =

√
CH with l/L0 = 10−2 and several N0,

recalling K′0 = 0. Increasing N0 increases γ̄, reducing Ψ̄/(2γ̄Υ0). For cases in Figure 3a–c,
ξ(±L0) < 10−8 and |lξ ′(±L0)| < 10−8 are observed for l/L0 ≤ 0.03, verifying c1 = 0
in (133) and (144) under this length constraint.

The remaining parameters l and Υ0 are now quantified. To match the measured
energy release rate JC (i.e., toughness) of skin, 2γ̄Υ0 ≈ JC. Let L0 = 4 mm, the span of
specimens [74] whose data are represented in Figure 2a. Then l/L0 = 10−2 ⇒ l = 40µm
is more than sufficiently small to adhere to the aforementioned boundary constraints (i.e.,
c1 = 0) while providing a damage profile of intermediate diffusivity in Figure 3a. This
value of l then gives Υ0 = µ0l

2A0
= 0.47 kJ/m2 (Table 1).

Remark 41. Along with the choice N0 = 0, the Finsler model with the full set of baseline pa-
rameters in Table 1 produces γ̄ ≈ 1 in Figure 3b and 2γ̄Υ0 = 1.0 kJ/m2, in concurrence with
experimental data: 0.5 . JC . 2.5 kJ/m2 [73,99,113]. Value l = 40µm is between 4× and 40×
the collagen fiber diameter [68,69,74]. Although not shown in Figure 3b, increasing ε̂ = k

r from
0.1 to 0.2 at ϑ = r = 2 with N′0 = K′0 = 0 and l/L0 = 10−2 increases effective toughness to
2γ̄Υ0 = 1.02 kJ/m2. Under the same conditions, reducing ε̂ to 0 diminishes the predicted toughness
to 2γ̄Υ0 = 0.94 kJ/m2.
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Figure 3. Extension and tearing of skin, 1D model: (a) Stress-free solution for the internal state profile
(baseline parameters, N0 = 0); (b) Normalized surface energy for rupture versus regularization
length; (c) Ratio of homogeneous energy to energy for stress-free localized rupture; (d) Stress-free
solution, ε̂ = 0, l/L0 = 10−2, heterogeneous connection K̄(X).

Finally, let k = 0 but permit nonzero K̄(X) = lK̂(X), such that (135) applies. As
an example, let K̄ = −K′0l · (1 − X/L0) for X ∈ [0, L0] and K̄ = K′0l · (1 + X/L0) for
X ∈ [−L0, 0). Boundary conditions ξ(0) = 1 and ξ(±L0) = 0 still apply, as does sym-
metry relation ξ(X) = ξ(−X). From (139), ω1 = 1 and ω0 = 0. For the whole domain
X ∈ [−L0, L0], K̄′ = K′0l/L0 = constant, and simply ξp = K′0l/L0. Then (135) gives

ξ(X) = c1exp[X/{l
√

1 + N0}] + c2exp[−X/{l
√

1 + N0}] + K′0l/L0,

c1 = 1− c2 − K′0l/L0 =
−K′0l/L0 − [1− K′0l/L0] exp[−L0/{l√1 + N0}]
exp[L0/{l√1 + N0}]− exp[−L0/{l√1 + N0}]

.
(146)

Profiles of ξ(X) are shown in Figure 3d for K′0 ≥ 0 with baseline l/L0 = 10−2.
Normalized surface energy γ̄ from (145) is reported in Figure 3d for each case, recalling
ε̂ = k = 0 produces Riemannian (Euclidean) metric G = 1. Setting K′0 > 0 increases γ̄ for
this problem. Setting K′0 < 0 reduces γ̄ and produces a physically invalid solution (not
shown in Figure 3d) in (146): ξ < 0 on part ofM.

5. Two-Dimensional Base Manifold

The framework of Sections 2 and 3 is applied for n = 2: a 2D base manifoldM. In
Section 5.1, geometry and kinematics are presented. Governing equations are derived in
Section 5.2. Solutions are considered for general problem classes in Section 5.3. Constitutive
functions for an orthotropic 2D patch of skin under planar deformations are assigned in
Section 5.4. Solutions for stretching and tearing are presented in Section 5.5.
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5.1. Geometry and Kinematics

Reference coordinates are Cartesian (i.e., orthogonal): {X1, X2}. A reference domain
{M : X1 ∈ [−L0, L0], X2 ∈ [−W0, W0]} is considered, where the total area relative to a
Euclidean metric is 4L0W0, and boundary ∂M is the edges (X1, X2) = (±L0,±W0). The
referential internal state vector has coordinates {D1, D2}, both with physical units of length.
Spatial coordinates are Cartesian {x1, x2} and {d1, d2}. A normalization constant (i.e.,
regularization length) is l, with a physically meaningful domain assumed as DA ∈ [0, l]
(A = 1, 2). With notation f (X, D) = f (XA, DB), dimensionless order parameters are,
with (68) and (70) invoked,

ξ(X) =
D1(X)

l
=

d1(ϕ(X))

l
, η(X) =

D2(X)

l
=

d2(ϕ(X))

l
, l > 0. (147)

Physically meaningful domains are ξ ∈ [0, 1] and η ∈ [0, 1]. For 2D manifolds with
Cartesian base coordinates, {X1, X2} and {x1, x2}, the following metrics apply from (73)
and (74):

ḠAB = δAB, ḡab = δab; GAB(X, D) = ĜAB(D), gab(x, d) = ĝab(d). (148)

Herein, the following constraint is imposed:

ĝab(d(ϕ(X))) = δA
a δB

b ĜAB(D(X))↔ gab(ξ, η) = δA
a δB

b GAB(ξ, η), (149)

making m andM isometric when φa(X) = δa
AXA + ca

0 ⇔ Fa
A = δa

A regardless of {ξ, η} at
x = ϕ(X).

Remark 42. Equation (149) may be removed in other settings to directly model residual stress (e.g.,
Appendix B), but all residual stresses are not necessarily eliminated with (149) in place.

Although other non-trivial forms are admissible (e.g., Section 4.1), assume nonlinear
NA

B and linear KA
BC connections vanish:

NA
B = 0 ⇒ Na

b = δa
ANA

B (F−1)B
b = 0, KA

BC = 0. (150)

The Ka
bc do not affect the governing equations to be solved later, so they are unspecified.

Applying (71) and (147)–(150),

δAGBC = ∂AGBC − ND
A ∂̄DGBC = 0 ⇒ ΓA

BC = 0, δagbc = 0 ⇒ Γa
bc = 0, (151)

χA(ξ, η) = lCB
AB(ξ, η) = l∂̄A{ln

√
G(ξ, η)}; l∂̄1(·) = ∂(·)/∂ξ, l∂̄2(·) = ∂(·)/∂η. (152)

The deformation gradient, deformation tensor, Jacobian determinant, and director
gradient are, respectively,

Fa
A =

∂ϕa

∂XA , CA
B = GACgbcFb

BFc
C = GACFc

CδF
c GFEδE

b Fb
B, J = det(Fa

A) =
√

det(CA
B ), (153)

DA
|B = δBDA + KA

BCDC = ∂BDA; D1
|A = l∂Aξ, D2

|A = l∂Aη. (154)

Unless Fa
A and GAB are diagonal, C and C̄ can differ. From (75) and (76),

C̄A
B = δACC̄CB = δACδbcFb

BFc
C, J̄ =

√
det(C̄A

B ) = J. (155)
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5.2. Governing Equations

A generic energy density is chosen and equilibrium equations are derived for the 2D
case of Section 5.1.

5.2.1. Energy Density

For the present case, dependencies on DA and DA
|B are suitably represented by (ξ, η)

and (∂Aξ, ∂Aη) of (147) and (154). The functional form of (94) is invoked without explicit
X dependency, whereby

ψ = ψ̄(C̄AB, ξ, η, ∂Aξ, ∂Aη). (156)

Henceforth, in Section 5, the over-bar is dropped from ψ to lighten the notation. Let
µ0 denote a constant that will later be associated with a shear modulus, with units of
energy density.

Remark 43. For comparison with experiments in ambient 3-space, µ0 has units of energy per unit
3D volume, so Ψ =

∫
M ψ dΩ is the energy per unit thickness, normal to the X1 and X2.

