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Abstract: This research article introduces a novel operator termed q-convolution, strategically inte-
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q-Bernoulli polynomials, a distinctive class of functions emerges, characterized by both analyticity
and bi-univalence. The determination of initial coefficients within the Taylor-Maclaurin series for this
function class is accomplished, showcasing precise bounds. Additionally, explicit computation of the
second Hankel determinant is provided. These pivotal findings, accompanied by their corollaries
and implications, not only enrich but also extend previously published results.
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1. Introduction and Definitions

Fractional calculus, which originated from the work of Liouville in 1832, is a well-
established field of mathematical analysis. It is one among several special functions that
have been extensively studied. Even today, fractional calculus remains an active and vi-
brant area of research, as evidenced by recent investigations [1]. Bernoulli polynomials,
a specific area of mathematics, are named in honor of Jacob Bernoulli (1654–1705). In recent
times, considerable attention and research focus have been directed towards orthogonal
polynomials. This interest arises from the significance of orthogonal polynomials in various
fields, including engineering, mathematical statistics, and mathematical physics. The Her-
mite, Laguerre, Jacobi, and Bernoulli polynomials, which are well-known classical orthogonal
polynomials, find extensive use in diverse applications. Several recent studies [2–5] high-
light the relationship between geometric function theory (GFT) and conventional orthogonal
polynomials, further advancing our understanding in this area.

In 1915, Alexander [6] introduced the original integral operator, which was utilized
to investigate analytic functions. This field of research, which includes both fractional
and ordinary derivative operators, remains an active research topic in the field of complex
analysis, specifically within the framework of geometric function theory (GFT). Researchers
continue to explore various combinations of these operators [7,8]. Recent works, such
as [9], demonstrate the significance of integral fractional and differential operators in the
field. Moreover, intriguing results have emerged from recent investigations into quantum
(or q-) calculus, which provide alternative perspectives on differential and integral opera-
tors, and have implications in diverse areas of physics and mathematics. The utilization of
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q-calculus by researchers in GFT has led to the development and exploration of distinctive
subclasses of analytic functions. The official inception of q-calculus can be attributed to
Jackson’s formulation of q-derivatives and q-integrals in 1909 [10,11]. Jackson also intro-
duced the q-difference and q-calculus operators (Dq). The applications of q-calculus extend
across various domains, including mechanics, statistics, number theory, combinatorics,
relativity, and control theory.

Quantum calculus, often referred to as q-calculus, is a field of mathematics that extends
classical calculus to non-commutative settings. It plays a crucial role in various areas of
quantum science, particularly in the study of q-deformed oscillators. These oscillators
are quantum mechanical analogs of classical harmonic oscillators, but with a modified
algebraic structure. Furthermore, they find practical use in Quantum Field Theory (QFT),
a fundamental framework in theoretical physics that describes the behavior of quantum
fields. Recently, there has been an incorporation of q-calculus in the study of fields that
have undergone q-deformation, where standard commutation relations are replaced by
their q-counterparts. This allows for a more adaptable approach to specific quantum field
theories. Additionally, they have applications in Quantum Information Theory, a prominent
field, especially in the investigation of q-deformed quantum channels. These channels
describe the evolution of quantum states in non-standard quantum systems and are useful
in quantum communication and computation. Further applications extend to Models of
q-Deformed Quantum Harmonic Oscillators, which have been utilized in various models of
quantum mechanics. For example, they have been employed in the analysis of particle be-
havior in non-standard potentials and within settings with non-trivial geometric attributes.
Lastly, they play a role in q-Deformed Quantum Optics by utilizing q-calculus in crucial
studies of versions of quantum optical systems that have undergone q-deformation. This
encompasses q-deformed coherent states and q-deformed photon number states, both of
which are significant in quantum optics and the processing of quantum information.

Mathematically, the q-deformed oscillators are defined by introducing a deformation
parameter ‘q’ that modifies the standard commutation relations between position and
momentum operators. Instead of the canonical commutation relations [x, p] = ih̄, one
has [x, p] = ih̄qN , where ‘N’ is a number operator associated with the oscillator. This
modification leads to a non-trivial deformation of the underlying algebraic structures.
The q-calculus comes into play when manipulating functions and operators within this
deformed algebraic framework. Derivatives, integrals, and other calculus operations are
defined in a way consistent with the q-deformed algebra, allowing for the development
of a q-calculus analogous to classical calculus. In summary, q-calculus and q-deformed
oscillators find applications in various domains of quantum science, from quantum field
theory to quantum information theory, providing a powerful mathematical framework to
describe and analyze systems in non-commutative settings. For more details, see [12–15].

The groundbreaking research conducted by Ismail et al. [16] involved the construction
of an extended version of starlike functions using q-calculus within the context of GFT.
The recently introduced category of functions, which are defined using q-derivatives, is
referred to as the class of q-starlike functions. Anastassiu and Gal [17,18] have made a valu-
able contribution to this field by further advancing the q-generalizations and investigating
complex operators.