Let Υ0 denote a constant related to the surface energy with units of energy per unit
(e.g., 2D fixed cross-sectional) area, and γξ and γη denote two dimensionless constants.
Let W be the strain energy density and Λ denote energy density associated with the mi-
crostructure. Let w denote a dimensionless strain energy function (embedding possible
degradation), λ and ν denote dimensionless phase energy functions, ι denote a dimension-
less gradient energy function that is assigned a sum of quadratic forms, and ∇0(·) = ∂

∂X (·)
denote the partial material gradient. Free energy (156) is prescribed in intermediate func-
tional form, as

ψ(C̄, ξ, η,∇0ξ,∇0η) = W(C̄, ξ, η) + Λ(ξ, η,∇0ξ,∇0η)

=
µ0

2
w(C̄, ξ, η) +

Υ0

l
[γξ λ(ξ) + γην(η) + ι(∇0ξ,∇0η)],

(157)

ι = γξ |l∇0ξ|2 + γη l2|l∇0η|2 = l2δAB(γξ ∂Aξ∂Bξ + γη∂Aη∂Bη). (158)

Note that ι(0, 0) = 0. Therefore, for null ground-state energy density, ψ, and stress, PA
a ,

w(δAB, ξ, η) = 0,
∂w

∂C̄AB
(δAB, ξ, η) = 0; λ(0) = ν(0) = 0. (159)

Convexity and material symmetry are addressed in Section 5.4.2.
Applying (96), thermodynamic forces of (85) are

PA
a =

∂ψ

∂Fa
A
= 2δabFb

B
∂ψ

∂C̄AB
= µ0δabFb

B
∂w

∂C̄AB
, (160)

Q1 =
1
l

∂ψ

∂ξ
=

Υ0

l2

(
A0

∂w
∂ξ

+ γξ
dλ

dξ

)
,

Q2 =
1
l

∂ψ

∂η
=

Υ0

l2

(
A0

∂w
∂η

+ γη
dν

dη

)
; A0 =

µ0l
2Υ0

,
(161)

ZA
1 =

∂ψ

∂D1
|A

=
Υ0

l2
∂ι

∂(∂Aξ)
= 2Υ0γξδAB∂Bξ,

ZA
2 =

∂ψ

∂D2
|A

=
Υ0

l2
∂ι

∂(∂Aη)
= 2Υ0γηδAB∂Bη.

(162)
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The source term in (78) manifests from changes in energy proportional to changes
in the local referential volume form (e.g., local volume changes from damage, treated
analogously to an energy source from tissue growth (Appendix B)):

RA = βψ∂̄A(ln
√

G) =
β

l
ψχA, (β = constant; A = 1, 2). (163)

5.2.2. Linear Momentum

Linear momentum balance, (87) or (90), invokes relations in Sections 5.1 and 5.2.1,

µ0δab

[
∂2 ϕb

∂XA∂XB
∂w

∂C̄AB
+

∂ϕb

∂XB

(
∂2w

∂C̄AB∂XA +
∂2w

∂C̄AB∂ξ

∂ξ

∂XA +
∂2w

∂C̄AB∂η

∂η

∂XA

)]

= −µ0δab
∂ϕb

∂XB
∂w

∂C̄AB

[
∂

∂ξ

(
ln
√

G
) ∂ξ

∂XA +
∂

∂η

(
ln
√

G
) ∂η

∂XA

]
.

(164)

Remark 44. For nonzero µ0, (164) is two coupled nonlinear PDEs (a = 1, 2) in four field variables:
ϕ1(X), ϕ2(X), ξ(X), and η(X).

5.2.3. Micro-Momentum

The state-space equilibrium conditions (88) or (91), utilizing the relations from
Sections 5.1 and 5.2.1, and dividing by 2Υ0, yield the following two equations:

γξ δAB ∂2ξ

∂XA∂XB +

(
1− α− β

2

)
γξ δAB ∂

∂ξ

(
ln
√

G
) ∂ξ

∂XA
∂ξ

∂XB −
γξ

2l2
dλ

dξ

+ γξδAB ∂

∂η

(
ln
√

G
) ∂ξ

∂XA
∂η

∂XB −
(

α− β

2

)
γηδAB ∂

∂ξ

(
ln
√

G
) ∂η

∂XA
∂η

∂XB

−
(

α− β

2l2

)
∂

∂ξ

(
ln
√

G
)
[γξ λ + γην] =

A0

2l2

[
∂w
∂ξ

+ (α− β)
∂

∂ξ

(
ln
√

G
)

w
]

,

(165)

γηδAB ∂2η

∂XA∂XB +

(
1− α− β

2

)
γηδAB ∂

∂η

(
ln
√

G
) ∂η

∂XA
∂η

∂XB −
γη

2l2
dν

dη

+ γηδAB ∂

∂ξ

(
ln
√

G
) ∂η

∂XA
∂ξ

∂XB −
(

α− β

2

)
γξδAB ∂

∂η

(
ln
√

G
) ∂ξ

∂XA
∂ξ

∂XB

−
(

α− β

2l2

)
∂

∂η

(
ln
√

G
)
[γξ λ + γην] =

A0

2l2

[
∂w
∂η

+ (α− β)
∂

∂η

(
ln
√

G
)

w
]

.

(166)

Remark 45. For nonzero Υ0, (165) and (166) are two coupled nonlinear PDEs in four field
variables: ϕ1(X), ϕ2(X), ξ(X), and η(X), where derivatives of ϕ1(X) and ϕ2(X) enter w on the
right sides via C̄AB = ∂A ϕaδab∂B ϕb. For the special case Υ0 = 0, the left sides of (165) and (166)
vanish, whereas for µ0 = 0, the right sides vanish.

5.3. General Solutions
5.3.1. Homogeneous Fields

Cases for which ξ(X) → ξH = constant and η(X) → ηH = constant at all points
X ∈ M are examined. The former constants may differ: ξH 6= ηH in general. The notation
fH(X) = f (X, ξH, ηH) is applied, and µ0 > 0 is imposed. Then (160) and (164) reduce to

∂PA
a

∂XA = µ0δab

[
∂2 ϕb

∂XA∂XB
∂w

∂C̄AB
+

∂ϕb

∂XB
∂2w

∂C̄AB∂XA

]
= 0

⇒ (PH)
A
a =

µ0

2

(
∂w
∂Fa

A

)
H
= constant.

(167)
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This should be satisfied for any homogeneous Fa
A = (FH)

a
A for which ∂2 ϕa/∂XA∂XB = 0. The

micro-momentum conservation laws (165) and (166) become

−γξ
dλ

dξ
− (α− β)

∂

∂ξ

(
ln
√

G
)
[γξ λ + γην] = A0

[
∂w
∂ξ

+ (α− β)
∂

∂ξ

(
ln
√

G
)

w
]

, (168)

−γη
dν

dη
− (α− β)

∂

∂η

(
ln
√

G
)
[γξλ + γην] = A0

[
∂w
∂η

+ (α− β)
∂

∂η

(
ln
√

G
)

w
]

, (169)

wherein λ = λH, ν = νH, ( ∂
∂ξ ln

√
G)H, and ( ∂

∂η ln
√

G)H are all algebraic functions of

(ξH, ηH), while w = wH, ( ∂
∂ξ w)H, and ( ∂

∂η w)H are algebraic functions of (ξH, ηH, (FH)
a
A).

Remark 46. The homogeneous equilibrium is satisfied by the six algebraic equations (167) (a, A = 1, 2),
(168), and (169) in ten unknowns (PH)

A
a , (FH)

a
A, ξH, ηH. Given (PH)

A
a or (FH)

a
A as the mechanical

loading, the remaining six unknowns can be obtained from a simultaneous solution. If (FH)
a
A is

imposed, (168) and (169) are two equations in ξH, ηH. Then (167) yields the remaining (PH)
A
a .

Remark 47. Essential boundary conditions for homogeneous states are ξ = ξH and η = ηH,
both ∀X ∈ ∂M. Since ξ and η are constants, ZB

A = 0 by (162), so corresponding nat-
ural boundary conditions for forces conjugating to internal structure parameters in (89) are
zA = ZB

ANB = 0.