The progress in this area has been gradual. Aldweby et al. [19,20] developed the q-
analogues of several operators using methods based on analytic function convolution. They
also examined the structure of q-operators in relation to analytical functions incorporating
q-versions of hypergeometric functions. With the recent surge of interest among researchers
in q-calculus, several papers [21–26] have presented novel findings and insights.

The exploration of symmetric points of convex and starlike functions has received
comprehensive attention in [27,28] and related sources. In our current study, we introduce
a novel q-differential operator as part of the continuous investigation into differential and
integral operators. By utilizing this operator, we propose the creation of a new family of
analytic functions that possess geometrically bounded turning properties.
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For any functions l that are analytic within the region E and fulfill the specified nor-
malization condition indicated by the function, l has an initial value of 0 and its derivative
at 0 is equal to 1, where

E = {ξ : ξ ∈ C, |ξ| < 1}

are found in class A, where A denotes the class of normalized analytic functions and C is
the set of complex numbers. Clearly, the following expressions can be used to represent
each function l ∈ A:

l(ξ) = ξ +
∞

∑
m=2

dmξm (ξ ∈ E); (1)

also, the univalent functions in E comprise the class S ⊂ A.
Now, suppose we have two elements, l1 and l2, belonging to the set A. In the context

of E , if l1 is deemed to be subordinate to l2, it is denoted by

l1(z) ≺ l2(ξ) (ξ ∈ E). (2)

Let us assume there is a Schwarz function denoted as V belonging to the set E . This
function satisfies certain conditions: V is also an element of the set A, with the property
that |V(ξ)| is less than 1 for all ξ, and V(0) is equal to 0.

l1(ξ) = l2(V(ξ)) (ξ ∈ E).

The Koebe one-quarter theorem (see [29]) states that the image of E under every
l(ξ) ∈ S contains a disk of radius one-quarter centered at the origin. So, there is an inverse
function l−1 = g for any function l ∈ S and

g(l(ξ)) = ξ (ξ ∈ E)

and
l(g(v)) = v (|v| < to(l), t0(l) ≥

1
4

.

The expression provided represents the series expansion of the inverse function g(v).

g(v) = l−1(v) = v− d2v2 + (2d2
2 − d3)v

3 − (5d3
2 − 5d2d3 + d4)v

4 + · · · . (3)

Let l be the univalent function and, if its inverse (l−1) is univalent in E , then the
function l is bi-univalent in E . The group of bi-univalent functions within E is denoted by
Σ. In geometric function theory (GFT), establishing limits for the coefficients in analytic
functions has always been crucial. The magnitude of these coefficients can influence various
properties, including univalency, growth rate, and distortion. In 2010, Srivastava et al. [30]
made groundbreaking contributions, reinvigorating the study of analytical and bi-univalent
functions. Since then, many researchers have proposed various new categories of bi-
univalent functions and derived initial constraints on the coefficients, as documented in
sources such as [3,4,31–35].

The essential terminology and concepts related to the q-calculus must now be reviewed
in order to comprehend the topics of this article.

Definition 1 ([10,11]).

1. The notation [m]q! denotes the q-factorial, which can be expressed by:

[m]q! =

{
[m]q [m− 1]q[m− 2]q[m− 3]q · · · [3]q[2]q[1]q, if m = 1, 2, · · · ,
1, if m = 0,

(4)

where
qm − 1
q− 1

= [m]q.
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2. A definition has been established for the q-derivative operator when 0 < q < 1.

Dql(ξ) =

{ l(qξ)−l(ξ)
(q−1)ξ , if ξ 6= 0

l′(0), if ξ = 0.
(5)

Let eq be the q-exponential function; see [36] for details.

eq(ξ) =
∞

∑
m=0

ξm

[m]q!
, (z ∈ E).

In a further development, the q-binomial series is defined (see [37]):

(1− α)
ρ
q =

ρ

∑
m=0

(
ρ
m

)
q
(−1)mαm, ρ ∈ N, m ∈ N0,

where (
ρ
m

)
q
=

[ρ]q!
[m]q![ρ−m]q!

,

stands for the q-binomial coefficients.
The rationale behind the selection of q-numbers, Arik–Coon oscillators, and q-deformed

oscillators lies in their relevance to quantum physics and their applications in various contexts.

• q-Numbers: Rationale and applications: q-numbers, an expansion of conventional
numbers, emerge within the realm of quantum groups and quantum algebras. They
find validation and practical utility in various domains. In particular, in the realm
of quantum groups, they play a crucial role. This is significant in disciplines such as
quantum field theory, condensed matter physics, and statistical mechanics. Q-numbers
are instrumental in representing systems characterized by a non-commutative algebra,
a fundamental element in the framework of quantum mechanics.

• Arik–Coon Oscillator: Rationale and applications: The Arik–Coon oscillator is a vari-
ant of the harmonic oscillator that incorporates a parameter called “q” for deformation.
This alteration introduces a broader uncertainty principle, with potential significance
in exploring non-commutative geometry, as well as in the realms of quantum optics
and quantum information theory. This modification becomes crucial in cases where
standard quantum mechanics needs to be expanded, and it can also serve as a tool for
simulating systems in the presence of particular background fields.

• q-Deformed Oscillator: Rationale and applications: Similar to the Arik–Coon oscillator, q-
deformed oscillators utilize the deformation parameter ‘q’ to modify the characteristics of
regular oscillators. They find utility across diverse fields of physics, including quantum
field theory, quantum optics, and nuclear physics, providing insights into systems operat-
ing within unconventional quantum mechanical contexts. These oscillators play a pivotal
role in the exploration of quantum algebras and their corresponding representations.

In essence, these adapted oscillators and mathematical structures empower physi-
cists to explore scenarios that deviate from standard quantum mechanics. This becomes
particularly significant in situations involving systems subjected to extreme conditions,
like those encountered in high-energy physics, the study of the early universe, or in the
vicinity of black holes, where quantum gravity effects could play a substantial role. These
mathematical methods provide a framework for probing and elucidating such phenomena;
for more details, see [13–15,38].

We introduce our novel q-differential operator S
n,ζ,υ,q
α,ρ,ω,τ : A −→ A by using these

q-binomial coefficients. Hence, for ζ > 0, υ ≥ 0, α > 0, 0 ≤ τ ≤ ω, and z ∈ E . We have

S
ζ,υ,q,0
α,ρ,ω,τ l(ξ) = l(ξ), (6)
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S
ζ,υ,q,1
α,ρ,ω,τ l(ξ) =

(
1 + ζ(Mρ

q(α)− υ)(ω− τ − 1)

)
l(ξ)− ζξ

(
Mρ

q(α)− υ

)
(τ −ω)

+ ζ

(
Mρ

q(α)− υ

)
ξdq(l(ξ)), (7)

...
...

...
...

S
ζ,υ,q,n
α,ρ,ω,τ l(ξ) = S

ζ,υ,q,1
α,ρ,ω,τ

(
S

ζ,υ,q,n−1
α,ρ,ω,τ l(ξ)

)
. (8)

Then from the functions (1) and (8), we have

S
n,ζ,υ,q
α,ρ,ω,τ l(ξ) = ξ +

∞

∑
m=2

(
1 + ζ

(
Mρ

q(α)− υ
)(

[m]q + ω− τ − 1
))n

dmξm, (n ∈ N0 = N∪ {0}) (9)

where

Mρ
q(α) =

ρ

∑
m=1

(
ρ
m

)
q
(−1)m+1αm.

Remark 1. The aforementioned operators are specific instances of our novel operator Sn,ζ,υ,q
α,ρ,ω,τ that

have been established by different authors.

1. Setting ρ = 1, ω = τ, and S
n,ζ,υ,q
α,1,ω,ω , we obtain the operator defined by Hadi and Darus [39].

2. Setting ω = τ, ζ = 1, υ = 0, and S
n,1,0,q
α,ρ,ω,ω , we obtain the operator defined by Hadi et al. [40].

3. Setting ρ = 1, ζ = 1, υ = 0, and S
n,1,1,q
α,1,ω,τ , we obtain the operator defined by Lasode and

Opoola [41].
4. Setting ρ = 1, ζ = 1, υ = 0, ω = τ, and S

n,1,1,q
α,1,ω,ω, the q-Al-Oboudi operator, originally

introduced by Aouf et al. in their work cited as [42], is available to us.
5. Setting ρ = 1, ζ = 1, υ = 0, ω = τ, α = 1, and S

n,1,1,q
1,1,ω,ω, the q-Salagean operator,

introduced by Govindaraj and Sivasubramanian [43], is available to us.
6. Setting q −→ 1, ρ = 1, ω = τ, and S

n,ζ,υ,1
α,1,ω,ω, we acquire the operator that is defined by

Darus and Ibrahim in their work [44].
7. Setting q −→ 1, ω = τ, ζ = 1, υ = 0, and Sn,1,0,1

α,ρ,ω,ω, we obtain the operator defined by
Frasin [45].

8. Setting q −→ 1, ρ = 1, ζ = 1, υ = 0, and Sn,1,1,1
α,1,ω,τ , we obtain the operator defined by

Opoola [46].
9. Setting q −→ 1, ρ = 1, ζ = 1, υ = 0, ω = τ, and Sn,1,1,1

α,1,ω,ω , we have the Al-Oboudi operator
that Al-Oboudi [47] presented.

10. Setting ρ = 1, q −→ 1, ζ = 1, ω = τ, υ = 0, α = 1, and Sn,1,1,1
1,1,ω,ω, we have the Salagean

operator that Salagean [48] presented.