5.3.2. Stress-Free States

Consider cases whereby PA
a = 0 ∀X ∈ M. Linear momentum conservation

laws (87), (90), and (164), are trivially satisfied. Restrict µ0 > 0. Since Fa
A is non-singular, (160)

requires ∂w/∂C̄AB = 0. This is obeyed at C̄AB = δAB via (159); thus, assume rigid body
motion (i.e., ϕa = Qa

AXA + ca
0, with Qa

A constant and proper orthogonal and ca
0 constant)

whereby w = 0 vanishes as well by (159).

Remark 48. General analytical solutions for stress-free states are not apparent without particular
forms of functions w(C̄AB, ξ, η), G(ξ, η), λ(ξ), ν(η), and values of γξ , γη , α, β, and l.

Remark 49. If ∂w/∂ξ = ∂w/∂η = 0 for C̄AB = δAB, then the right sides of (165) and (166)
vanish. Whether or not stress-free deformation states with C̄AB 6= δAB (e.g., locally) exist depends
on w.

5.4. Constitutive Model

The framework is applied to a rectangular patch of skin loaded in the X1-X2 plane.
A 2D theory (i.e., membrane theory) cannot distinguish between plane stress and plane
strain conditions [115], nor can it account for out-of-plane anisotropy. Nonetheless, 2D
nonlinear elastic models are widely used to represent soft tissues, including skin [68,89].
Thus, parameters entering the model (e.g., µ0, Υ0) are particular to loading conditions and
material orientations from experiments to which they are calibrated (e.g., here, plane stress).

Remark 50. In a purely 2D theory, incompressibility is often used for the 3D modeling of biological
tissues [68,71,80,82] cannot be assumed since contraction under biaxial stretch is not quantified in
a 2D theory. Incompressibility is also inappropriate if the material dilates due to damage.

The skin is treated as having orthotropic symmetry, with two constant orthogonal
directions in the reference configuration denoted by unit vectors n1 and n2:

n1 = nA
1

δ

δXA , n2 = nA
2

δ

δXA ; nA
i δABnB

j = δij (i, j = 1, 2). (170)
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Remark 51. The collagen fibers in the plane of the skin need not all align with n1 or n2, so long as
orthotropic symmetry is respected. For example, each ni can bisect the alignments of two equivalent
primary families of fibers in the skin whose directions are not necessarily orthogonal [71,92]. In such
a case, n1 is still a unit vector orthogonal to n2; planar orthotropy is maintained with respect to
reflections about both unit vectors ni.

Remark 52. The internal structure variables ξ = D1/l and η = D2/l account for mechanisms
that lead to softening and degradation under tensile load: fiber sliding, pull-out, and breakage of
collagen fibers, and rupture of the elastin fibers and ground matrix. Each DA (A = 1, 2) is a
representative microscopic sliding or separation distance in the niδ

i
A direction, with l the distance at

which the material can no longer support tensile load along that direction.

Remark 53. In the cohesive zone interpretation, each DA is viewed as a crack-opening displacement
for separation on a material surface (line in 2D) normal to niδ

i
A.

Finslerian metrics GAB(ξ, η) = δa
Aδb

Bgab(ξ, η) of §5.4.1 anisotropically rescale material
and spatial manifolds M and m due to microstructure changes in different directions.
In the absence of damage, the nonlinear elastic potential of Section 5.4.2 refines a 3D
model [71,82,83,92] to 2D.

5.4.1. Metrics

From (16), (48), (148), (149), and (153), the difference in squared lengths of line elements
dx and dX is

(|dx|2 − |dX|2)(F, ξ, η) = [δE
a δF

b GEF(ξ, η)Fa
AFb

B − GAB(ξ, η)]dXA dXB. (171)

Remark 54. Local regions ofM at X and m at x = ϕ(X) are rescaled isometrically by components
GAB(ξ(X), η(X)). When Fa

A = δa
A, |dx| = |dX| regardless of GAB, ξ, or η. For degenerate

Riemannian metrics GAB = ḠAB = δAB and gab = ḡab = δab, (171) becomes independent
of (ξ, η).

The Cartesian coordinate chart {XA} is prescribed such that nA
i = δA

i in (170); thus
n1 and n2 are parallel to respective X1 and X2 directions on M. Rescaling arises from
changes in structure associated with degradation and damage in orthogonal directions,
to which remnant strain contributions 1

2 ln[G11(ξ)] and 1
2 ln[G22(η)] can be linked. The

metric tensor GAB is hereafter assigned specific exponential terms, generalizing the 1D
form of Section 4.4.1 to an anisotropic 2D form appropriate for orthotropic symmetry:

[GAB(ξ, η)] =

[
exp

(
2k
r ξr
)

0

0 exp
( 2m

r ηr)
]

⇒ G(ξ, η) = det[GAB(ξ, η)] = exp
( 2

r [kξr + mηr]
)
.

(172)

For ξ ∈ [0, 1] and η ∈ [0, 1], two constants in (172) are k and m, and positive for
expansion. A third constant r > 0 modulates rates of change of G11(ξ) and G22(η) with
respect to their arguments. Ratios are determined by remnant strain contributions at failure:
ε̂ξ = k

r and ε̂η = m
r . Values of k, m, and r are calibrated to data in Section 5.5.1. Isotropy

arises in (172) when η = ξ and m = k.

Remark 55. More general forms of GAB(ξ, η), likely with more parameters, are possible; (172) is a
simple form sufficient to address experimental observations for extension and tearing of skin.

From (172), non-vanishing components of Cartan’s tensor in (25) and (152) are

lC1
11 = χ1 =

∂

∂ξ
(ln
√

G) = kξr−1, lC2
22 = χ2 =

∂

∂η
(ln
√

G) = mηr−1. (173)
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5.4.2. Nonlinear Elasticity

The nonlinear elasticity model generalizes that of Section 4.4.2 to a 2D base space
M with the anisotropic Finsler metric depending on two structure variable components,
ξ and η in normalized dimensionless form. For the 2D case, the material symmetry of
Section 3.3.4 requires careful consideration. Here, the skin is treated as a planar orthotropic
solid [68,75,89].

Viewing the DA as components of a material vector field, orthotropic symmetry sug-
gests invariants ξ2 and η2. For physically admissible ranges ξ ∈ [0, 1] and η ∈ [0, 1], these
can be replaced with ξ and η. Viewing the DA

|B, similarly, orthotropic symmetry permits a
more general functional dependence than the sum of quadratic forms in ι of (157) and (158).
However, the chosen form of ι in (158) allows for partial anisotropy, not inconsistent
with orthotropy, when γξ and γη differ. Thus, the structure-dependent contribution to ψ,
Λl = Υ0(γξλ + γην + ι), more specifically here

λ(ξ) = ξ2, ν(η) = η2; ι(∇0ξ,∇0η) = l2δAB(γξ∂Aξ∂Bξ + γη∂Aη∂Bη), (174)

is consistent with material symmetry requirements. Strain energy density W in (157) is
dictated by dimensionless function w(C̄AB, ξ, η). As per the above discussion, ξ and η are
treated as scalar invariant arguments. A partial list of remaining invariants [82,91] of (99)
for orthotropic symmetry of a 2D material entering w (and, thus, ψ = ψ̄) is then deduced,
applying nA

i = δA
i in (170),

Ī1 = trC̄ = δABC̄AB, Ī2 = J2 = det C̄,

Ī3 = C̄ABnA
1 nB

1 = C̄11, Ī4 = C̄ABnA
2 nB

2 = C̄22.
(175)

Remark 56. As n1 and n2 are orthonormal, Ī1 = Ī3 + Ī4, so one of Ī1, Ī3, Ī4 in (175) is redundant.
Since J ≥ 1, dependence on Ī2 = C̄11C̄22 − (C̄12)

2 can be replaced by J (or by (C̄12)
2, given Ī3, Ī4).

The Euclidean metric ḠAB = δAB, rather than the Finsler metric GAB, is used for
scalar products in (174) and (175), consistent with (155). In 2-space, Ī1 and Ī2 are the
complete set of isotropic invariants of C̄. Two orthotropic invariants are Ī3 and Ī4; several
higher-order invariants are admissible [82,91] but excluded here since (175) is sufficient
for the present application. The dimensionless strain energy function entering (157) is
prescribed specifically as

w(C̄AB, ξ, η) =

[
1
J
(C̄11 + C̄22) + k0(J − 1)2 − 2

]
yµ(ξ, η)

+

[
a1

2b1

(
exp{b1(C̄11 − 1)2} − 1

)]
H(C̄11 − 1)yξ(ξ)

+

[
a2

2b2

(
exp{b2(C̄22 − 1)2} − 1

)]
H(C̄22 − 1)yη(η).