Definition 2. By utilizing the convolution principle, we introduce a novel operator known as
the q-convolution, denoted as Tα,ρ,ω,τ

n,ζ,υ,q : A −→ A, where the function l ∈ A is involved in the
definition, provided as follows:

Tα,ρ,ω,τ
n,ζ,υ,q l(ξ) = S

n,ζ,υ,q
α,ρ,ω,τ l(ξ) ∗ eq.

The preceding definition implies that

Tα,ρ,ω,τ
n,ζ,υ,q l(ξ) = ξ +

∞

∑
m=2

Ω(m)dmξm, (ξ ∈ E), (10)
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with

Ω(m) =

(
1 + ζ

(
Mρ

q(α)− υ
)(

[m]q + ω− τ − 1
))n

[m]q!
. (11)

In addition, the identity that follows can be easily demonstrated using (9):

ξζ

(
Mρ

q(α)− υ

)
Dq(S

n,ζ,υ,q
α,ρ,ω,τ l(ξ)) = S

n+1,ζ,υ,q
α,ρ,ω,τ l(ξ)− ζξ

(
Mρ

q(α)− υ

)
(τ −ω)

−
(

1 + ζ(Mρ
q(α)− υ)(ω− τ − 1)

)
S

n,ζ,υ,q
α,ρ,ω,τ l(ξ).

The Fekete–Szegö problem is solved using Loewner’s method for the coefficients of l
belonging to the set S in equation [49].

∣∣∣d3 − δd2
2

∣∣∣ ≤ 1 + exp
(

2δ

δ− 1

)2
for 0 ≤ δ < 1.

The well known inequality |d3 − d2
2| ≤ 1 can be obtained as δ −→ 1−1. The (GFT) is

significantly influenced by the coefficient functional

Wδ(l) = d3 − δd2
2

on the normalized analytic functions l ∈ E . The Fekete–Szegö problem pertains to the
maximization of the functional |Wδ(l)|. It was originally proposed in 1933 by Fekete [49].
Scholars have since raised concerns about various types of univalent functions in relation to
the Fekete–Szegö problem. These concerns have been addressed in several studies [33,50].
As a result, equivalent inequalities have been established for bi-univalent functions. Recent
sources, such as [50,51], provide compelling evidence that this subject matter continues to
yield fascinating results.

Let Bq,m(u) be q-Bernoulli polynomials defined by making use of the following gener-
ating function (see, for instance, [52]):

Bq(u, h) =
h

eq(h)− 1
eq(hu) =

∞

∑
m=0
Bq,m(u)

hm

[m]q!
, |h| < 2π, (12)

where polynomials in u called Bm(u) exist with respect to every nonnegative integer m.
Considering the q-Bernoulli Polynomials, the following linear homogeneous recur-

rence relation remains true:

Bq,m(u) = qm
(

u− 1
q[2]q

)
Bq,m−1(u)−

1
[m]q

m−2

∑
j=0

[
m
j

]
q
qj−1bm−j,qBj,q(u);

for more details, see [53].
These happen to be the initial few polynomials:

Bq,0(u) = 1,

Bq,1(u) = −
(

q− [2]qu
[2]q

)
,

Bq,2(u) =
q

[2]q[3]q
− u + u2,

Bq,3(u) = u3 +
1

q[2]q
u +

q− 1
[4]q[2]q

−
[3]q
q[2]q

u2.
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The relationship between bi-univalent functions and orthogonal polynomials has
recently come under the scrutiny of various authors (see, for example, [24,33,54]).

The current investigation introduces a novel q-convolution operator, comprising the
q-exponential function and q-binomial series. Alongside this development, the study aims
to establish upper bounds for various families of analytic functions that are defined through
subordination. Based on our current understanding, no previous research studies have been
published on bi-univalent functions concerning the q-Bernoulli polynomials associated with
the newly proposed q-convolution operator. Inspired by the work of Buyankara et al. [54],
the main goal of this study is to investigate the characteristics of bi-univalent functions in
connection with q-Bernoulli polynomials. The subsequent statements serve as definitions
for the purposes of this study.

Definition 3. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u), supposing the following subordinations are valid:

Dq(T
α,ρ,ω,τ
n,ζ,υ,q l(ξ)) +

eiθ + 1
2

ξD2
q(T

α,ρ,ω,τ
n,ζ,υ,q l(ξ)) ≺ Bq(u, ξ) (13)

and

Dq(T
α,ρ,ω,τ
n,ζ,υ,q g(v)) +

eiθ + 1
2

vD2
q(T

α,ρ,ω,τ
n,ζ,υ,q g(v)) ≺ Bq(u, v) (14)

where ≺ is the subordination principle in (2), ξ, v ∈ E , u ∈ [−π, π], Bq(u, ξ) is given by (12),
and g(v) is given by (3).