(176)

Dimensionless constants are k0 > 0, a1 ≥ 0, b1 > 0, a2 ≥ 0, and b2 > 0. Right-continuous
Heaviside functions H( f ) = 1 ∀ f ≥ 0, H( f ) = 0 ∀ f < 0. Also, µ0 > 0 and Υ0 > 0 are
enforced in (157).

Remark 57. Potential w in (176) extends prior models for collagenous tissues [71,82,83,92] to
include anisotropic structure changes. The first term on the right, linear in Ī1/J, and independent
of volume change, accounts for isotropic shearing resistance of ground matrix and elastin. The
resistance to volume (area) change is measured by the right-side second bracketed entry with k0
being a dimensionless bulk (area) modulus finite for a 2D model; the dimensional bulk modulus
κ0 = k0µ0. Exponential terms account for stiffening from collagen fibers in orthogonal directions
ni. Heaviside functions prevent fibers from supporting compressive loads [82,116] since they would
likely buckle.
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Degradation functions are yµ(ξ, η), yξ(ξ), and yη(η), where for the anisotropic theory,

yµ = (1− ξ)ϑ(1− η)ς = yξ yη , yξ = (1− ξ)ϑ, yη = (1− η)ς. (177)

Corresponding material constants are ϑ ∈ [0, ∞) and ς ∈ [0, ∞). Notice that matrix
strain energy degrades equivalently with the increasing ξ and η via yµ, maintaining
isotropy of the first term in (176). As collagen fibers debond, the ground matrix and
elastic simultaneously weaken.

Remark 58. Choices ϑ = ς = 2 are typical for phase-field fracture [98], although other values are
possible for soft biologic tissues [95]. Setting ϑ = ς = 0 implies null degradation (i.e., ideal elastic
stress–stretch response).

Remark 59. When ξ = η = 0, w of (176) is polyconvex [81,90], facilitating existence and
uniqueness of solutions. Also, ψ with (174), (176), and (177) obeys (159).

Stress components PA
a conjugating to Fa

A = ∂A ϕa are found from (100), (160), (176),
and (177), while forces Q1,2 conjugating to ξ, η are found from (161), (174), (176), and (177):

PA
a /µ0 = J−1[δabδABFb

B − 1
2 C̄BCδBC(F−1)A

a + k0 J2(J − 1)(F−1)A
a ](1− ξ)ϑ(1− η)ς

+ [a1(C̄11 − 1)exp{b1(C̄11 − 1)2}δabδA
1 Fb

1 ](1− ξ)ϑH(C̄11 − 1)

+ [a2(C̄22 − 1)exp{b2(C̄22 − 1)2}δabδA
2 Fb

2 ](1− η)ςH(C̄22 − 1),

(178)

Q1l2/(2Υ0) = γξ ξ − A0ϑ
[
(1− ξ)ϑ−1(1− η)ς{J−1(C̄11 + C̄22) + k0(J − 1)2 − 2}

]
− A0ϑ(1− ξ)ϑ−1

[
1
2 (a1/b1)

(
exp{b1(C̄11 − 1)2} − 1

)]
H(C̄11 − 1),

(179)

Q2l2/(2Υ0) = γηη − A0ς
[
(1− η)ς−1(1− ξ)ϑ{J−1(C̄11 + C̄22) + k0(J − 1)2 − 2}

]
− A0ς(1− η)ς−1

[
1
2 (a2/b2)

(
exp{b2(C̄22 − 1)2} − 1

)]
H(C̄22 − 1).

(180)

Remark 60. An ideal elastic response is obtained when k = m = 0 ⇒ GAB = δAB ⇒ χA = 0,
and ϑ = ς = 0 ⇒ ∂w

∂ξ = ∂w
∂η = 0. Then since dλ

dξ (0) = 0 and dν
dη (0) = 0 by (174), the right side

of (164) vanishes identically, and the (trivial) solutions to (165) and (166) are ξ(X) = η(X) =
0 ∀X ∈ M.

Remark 61. An isotropic version of the theory can be obtained, if along with m = k in (172),
the following choices are made instead of (177):

yµ = 1
2 [(1− ξ)ϑ + (1− η)ϑ], ς = ϑ, yξ = yη = 0; γξ = γη = 1

2 γµ ≥ 0. (181)

Collagen fiber contributions to strain energy are removed such that w now only depends on isotropic
invariants of C̄. Equilibrium equations (164)–(166) are identical under the change of variables
ξ ↔ η, implying η(X) = ξ(X) if identical boundary conditions on DA or zA are applied for each
field on ∂M. In this case, one of (165), and (166) is redundant and replaced with η = ξ.

5.5. Specific Solutions

Possible inputs to the 2D model are seventeen constants l > 0, k, m, r > 0, µ0 > 0,
k0 > 0, a1 ≥ 0, b1 > 0, a2 ≥ 0, b2 > 0, ϑ ≥ 0, ς ≥ 0, Υ0 > 0, γξ , γη , α, and β. Values
of l and Υ0 are taken from the analysis in Section 4.5.2 of the complete tearing of a 1D
specimen of skin to a stress-free state. This is appropriate given that 1D and 2D theories
are applied to describe surface energy and material length scale pertinent to the same
experiments [73,74,99,113], and since stress-free solutions in Section 5.5.3 are perfectly
parallel to those of Section 4.5.2. The remaining parameters are evaluated in Section 5.5.1,
by applying the constitutive model of Section 5.4 to the general solutions for homogeneous
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fields derived in Section 5.3.1 to the uniaxial stress extension of 2D skin specimens along
the material’s X1 and X2 directions, respectively, aligned perpendicular and parallel to
Langer’s lines.

Remark 62. Collagen fibers of the microstructure in the dermis are aligned predominantly along
Langer’s lines and are more often pre-stretched in vivo along these directions [75]. In vivo or
in vitro, elastic stiffness at finite stretch tends to be larger in directions along Langer’s lines (i.e.,
parallel to X2 and n2) than in orthogonal directions (e.g., parallel to n1). Degradation and failure
behaviors are also anisotropic: rupture stress tends to be larger, and failure elongation is lower
when stretching in the stiffer n2 direction [74,75,87].

In Section 5.5.2, model outcomes are reported for planar biaxial extension [68,70,115]
of 2D specimens, highlighting simultaneous microstructure degradation perpendicular
and parallel to Langer’s lines. Lastly, in Section 5.5.3, stress-free states analogous to those
modeled in a 1D context in Section 4.5.2 are evaluated for the 2D theory.

In Sections 5.5.1 and 5.5.2, equilibrium solutions of Section 5.3.1 hold. Invoking
(173), (174), (176)–(178), and dropping (·)H notation for brevity, (167)–(169) comprise the
algebraic system

PA
a = µ0 J−1[δabδABFb

B − 1
2 C̄BCδBC(F−1)A

a + k0 J2(J − 1)(F−1)A
a ](1− ξ)ϑ(1− η)ς

+ [a1(C̄11 − 1)exp{b1(C̄11 − 1)2}δabδA
1 Fb

1 ](1− ξ)ϑH(C̄11 − 1)

+ [a2(C̄22 − 1)exp{b2(C̄22 − 1)2}δabδA
2 Fb

2 ](1− η)ςH(C̄22 − 1)

= constant,

(182)

γξ ξ + kξr−1[γξ ξ2 + γηη2] = −A0

2

[
∂w(C̄AB, ξ, η)

∂ξ
+ 2kξr−1w(C̄AB, ξ, η)

]
, (183)

γηη + mηr−1[γξξ2 + γηη2] = −A0

2

[
∂w(C̄AB, ξ, η)

∂η
+ 2mηr−1w(C̄AB, ξ, η)

]
. (184)

Consistent with (124) for N0 = 0 [55,56,62], β = α− 2 is assumed in (183) and (184),
reducing the number of requisite parameters to fifteen; α and β enter the governing equa-
tions only through their difference. Boundary conditions on the internal state, are, for
homogeneous conditions,

ξ(X1 = ±L0, X2 = ±W0) = ξH, η(X1 = ±L0, X2 = ±W0) = ηH. (185)

Alternative conditions to (182)–(185) are considered for heterogeneous stress-free states in
Section 5.5.3.

5.5.1. Uniaxial Extension

First, consider homogeneous uniaxial-stress extension in either the X1 or X2 direction.
From the symmetry of the loading mode and material model, shear stresses vanish iden-
tically: P1

2 = 0, P2
1 = 0. Similarly, F1

2 = 0, F2
1 = 0, and C̄12 = C̄21 = 0. The homogeneous

deformation fields are

ϕ1 = λ1X1, ϕ2 = λ2X2; F1
1 = λ1, F2

2 = λ2;

C̄11 = (λ1)
2, C̄22 = (λ2)

2; J = λ1λ2.
(186)

At any single given load increment, stretch ratios are the constants λ1 > 0, and λ2 > 0.
Mechanical boundary conditions, for extension along X1 with λ1 ≥ 1, are

ϕ1(X1 = ±L0) = ±λ1L0, p2(X2 = ±W0) = P2
2 (X2 = ±W0) = 0. (187)
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In this case, P2
2 = 0 ∀X ∈ M, and the sole non-vanishing stress component in (182) is

P1
1 . Note that λ2 is unknown a priori. Given λ1 from the first of (187), values consistent

with (185) are obtained by solving (182) for a = A = 2 with P2
2 = 0, (183), and (184)

simultaneously for λ2, ξ, and η as functions of λ1. Axial stress P1
1 is then found afterwards

using (182) with a = A = 1.
For axial loading along X2 with λ2 ≥ 1,

ϕ2(X2 = ±W0) = ±λ2W0, p1(X1 = ±L0) = P1
1 (X1 = ±L0) = 0. (188)

Now P1
1 = 0 ∀X ∈ M, and the sole non-vanishing stress component in (182) is P2

2 . Given
λ2 from the first of (188), values consistent with (185) are obtained by solving (182) for
a = A = 1 with P1

1 = 0, (183), and (184) simultaneously for λ1, ξ, and η as functions of λ2.
Axial stress P2

2 is found afterwards using (182) with a = A = 2.
Values of all baseline parameters are listed in Table 1. Identical values of those

constants shared among 1D and 2D theories are found to aptly describe the experimental
data for stretching along n1, in conjunction with natural choice γξ = 1. The 2D theory
features additional parameters to account for orthotropic anisotropy (e.g., stiffer response
along n2, with peak stress occurring at a lower stretch) as well as an areal bulk modulus κ0
absent in the 1D theory.

Remark 63. Adherence to physical observations dictates a2 > a1, b2 > b1, and κ0 > µ0. Since
degradation is more severe, and toughness lower for stretching along n2, m > k and γη < γξ . The
standard choice [95,98] ς = ϑ = 2 in (177) was found sufficient to describe test data.

Model outcomes for non-vanishing stress components and internal state vector
components are presented in Figure 4a,b. Experimental P1

1 versus λ1 data for loading
along n1, with λ1 ≥ 0 prescribed in the corresponding model calculations, are identical
to P versus

√
C data depicted using the 1D theory in Section 4.5.1. These data [74]

are for relatively high-rate extensions of rabbit skin along a longitudinal direction,
parallel to the backbone of the torso and perpendicular to Langer’s lines. Nonlinear
elastic parameters should be viewed as instantaneous dynamic moduli in a pseudo-
elastic representation [68,84,85] since loading times are brief relative to stress relaxation
times [74]. Single-experiment data of similar fidelities for transverse extensions—parallel
to Langer’s lines to complete load drops—were not reported, but a maximum stress
and strain range was given for the extension along n2 [74]. The representative peak
stress P2

2 and corresponding stretch λ2 based on such data [74] are included in Figure 4a.
According to such data [74], the material is stiffer, and ruptures at a higher stress (≈ 4

3×)
but lower strain (≈ 2

3×) in the transverse n2 direction.

Remark 64. For loading along n1, ξ → 1 and η → 0 for λ1 & 3.5, meaning most internal
structure evolution correlates with degradation in this direction, with small transverse effects of
η. Analogously, loading along n2 gives η → 1 and ξ → 0 for λ2 & 3. The rate of increase of η
with λ2 > 1 is more rapid than the rate of increase of ξ with λ1 > 1, since the skin degrades sooner
and fails at a lower strain for stretching parallel to Langer’s lines. The present diffuse model is an
idealization characteristic of experiments when there is no sharp pre-crack [63,68,72,74,87].

Figure 4c,d shows predictions at modest stretch along n1 or n2 under uniaxial stress
conditions identical to those of Figure 4a, as well as uniaxial strain, whereby λ2 = 1 or
λ1 = 1 is enforced using the scheme in Section 5.5.2, rather than respective of P2

2 = 0 or
P1

1 = 0. Predictions for the ideal elastic case (ϑ = ς = 0 ⇒ ξ = η = 0) are shown for
comparison. The results are stiffer for the ideal elastic case since degradation commensurate
with structure change is omitted. In agreement with other data [70], skin is elastically stiffer
in uniaxial strain relative to uniaxial stress. Choosing a higher value of k0 = κ0/µ0 > 1
in (176) would further increase this difference if merited.
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Figure 4. Uniaxial extension and tearing of skin for the imposed axial stretch λ1 ≥ 1 or λ2 ≥ 1, 2D
model: (a) Stress P1

1 or P2
2 (baseline parameters, Table 1) with representative experimental data [74]

(see text Section 4.5.1 for the consistent definition of experimental stretch, accounting for pre-stress)
for straining perpendicular or parallel to Langer’s lines; (b) normalized internal structure components
ξ and η (baseline parameters); (c) stress P1

1 for moderate extension λ1 ≤ 2.1 under uniaxial stress
(P2

2 = 0) or uniaxial strain (λ2 = 1) conditions for the Finsler model (baseline parameters) and the
ideal elastic model (ϑ = ς = 0); (d) stress P2

2 for moderate extension λ2 ≤ 2.0 under uniaxial stress
(P1

1 = 0) or uniaxial strain (λ1 = 1) conditions for the Finsler model (baseline) and the ideal elastic
model (ϑ = ς = 0).

5.5.2. Biaxial Extension

Now, consider the homogeneous biaxial stress extension in the X1 and X2 directions.
From symmetry, P1

2 = 0, P2
1 = 0, F1

2 = 0, F2
1 = 0, and C̄12 = C̄21 = 0. The homogeneous

deformation fields are

ϕ1 = λ1X1, ϕ2 = λ2X2; F1
1 = λ1, F2

2 = λ2;

C̄11 = (λ1)
2, C̄22 = (λ2)

2; J = λ1λ2.
(189)

Stretch ratios are λ1 > 0 and λ2 > 0; both are constants overM. The mechanical boundary
conditions are

ϕ1(X1 = ±L0) = ±λ1L0, ϕ2(X2 = ±W0) = ±λ2W0. (190)

With λ1 and λ2 prescribed by (190), equilibrium equations (183) and (184) are solved
simultaneously for ξ and η as functions of λ1, λ2, giving homogeneous values of fields
consistent with (185). Then P1

1 and P2
2 are obtained with (182) for a = A = 1 and a = A = 2.

Model predictions for equi-biaxial stretching, λ1 = λ2, are produced using the
baseline material parameters of Table 1, obtained for the 2D theory in Section 5.5.1. In
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Figure 5a, stresses also include those for the ideal elastic case (ϑ = ς = 0⇒ ξ = η = 0)
that are noticeably higher for λ1 > 1.5 and increase monotonically with stretch. For the
Finsler theory, under this loading protocol (λ1 = λ2), P2

2 increases more rapidly than P1
1 ,

with increasing λ1, reaching a slightly lower peak value at a significantly lower stretch.
Elastic stiffness during the lower-stretch loading is higher in the n2 direction due to the
preponderance of aligned collagen fibers, but degradation linked to the internal structure
evolution is more rapid due to the lower toughness of skin when torn in this direction.
The latter phenomena are evident in Figure 5b: η(λ1) > ξ(λ1) for λ1 ∈ [1.1, 3.9].