We consider a function lt(ξ) such that

Dq(T
α,ρ,ω,τ
n,ζ,υ,q lt(ξ)) +

eiθ + 1
2

ξD2
q(T

α,ρ,ω,τ
n,ζ,υ,q lt(ξ)) = Bq(u, ξt) (15)

and

Dq(T
α,ρ,ω,τ
n,ζ,υ,q gt(v)) +

eiθ + 1
2

vD2
q(T

α,ρ,ω,τ
n,ζ,υ,q gt(v)) = Bq(u, vt). (16)

Thus, we have

l1(ξ) = ξ +
2(u[2]q − q)

Ω(2)[2]2q(3 + eiθ)
ξ2 +

2(q− [2]q[3]qu(1− u))
Ω(3)[2]2q[3]2q[2 + [2]q(eiθ + 1)]

ξ3 + · · · , (17)

l2(ξ) = ξ +
2(u[2]q − q)

Ω(3)[2]q[3]q[2 + [2]q(eiθ + 1)]
ξ3 +

2(q− [2]q[3]qu(1− u))
Ω(4)[2]2q[4]q[3]q[2 + [3]q(eiθ + 1)]

ξ4 + · · · , (18)

l3(ξ) = ξ +
2(u[2]q − q)

Ω(4)[2]q[4]q[2 + [3]q(eiθ + 1)]
ξ4 +

2(q− [2]q[3]qu(1− u))
Ω(5)[2]2q[3]q[5]q[2 + [4]q(eiθ + 1)]

ξ5 + · · · . (19)

Remark 2. The classRBn,α,ρ
ζ,υ,θ (ω, τ, q; u) is not empty. At least, the functions defined by (17)–(19)

are univalent due to being extremal functions of the class of univalent functions. They all exist in the
classRBn,α,ρ

ζ,υ,θ (ω, τ, q; u). To show this, we proceed as follows. When t = 1 in (15) and (16), we have

Dq(T
α,ρ,ω,τ
n,ζ,υ,q l1(ξ)) +

eiθ + 1
2

ξD2
q(T

α,ρ,ω,τ
n,ζ,υ,q l1(ξ)) = Bq(u, ξ1) (20)

and

Dq(T
α,ρ,ω,τ
n,ζ,υ,q g1(v)) +

eiθ + 1
2

vD2
q(T

α,ρ,ω,τ
n,ζ,υ,q g1(v)) = Bq(u, v1). (21)

Firstly, we are going to subtitute l1(ξ) into (20) and check if it is equal.
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Now, from the left-hand side (L.H.S) of (20), we have the following:

Tα,ρ,ω,τ
n,ζ,υ,q l1(ξ) = ξ +

2(u[2]q − q)
[2]2q(3 + eiθ)

ξ2 +
2(q− [2]q[3]qu(1− u))
[2]2q[3]2q[2 + [2]q(eiθ + 1)]

ξ3 + · · ·

Dq(T
α,ρ,ω,τ
n,ζ,υ,q l1(ξ)) = 1 +

2(u[2]q − q)
[2]q(3 + eiθ)

ξ +
2(q− [2]q[3]qu(1− u))
[2]2q[3]q[2 + [2]q(eiθ + 1)]

ξ2 + · · · (22)

eiθ + 1
2

ξD2
q(T

α,ρ,ω,τ
n,ζ,υ,q l1(ξ)) =

(1 + eiθ)(u[2]q − q)
[2]q(3 + eiθ)

ξ +
(1 + eiθ)(q− [2]q[3]qu(1− u))

[2]q[3]q[2 + [2]q(eiθ + 1)]
ξ2 + · · · . (23)

Combining (22) and (23), we have

Dq(T
α,ρ,ω,τ
n,ζ,υ,q l1(ξ)) +

eiθ + 1
2

ξD2
q(T

α,ρ,ω,τ
n,ζ,υ,q l1(ξ)) = 1 +

u[2]q − q
[2]q

ξ +
q− [2]q[3]qu(1− u)

[2]2q[3]q
ξ2 + · · · . (24)

Now for the right-hand side (R.H.S) of (20), we have

Bq(u, ξ1) = 1 +
u[2]q − q

[2]q
ξ +

q− [2]q[3]qu(1− u)
[2]2q[3]q

ξ2 + · · · . (25)

Comparing (24) and (25), we can clearly see that they are equal, so we can say that l1(ξ)
satisfies the first part of Definition 3.

Now, we check if l1(ξ) satisfies the second part of the definition. Hence, we are going to find
the inverse of (24) to obtain the L.H.S of the second part of Definition 3 which is g(v)

Let

w = Dq(T
α,ρ,ω,τ
n,ζ,υ,q l1(ξ)) +

eiθ + 1
2

ξD2
q(T

α,ρ,ω,τ
n,ζ,υ,q l1(ξ)) (26)

imply

ξ = Dq(T
α,ρ,ω,τ
n,ζ,υ,q g1(v)) +

eiθ + 1
2

vD2
q(T

α,ρ,ω,τ
n,ζ,υ,q g1(v)) = v + A2v2 + A3v3 + A4v4 + · · · . (27)

Now, substituting (27) into (26) gives

v =1 +
u[2]q − q

[2]q

(
v + A2v2 + A3v3 + · · ·

)

+
q− [2]q[3]qu(1− u)

[2]2q[3]q

(
v + A2v2 + A3v3 + · · ·

)2

+ · · · .

Observe that:

[v + A2v2 + A3v3 + A4v4 + · · · ]2 = v2 + 2A2v3 + (A2
2 + 2A3)v

4 + · · · , (28)

[v + A2v2 + A3v3 + A4v4 + · · · ]3 = v3 + 3A2v4 + · · · , (29)

[v + A2v2 + A3v3 + A4v4 + · · · ]4 = v4 + 4A2v5 + · · · . (30)

Making use of (28), we have

v = 1 +
u[2]q − q

[2]q
v +

[
A2(u[2]q − q)

[2]q
+

q− [2]q[3]qu(1− u)
[2]2q[3]q

]
v2 + · · ·
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A2 =
[2]q[3]qu(1− u)− q
[2]q[3]q(u[2]q − q)

.

Sutituting A2 into (27), we have

ξ = Dq(T
α,ρ,ω,τ
n,ζ,υ,q g1(v)) +

eiθ + 1
2

vD2
q(T

α,ρ,ω,τ
n,ζ,υ,q g1(v)) = v +

[2]q[3]qu(1− u)− q
[2]q[3]q(u[2]q − q)

v2 + · · · . (31)

For the right-hand side (R.H.S) of (21), since the left-hand side (L.H.S) and R.H.S of (20) are
equal and we have solved for the inverse of the L.H.S of (21), it is easy to see that the R.H.S will be
equal to the L.H.S of (21). That is,

ξ =
(
Bq(u, ξ1)

)−1
= v +

[2]q[3]qu(1− u)− q
[2]q[3]q(u[2]q − q)

v2 + · · · . (32)

Comparing (31) and (32), we deduce that both sides are equal. Therefore, by applying the
same process to l2(ξ) and l3(ξ), which gives more degrees, we conclude that they also satisfy both
equations in Definition 3.

Now, we can conclude that the extremal functions given in (17)–(19) show that our defined
class of analytic and bi-univalent functions is not empty and also satisfies both the first and second
part of our Definition 3 related to l(ξ) and g(v).

Example 1. We have the following remarks:

1. When θ = 0, we obtain the subfamily

RBn,α,ρ
ζ,υ (ω, τ, q; u)

described by
Dq(T

α,ρ,ω,τ
n,ζ,υ,q l(ξ)) + ξD2

q(T
α,ρ,ω,τ
n,ζ,υ,q l(ξ)) ≺ Bq(u, ξ) (33)

and
Dq(T

α,ρ,ω,τ
n,ζ,υ,q g(v)) + vD2

q(T
α,ρ,ω,τ
n,ζ,υ,q g(v)) ≺ Bq(u, v), (34)

where ξ, v ∈ E , Bq(u, ξ) is given by (12), and g(v) is given by (3).
2. When θ = π, we obtain the subfamily

RBn,α,ρ
ζ,υ (ω, τ, q; u)

described by
Dq(T

α,ρ,ω,τ
n,ζ,υ,q l(ξ)) ≺ Bq(u, ξ) (35)

and
Dq(T

α,ρ,ω,τ
n,ζ,υ,q g(v)) ≺ Bq(u, v), (36)

where ξ, v ∈ E , Bq(u, ξ) is given by (12), and g(v) is given by (3).
3. When θ = π, n = 0, and q −→ 1, we obtain the subfamily

RB0,α,ρ
ζ,υ,π(ω, τ, q; u) = MΣ(B)

described by
l(ξ) ≺ B(u, ξ) (37)

and
g(v) ≺ B(u, v), (38)

which was studied by Buyankara and Caglar [55].

To establish our main results, it is necessary to demonstrate the following lemmas.
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Lemma 1. Let us assume that P represents a collection of analytic functions denoted by s, which
can be expressed in the following manner [29,56]:

s(ξ) = 1 + s1ξ + s2ξ2 + s3ξ3 + · · · = 1 +
∞

∑
m=1

smξm (39)

satisfying <(s(ξ)) > 0, ξ ∈ E and s(0) = 1. Then,

|sm| ≤ 2, m ∈ N.

This inequality is sharp for every natural number m ∈ N.

Lemma 2. Let us assume that P is as (39), satisfying <(s(ξ)) > 0, z ∈ E , and s(0) = 1. Then,

2s2 = s2
1 + (4− s2

1)e

4s3 = s3
1 + 2(4− s2

1)s1e− (4− s2
1)s1e2 + 2(4− s2

1)(1− |e|2)ξ.

There exist values of e and ξ such that their absolute values are less than or equal to 1.

Throughout this research, we assume that our θ is 0 and π, ζ > 0, υ ≥ 0, α > 0,
0 ≤ τ ≤ ω, u ∈ [−π, π] throughout our results.