Remark 65. Data on failure of skin focus on its uniaxial extension [74,75]. Biaxial data (e.g., [68,70])
do not report stretch magnitudes that are capable of causing tearing, so direct validation does not
appear possible. If the skin proves to be stiffer and more damage-tolerant under equi-biaxial stretch,
the w of (176) can be modified, so the tangent bulk modulus proportional to k0 increases more
strongly with J, and does not degrade so severely with structure evolution.
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Figure 5. Equi-biaxial extension and tearing of skin, 2D model: (a) stress components from the Finsler
model (baseline parameters, ϑ = ς = 2) and the ideal elastic model (ϑ = ς = 0); (b) normalized
internal structure components ξ and η.

5.5.3. Stress-Free States

Protocols of Section 5.3.2 now apply. Two boundary value problems are addressed
that parallel the 1D analysis of Section 4.5.2. External boundary conditions are set as ξ = 0
and η = 0, everywhere along ∂M. Stress PA

a = 0 prevails everywhere inM, ensuring
that the mechanical traction pa = PA

a NA = 0 over ∂M. For the generalized Finsler metric
in (172), it is essential to restrict r > 1⇒ χ1(ξ = 0) = χ2(η = 0) = 0 in (173).

In the first problem, assume that the specimen undergoes a uniaxial stretch along the
n1 direction (i.e., along X1, perpendicular to Langer’s lines) until localized failure occurs.
The skin ruptures completely across the midspan at X1 = 0, such that ξ(0, X2) = 1. In this
ruptured state, C̄AB = δAB is everywhere onM for all components, except C̄11, which can
differ from δAB along the line X1 = 0. The solution for η(X1, X2) is η(X1, X2) = 0, for which
(166) is trivially satisfied. From symmetry, the remaining unknown field ξ depends only
on X = X1, and ξ(−X) = ξ(X). With this partial solution, Equation (165) has a vanishing
right side, reducing it to a generally nonlinear, autonomous second-order ODE

γξ
d2ξ

dX2 =
γξξ

l2 (1 + kξr). (191)

Dividing by γξ > 0, (191) is identical to (131) with N0 = 0, λ = ξ2, and χ = χ1 = kξr−1.
Solutions (133) and (144) hold verbatim.

The normalized energy per unit area normal to the X1 direction is
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γ̄1 =
1

2Υ0

∫ L0

−L0

ψ
√

G dX =
γξ

2l

∫ L0

−L0

{ξ2 + l2(dξ/dX)2} exp[(k/r)ξr]dX, (192)

which is identical to (145) when γξ = 1 and N0 = 0. Given γξ = 1, k = 0.2, r = 2, and
Υ0 = 0.47 kJ/m2 (Table 1), the outcomes of the 2D theory here match those of the 1D theory
in Figure 3a,b with N0 = 0 and γ̄1 = γ̄. Toughness 2γ̄1Υ0 = 1.0 kJ/m2 is consistent with
the experiment [73,99,113].

In the second problem, assume that the specimen is stretched along n2 (i.e., along X2,
parallel to Langer’s lines). The skin ruptures completely across the midspan at X2 = 0,
with η(X1, 0) = 1. Now, C̄AB = δAB is everywhere for all components, except C̄22, which
can differ from δAB only along X2 = 0. The solution for ξ(X1, X2) is ξ = 0, for which (165)
is trivially obeyed. From symmetry, η depends only on X = X2, and η(−X) = η(X). The
balance law (166) reduces to

γη
d2η

dX2 =
γηη

l2 (1 + mηr). (193)

Dividing by γη > 0, (193) matches (131) with N0 = 0, ν = η2, χ = χ2 = mηr−1, and changes
in variables. Solutions (133) and (144) hold. The normalized energy per unit area is

γ̄2 =
1

2Υ0

∫ L0

−L0

ψ
√

G dX =
γη

2l

∫ L0

−L0

{η2 + l2(dη/dX)2} exp[(m/r)ηr]dX (194)

for free surfaces normal to the X2 direction, matching (145) if γη = 1 and N0 = 0. Given
γη = 0.84, m = 0.3, r = 2, and Υ0 = 0.47 kJ/m2 (Table 1), profiles of η(X) for this problem
are very similar to those of ξ(X) from the 1D theory in Figure 3a. Energy for N0 = 0 in
Figure 3b transforms as γ̄2 ≈ γη γ̄, and 2γ̄2Υ0 = 0.85 kJ/m2 is within experimental ranges
of 0.5 to 2.5 kJ/m2 [73,99,113].

Remark 66. Since 2γ̄2Υ0 < 2γ̄1Υ0, the model predicts that skin is more brittle in directions par-
allel to Langer’s lines than in directions perpendicular to Langer’s lines, in concurrence with
experiment [74,87]. Collagen fibers are less coiled initially in directions parallel to Langer’s
lines [75], giving the skin’s lower compliance and less potential strain accommodation at rup-
ture in those directions.

Remark 67. All parameters in Table 1 have clear physical or geometric origins; none are ad hoc.
Constant l is the critical fiber-sliding distance or crack-opening displacement for rupture. Ratios
k
r and m

r are associated with the remnant strain contributions in orthogonal n1 and n2 directions
along the primary initial fiber directions (e.g., perpendicular and parallel to Langer’s lines).
The isotropic shear modulus and bulk modulus for the matrix, consisting of ground substance and
elastin, are µ0 and κ0. Nonlinear elastic constants a1 and b1 control stiffening due to collagen
fiber elongation in the n1 direction, while a2 and b2 control stiffening due to fiber elongation in
the n2 direction. The loss of elastic stiffness due to fiber rearrangements and damage processes in
matrix, fibers, and their interfaces, in the respective n1 and n2 directions, is modulated by ϑ and
ς. Isotropic surface energy is Υ0, with factors γξ and γη scaling the fracture toughness in the
respective n1 and n2 directions.

6. Conclusions

A theory of finite-deformation continuum mechanics, rooted in the generalized
geometry of Finsler, has been developed and refined. Elements of an internal state vector
represent evolving microstructure features and can be interpreted as order parameters.
The dependence of the material metric on this internal state affects how distances are
measured in the material manifold and how gradients (i.e., covariant derivatives) are
resolved. A new application of the theory to anisotropic soft-tissue mechanics has
been presented, whereby the internal state is primarily associated with collagen fiber
rearrangements and breakages. The material metric contains explicit contributions
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from sliding or opening modes in different material directions. Solutions to boundary
value problems for tensile extension with tearing in different directions agree with
experimental data and microscopic observations on skin tissue, providing physical and
geometric insight into the effects of the microstructure.
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Appendix A. Variational Derivatives

The variational derivative δ(·) of Section 3.3.1 invokes (ϕa, DA) with a, A = 1, 2, . . . , n
as the total set of 2n varied independent parameters or degrees of freedom.

Appendix A.1. Deformation Gradient and Director Gradient

The first of (80) follows from (57), (61), and commutation of δ(·) and ∂A(·) operators
since the variation is performed at fixed XA:

δFa
A(ϕ(X), X) = δ(∂A ϕa(X)) = ∂A(δϕa(X)) = δA(δϕa(X)) = (δϕa(X))|A, (A1)

with F treated as a two-point tensor.

Remark A1. The third equality in (A1) follows from NB
A(X, D)∂̄B ϕa(X) = 0. The leftmost and

rightmost equalities interpret ϕa(X) and δϕa(X), respectively, as point functions rather than vector
fields [20,22].

Let f (X, D) denote a generic differentiable function of arguments {XA, DA} in a
coordinate chart on Z . The variation of f (X, D) is defined by the first of the following:

δ f (X, D) = f (X, D)|Aδ(DA) = ∂̄A f (X, D)δ(DA), (A2)

where (·)|A is the vertical covariant derivative (e.g., as in (21)). For the choices VA
BC = 0

and YA
BC = 0 of (71), f (X, D)|A = ∂̄A f (X, D) and the rightmost form is obtained, consistent

with prior definitions [54,55]. This is used with (84) to obtain the second of (80):

δDA
|B = δ(∂BDA)− δNA

B + δ(KA
BC)DC + KA

BCδ(DC)

= [∂Bδ(DA)− NC
B ∂̄Cδ(DA) + KA

BCδ(DC)]− ∂̄C NA
B δ(DC) + ∂̄DKA

BCDCδ(DD)

= [δ(DA)]|B − (∂̄C NA
B − ∂̄CKA

BDDD)δ(DC),

(A3)

where it is assumed per (68) that ∂̄Cδ[DA(X)] = ∂̄C[δ(DA)(X)] = 0 onM and Z .