2. Bounds on the Initial Coefficients for Several Families Related to the
q-Bernoulli Polynomials

In this section, we present a theorem that establishes upper-bound estimates for the
first three coefficients of functions within the classRBn,α,ρ

ζ,υ,θ (ω, τ, q; u).

Theorem 1. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u). Then,

|d2| ≤
2|u[2]q − q|

Ω(2)[2]2q|3 + eiθ |
,

|d3| ≤
2|u[2]q − q|

Ω(3)[2]q[3]q|2 + [2]q(eiθ + 1)|
,

|d4| ≤
2|u[2]q − q|

Ω(4)[2]q[4]q|2 + [3]q(eiθ + 1)|
.

All bounds of Theorem 1 are sharp for the functions given in (57)–(59).

Proof. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u). Next, we have the concept of analytic functions w :

E −→ E , v : E −→ E with w(0) = 0 = v(0), |w(ξ)| ≤ 1, |v(v)| ≤ 1 fulfilling the following
conditions:

Dq(T
α,ρ,ω,τ
n,ζ,υ,q l(ξ)) +

eiθ + 1
2

ξD2
q(T

α,ρ,ω,τ
n,ζ,υ,q l(ξ)) = Bq(u, w(ξ)) (40)

and

Dq(T
α,ρ,ω,τ
n,ζ,υ,q g(v)) +

eiθ + 1
2

vD2
q(T

α,ρ,ω,τ
n,ζ,υ,q g(v)) = Bq(u, v(v)). (41)

The function s, r ∈ P are defined as follows:

s(ξ) =
1 + w(ξ)

1− w(ξ)
= 1 +

∞

∑
m=1

smξm, ξ ∈ E
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and

r(v) =
1 + v(v)

1− v(v)
= 1 +

∞

∑
m=1

rmvm, v ∈ E .

As a result,

w(ξ) =
s(ξ)− 1
s(ξ) + 1

=
1
2

[
s1ξ +

(
s2 −

s2
1
2

)
ξ2 +

(
s3 − s1s2 +

s3
1
4

)
ξ3 + · · ·

]
, ξ ∈ E (42)

and

v(v) =
r(v)− 1
r(v) + 1

=
1
2

[
r1v +

(
r2 −

r2
1
2

)
v2 +

(
r3 − r1r2 +

r3
1
4

)
v3 + · · ·

]
, v ∈ E . (43)

Upon replacing the expressions of the functions w(ξ) and v(v) in Equations (40)
and (41) with the ones given in Equations (42) and (43), we obtain the following result:

Dq(T
α,ρ,ω,τ
n,ζ,υ,q l(ξ)) +

eiθ + 1
2

ξD2
q(T

α,ρ,ω,τ
n,ζ,υ,q l(ξ)) = 1 +

Bq,1(u)
2

s1ξ +

(
Bq,1(u)

2

(
s2 −

s2
1
2

)

+
Bq,2(u)
4[2]q!

s2
1

)
ξ2 +

(
Bq,1(u)

2

(
s3 − s1s2 +

s3
1
4

)
+
Bq,2(u)
2[2]q!

s1

(
s2 −

s2
1
2

)

+
Bq,3(u)
8[3]q!

s3
1

)
ξ3 + · · · , (44)

Dq(T
α,ρ,ω,τ
n,ζ,υ,q g(v)) +

eiθ + 1
2

vD2
q(T

α,ρ,ω,τ
n,ζ,υ,q g(v)) = 1 +

Bq,1(u)
2

r1v +

(
Bq,1(u)

2

(
r2 −

r2
1
2

)

+
Bq,2(u)
4[2]q!

r2
1

)
v2 +

(
Bq,1(u)

2

(
r3 − r1r2 +

r3
1
4

)
+
Bq,2(u)
2[2]q!

r1

(
r2 −

r2
1
2

)

+
Bq,3(u)
8[3]q!

r3
1

)
v3 + · · · . (45)

Equations (44) and (45) yield expressions for terms of equal degree, specifically d2, d3,
and d4, once the operations and simplifications on the left side are performed.

Ω(2)[2]q(3 + eiθ)

2
d2 =

Bq,1(u)
2

s1, (46)

[2 + [2]q(eiθ + 1)]Ω(3)[3]q
2

d3 =
Bq,1(u)

2

(
s2 −

s2
1
2

)
+
Bq,2(u)
4[2]q!

s2
1, (47)

[2 + [3]q(eiθ + 1)]Ω(4)[4]q
2

d4 =
Bq,1(u)

2

(
s3 − s1s2 +

s3
1
4

)
+
Bq,2(u)
2[2]q!

s1

(
s2 −

s2
1
2

)

+
Bq,3(u)
8[3]q!

s3
1 (48)

and
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−
Ω(2)[2]q(3 + eiθ)

2
d2 =

Bq,1(u)
2

r1, (49)