Appendix A.2. Volume Form

Two definitions have been set forth in prior work for the variation of the volume form
dΩ(X, D). The first quoted here sets [54]

δ(dΩ) = [δ
√

G/
√

G]dΩ = (ln
√

G)|Aδ(DA)dΩ = 1
2 GBCGCB|Aδ(DA)dΩ

= (CB
AB −YB

AB)δ(DA)dΩ = CB
ABδ(DA)dΩ,

(A4)

where the first equality is a definition and (27) and (A2) is used subsequently.

Remark A2. According to (A4), the magnitude of the volume form is varied locally over the
n-dimensional base space in (81) with the α = 1 prior application of the divergence theorem (31)
used to procure (87) and (88) from (86) of Section 3.3.3. The choice (A4) was used in the most
recent theory [54] and implied in a prior numerical implementation [59].
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The second definition quoted here was used in the original theoretical works [55,56]:

δ(dΩ) = [δ
√
G/
√
G]dΩ = (ln

√
G)|Aδ(DA)dΩ = (ln

√
G2)|Aδ(DA)dΩ

= GBCGCB|Aδ(DA)dΩ = 2(CB
AB −YB

AB)δ(DA)dΩ = 2CB
ABδ(DA)dΩ.

(A5)

In the derivation of (A5), the determinant of the Sasaki metric, as defined in (15), has been
used along with (27) and (A2).

Remark A3. The definition given by the first equality in (A5) is notionally consistent with another
earlier theory [49,50,52]. In the present viewpoint with (A5), the magnitude of the volume form is
varied locally in a 2n-dimensional total space Z via (81) with α = 2 before integrating over the base
n-dimensional spaceM in (86) of Section 3.3.3.

Remark A4. Definition (A4) corresponds to α = 1 and definition (A5) to α = 2 in (81). The only
ramification in the governing Euler–Lagrange equations involves the scaling of local free energy
density by a factor of one or two through αψCA

CA in the micro-momentum balance, in either form
(88) or (91). Macroscopic momentum is unaffected by the definition of δ(dΩ).

Appendix B. Toward Residual Stress and Growth

Appendix B.1. Macroscopic Momentum

Consideration of residual stress begins with the examination of the balance of linear
momentum in the form (90), repeated and reorganized for convenience:

∂APA
a + PB

a γA
AB − PA

c γc
baFb

A = −{[∂̄BPA
a + PA

a ∂̄B(ln
√

G)]∂ADB + PA
c (γc

ba − Γc
ba)Fb

A}. (A6)

Remark A5. Terms on the left side of (A6) are standard for nonlinear elasticity theory [22]. If the
free energy ψ does not depend on DA or DA

|B, then the stress PA
a = ∂ψ/∂Fa

A is also conventional,

presuming ψ is in the undeformed state CAB = GAB ⇒ PA
a = 0. In that case, when the right side

of (A6) vanishes, the body manifoldM should not contain residual stresses when Fa
A = ∂A ϕa for

regular motions ϕa(X) (e.g., in the absence of topological changes).

Remark A6. Departures from classical nonlinear elasticity arise when (i) ψ has dependencies on
DA or DA

|B, (ii) when PA
a or G depends on DA along with the heterogeneous state field ∂ADB 6= 0,

or (iii) when a different connection than the Levi–Civita connection is used for Γc
ba (i.e., Γc

ba 6= γc
ba

due to the d dependence of the spatial metric gab). Each of these departures could potentially induce
stresses PA

a 6= 0 in a simply connected body externally unloaded via pa = PA
a NA = 0 all along its

oriented boundary ∂M (i.e., residual stresses).

Analysis of a particular version of the general theory offers more insight. First, assume
in (74) that ĝa

b → δa
b , such that gab(x, d) → gab(x) = ḡab(x); the spatial metric tensor g is

Riemannian rather than Finslerian. Then, γa
bc = Γa

bc. Now, use the osculating Riemannian
interpretation of the Finslerian material metric G offered by Corollary 1 via (68):

G̃AB(X) = GAB(X, D(X)), G̃(X) = det(G̃AB(X)), (A7)

γ̃A
BA = ∂B(ln

√
G̃) = ∂B(ln

√
G) + ∂̄A(ln

√
G)∂BDA = γA

BA + ∂̄A(ln
√

G)∂BDA, (A8)

P̃A
a (X) = PA

a (X, D(X)), ∂B P̃A
a = ∂BPA

a + ∂̄CPA
a ∂BDC. (A9)

Substituting (A8) and (A9) into (A6) gives, with γc
ba = Γc

ba,

∂A P̃A
a + P̃B

a γ̃A
AB − P̃A

c γc
baFb

A = 0. (A10)
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Remark A7. Expression (A10) conforms to the standard form for static equilibrium in classical
continuum mechanics, but stress, denoted as P̃A

a , and the connection, represented by γ̃A
BC, both

implicitly depend on the internal state DA, and the former might also depend on its gradient DA
|B,

especially if it appears in appearing in ψ. Coefficients γ̃A
BC are those of the Levi–Civita connection of

G̃AB via (36).

Now neglecting the dependence on the internal state gradient in the energy density,
requiring D dependence to arise only through GAB, and assuming the body is homogeneous
(with a mild abuse of notation):

ψ = ψ(Fa
A, DA) = ψ(Fa

A, GAB(X, D))

= ψ̃(Fa
A, G̃AB(X)) = ψ̃(CAB(Fa

A, gab), G̃AB(X)).
(A11)

Recall from (66) that CAB = Fa
AgabFb

B. As a simple example, consider the case where
n = dimM,

ψ̃ =
µ0

2
(CABG̃AB − n)

⇒ P̃A
a =

∂ψ̃

∂FA
a

= µ0gabG̃ABFb
A,

∂ψ̃

∂G̃AB
= −µ0

2
G̃ACG̃BDCCD,

(A12)

and where µ0 > 0 is a constant (e.g., an elastic shear modulus). Now, assume that the
spatial manifold m is Euclidean [27,30], such that the Riemann–Christoffel curvature tensor
from γa

bc (and, thus, derived from gab) vanishes identically.

Remark A8. In this case, (A10), the last of (A11), and the example (A12) are consistent with the
geometric theory of the growth mechanics of Yavari [30] in the quasi-static setting. Incompressibility
can be addressed by appending linear momentum to include contributions from an indeterminant
pressure to be determined by boundary conditions under the isochoric constraint J = 1 [22].
Otherwise, ψ̃ can be augmented with term(s) to ensure CA

B → δA
B ⇒ P̃A

a = 0 (e.g., (138) for
n = 1).

The Riemann–Christoffel curvature tensor from γ̃A
BC (and, thus, G̃AB) need not vanish

in general:
R̃A

BCD = ∂Bγ̃A
CD − ∂Cγ̃A

BD + γ̃A
BEγ̃E

CD − γ̃A
CEγ̃E

BD. (A13)

Remark A9. In Riemannian geometry, γ̃A
BC are symmetric, differentiable, and obey (36); (A13)

has 1
12 n2(n2 − 1) independent components [31]. For n = 3, R̃A

BCD contains six independent
components, determined completely by the metric and the Ricci curvature R̃A

ABC [30,98]. For n = 2,
R̃A

BCD contains only one independent component, determined completely by the scalar curvature
κ̃ = 1

2RABG̃AB. For n = 1, R̃A
BCD always vanishes (i.e., a 1D manifold is always flat in this sense).

When R̃A
BCD is nonzero over a region ofM, then no compatible deformation F̃A

a (X)
exists that can push forward G̃AB to match the Euclidean metric gab(φ(X)), which would
render the corresponding regions ofM and m isometric. In other words, the push-forward
gab = F̃A

a G̃AB F̃B
b where F̃A

a = ∂aζA does not exist, ζA being (nonexistent) Euclidean coordi-
nates onM. In such cases,Mwould always have to be deformed (e.g., strained) to achieve
its spatial representation m since no isometry exists between the two configurations.

Remark A10. If an intrinsically curved body manifold in the reference stateM is stress-free,
per the constitutive prescription (e.g., (A12) or any other standard elasticity model), then the
intrinsically flat body in the current state m would be necessarily strained and stressed, even
if external traction pa vanishes along its boundary. Thus, this particular rendition of the
generalized Finsler theory supplies residual stress from a non-Euclidean material metric tensor
G̃AB in a manner matching other works that use Riemannian geometry [27,30].
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In the full version of the generalized Finsler theory [54,55], as discussed following (A6),
residual stresses could emerge from additional sources to those discussed under the forego-
ing assumptions of a Euclidean spatial metric, a conventional hyperelastic energy potential,
and an osculating Riemannian material metric with non-vanishing curvature. Several
different curvature forms can be constructed from the various connections and derivatives
of Finsler geometry and its generalizations [3,5]. Further analysis, beyond the present
scope, is needed to relate these geometric objects to physics in the continuum mechanical
setting, including residual stresses.

Remark A11. The deformation gradient Fa
A could be decomposed into a product of two map-

pings [62]: Fa
A(X) = ∂A ϕa(X) = (FE)a

α(X)(FD)α
A(D(X)). In this case, the strain energy

potential is written to emphasize the elastic deformation FE, with the state-dependent deformation
FD explicitly accounting for inelastic deformation mechanisms, including growth [29,107]. In
this setting, residual stresses can arise if (FE)−1 and, thus, FD do not fulfill certain integrability
conditions; neither the two-point tensor (FE)−1 nor FD is always integrable to a vector field [98].

Appendix B.2. Micro-Momentum and Growth

Now, consider the internal state-space equilibrium equation, (91) first, under the afore-
mentioned assumptions used to derive (A10). Furthermore, let NA

B = NA
B (X) KA

BC = γA
BC(X),

and α = 1. Then, with these assumptions, in the osculating Riemannian interpretation of
Corollary 1 , (91) is

∂AZ̃A
C + Z̃B

Cγ̃A
AB − Z̃A

B γB
AC −QC = ψ∂̄C(ln

√
G)− RC, (A14)

Z̃A
B (X) = ZA

B (X, D(X)) =
∂ψ

∂DB
|A
(X, D(X)), QA(X, D(X)) =

∂ψ

∂DA (X, D(X)), (A15)

where (A15) follows from (85). Use the energy density ψ of (A11), so Z̃A
B = 0 identically.

Choose the volumetric source term RC = ψ∂̄C(ln
√

G), which here represents the local
change in referential volumetric energy density due to growth effects on the local volume
form dΩ(X, D), since now, per (A4) of Appendix A, ψδ(dΩ) = ψ[∂̄C(ln

√
G)δ(DC)]dΩ =

RCδ(DC)dΩ.

Remark A12. Physical justification exists in the context of growth mechanics for biological systems:
RC can account for the effect on energy density from changes in mass due to tissue growth [30,107].
Thus, (A14) further reduces to, with (A11), to a form very similar to the equilibrium case of
Yavari [30] (e.g., matching Equation (2.73) of ref. [30] with the vanishing time derivative, if, here,
∂̄AGBC is arbitrary):

QA =
∂ψ

∂DA =
∂ψ

∂GBC

∂GBC

∂DA =
∂ψ̃

∂G̃BC

∂GBC

∂DA = 0. (A16)

To see how internal state components {DA} can represent growth, consider n = 2
(i.e., 2DM, such as a biological membrane), by which, {DA} → (D1, D2) = (l1ξ1, l2ξ2),
where l1,2 > 0 are normalization constants that render the ξA dimensionless. Choose a
polar (i.e., cylindrical {XA} → (R, Θ)) coordinate system on a region of M with (73)
applying, such that Ḡ = diag(1, R2). Assume a generalized Finslerian contribution
Ĝ = diag(exp(h1(ξ

1)), exp(h2(ξ
2)), where h1(D(X)) = h1(D1(R, Θ)/l1) and h2(D(X)) =

h2(D2(R, Θ)/l2) are differentiable functions of their arguments. In matrix form, in this
example of anisotropic growth, the second of (73) becomes

[GAB] =

[
GRR 0

0 GΘΘ

]
= [ĜC

A][ḠCB] =

[
exp(h1(ξ

1)) 0
0 R2exp(h2(ξ

2))

]
. (A17)
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A more specific case is now studied. Let χ(R) denote a scalar radial growth function.
Then set

ξ = ξ1 =
D1

l1
=

D2

l2
= ξ2, ξ = ξ(R); h = h1 = −h2 = 2χ, h = h(ξ(R)) = 2χ(R). (A18)

This yields the metric G̃AB(X) as per Yavari (ref. [30], Equation (2.101)), which corresponds
to anisotropic annular growth:

[GAB(R, ξ)] =

[
exp(h(ξ(R))) 0

0 R2exp(−h(ξ(R)))

]
⇒ [G̃AB(R)] =

[
exp(2χ(R)) 0

0 R2exp(−2χ(R))

]
.

(A19)

Remark A13. In the special case given by (A19), internal state changes preserve volume via
det(GAB(X, D)) = R2 being independent of χ, ξ, and D, so CB

AB = 0.

Now, the energy potential (A12) is applied, so that, for equilibrium of the internal
state, (A16) transitions to the following, defining ḣ(ξ) = dh(ξ)/dξ,

QA = −µ0

2
G̃BDG̃CECDE∂̄AGBC = 0

⇒
{

2l1Q1(ξ, R) = −µ0exp(−h(ξ))CRR ḣ(ξ) = 0,
2l2Q2(ξ, R) = µ0R−2exp(h(ξ))CΘΘ ḣ(ξ) = 0.

(A20)

Thus, the equilibrium of the internal state is only ensured for this particular strain energy
function and material metric when ḣ = 0. A sample function with three equilibrium states
at ξ = 0, 1

2 , 1 is the double-well:

h = ξ2(1− ξ)2, ḣ = 2ξ(1− ξ)(1− 2ξ). (A21)

Now, the Levi–Civita connection and curvature for the metric G̃ in (A19) are revisited.
Denote h′(ξ(R)) = [dh(ξ(R))/dξ][dξ(R)/dR] = ḣ(ξ)ξ ′(R). From (36), γ̃A

BC has non-
vanishing components

γ̃R
RR =

h′

2
, γ̃R

ΘΘ = exp(−2h)
(

R2h′

2
− R

)
, γ̃Θ

RΘ = γ̃Θ
ΘR =

1
R
− h′

2
. (A22)

Recalling that κ̃ is the scalar curvature, the non-vanishing covariant components of
R̃BCDE = R̃A

BCDG̃AE are from (A13),

R̃RΘRΘ = R̃ΘRΘR = −R̃RΘΘR = −R̃ΘRRΘ = −R2κ̃

= −[∂Rγ̃R
ΘΘ + γ̃R

ΘΘ(γ̃
R
RR − γ̃Θ

RΘ)]G̃RR

= − d
dR

[
exp(−2h)

(
R2h′

2
− R

)]
exp(h) +

(
R2h′

2
− R

)(
1
R
− h′

)
exp(−h)

= −R
2

exp(−h)
[

R{h′′ − (h′)2}+ 4h′
]

= −R
2

exp(−h)

[
R

(
d2ξ

dR2 +
dξ

dR
d

dR

)
dh
dξ
− R

(
dh
dξ

dξ

dR

)2
+ 4

dh
dξ

dξ

dR

]
.

(A23)

The annular material manifold {M : R ∈ [R0, R1], Θ ∈ [0, Θ1]}, R1 > R0 > 0, Θ1 < 2π is
considered. Since R > 0 and for bounded h, the local flatness condition from (A23) is

R{h′′ − (h′)2}+ 4h′ = 0↔ R

(
d2ξ

dR2 +
dξ

dR
d

dR

)
dh
dξ
− R

(
dh
dξ

dξ

dR

)2
+ 4

dh
dξ

dξ

dR
= 0. (A24)
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Remark A14. The first of (A24) is a second-order nonlinear ODE detailing the radial distribution
of the generic function h = h(R). The second is a second-order nonlinear ODE for ξ = ξ(R), which
could be solved if the intermediate functional form h(ξ) is known a priori (e.g., (A21)). Trivial
solutions are h(R) = constant and ξ(R) = constant. General non-trivial analytical solutions are
not obvious. Given the boundary conditions, determining the particular non-trivial solutions for
flatness, should they exist, appears to require numerical methods.
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