[2 + [2]q(eiθ + 1)]Ω(3)[3]qd2
2 −

[2 + [2]q(eiθ + 1)]Ω(3)[3]q
2

d3 =
Bq,2(u)
4[2]q!

r2
1

+
Bq,1(u)

2

(
r2 −

r2
1
2

)
, (50)

−
5[2 + [3]q(eiθ + 1)]Ω(4)[4]q

2
d3

2 +
5[2 + [3]q(eiθ + 1)]Ω(4)[4]q

2
d2d3

−
[2 + [3]q(eiθ + 1)]Ω(4)[4]q

2
d4 =

Bq,1(u)
2

(
r3 − r1r2 +

r3
1
4

)
+
Bq,2(u)
2[2]q!

r1

(
r2 −

r2
1
2

)

+
Bq,3(u)
8[3]q!

r3
1. (51)

Using Equations (46) and (49), we write:

s1 = −r1. (52)

The initial result of the theorem can be easily deduced from this fact along with
Lemma 1.

By taking into account the equality s1 = −r1 and subtracting Equation (50) from
Equation (47), we can derive the following expression:

d3 = d2
2 +

Bq,1(u)(s2 − r2)

2[2 + [2]q(eiθ + 1)]Ω(3)[3]q
.

In addition,

d3 =
s2

1B2
q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 +
Bq,1(u)(s2 − r2)

2[2 + [2]q(eiθ + 1)]Ω(3)[3]q
. (53)

Furthermore, through the subtraction of Equation (51) from Equation (48), while con-
sidering the relationships presented in Equations (52) and (53), we reach the conclusion that

d4 =
5B2

q,1(u)s1(s2 − r2)

4Ω(2)Ω(3)[2]q[3]q(3 + eiθ)[2 + [2]q(eiθ + 1)]
+

Bq,1(u)(s3 − r3)

2[2 + [3]q(eiθ + 1)]Ω(4)[4]q

+
[Bq,2(u)− [2]q!Bq,1(u)]s1(s2 + r2)

2[2]q![2 + [3]q(eiθ + 1)]Ω(4)[4]q
+

[2]q![3]q!Bq,1(u)− 2[3]q!Bq,2(u) + [2]q!Bq,3(u)
4[2]q![3]q![2 + [3]q(eiθ + 1)]Ω(4)[4]q

. (54)

Moreover, Lemma 2 states that due to the fact that s1 is equal to −r1, we have the
ability to express:

s2 − r2 =
4− s2

1
2

(e− µ), s2 + r2 = s2
1 +

4− s2
1

2
(e + µ) (55)

and

s3 − r3 =
s3

1
2
+

(4− s2
1)(e + µ)

2
s1 −

(4− s2
1)(e

2 + µ2)

4
s1 (56)

+
4− s2

1
2

[(
1− |e|2

)
ξ −

(
1− |µ|2

)
v

]
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for some e, v, ξ, µ with |e| ≤ 1, |v| ≤ 1, |ξ| ≤ 1, |µ| ≤ 1.
To derive the expression for the coefficient d3, we put the first Equation (55) into

Equation (53), resulting in the following formulation:

d3 =
s2

1B2
q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 +
Bq,1(u)(4− s2

1)(e− µ)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q
.

Let s1 = c. Essentially, we can consider the value of c to be in the range of [0, 2].
Under this condition, the inequality for |d3| can be expressed as follows:

|d3| ≤
c2|B2

q,1(u)|
Ω2(2)[2]2q|3 + eiθ |2

+
|Bq,1(u)|(4− c2)

4|2 + [2]q(eiθ + 1)|Ω(3)[3]q
(λ + σ) = M(λ, σ), (λ, σ) ∈ [0, 1]× [0, 1]

using the triangle inequality and assigning the values of |e| as λ and |µ| as σ.
The function M : R2 −→ R is now defined in the following manner:

M(λ, σ) =
c2B2

q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 +
Bq,1(u)(4− c2)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q
(λ + σ), (λ, σ) ∈ [0, 1]2.

To achieve the desired outcome, it is essential to optimize the function M within the
confines of a square X, which is closed and defined as X = [(λ, σ) : (λ, σ) ∈ [0, 1]2].

The location of the maximum value of the function M within the closed square X is
clearly evident. By employing the parameter λ to distinguish the function M(λ, σ), we can
derive the following:

Mλ(λ, σ) =
Bq,1(u)(4− c2)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q
.

Since Mλ(λ, σ) ≥ 0, the function M(λ, σ) exhibits an increasing trend as λ increases
and attains its maximum value when λ equals 1. Therefore,

max{M(λ, σ) : λ ∈ [0, 1]} = M(1, σ) =
c2B2

q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 +
Bq,1(u)(4− c2)(1 + σ)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q

for every σ belonging to the interval [0, 1] and every c belonging to the interval [0, 2].
After taking the derivative of the function M(1, σ), our result is now:

M′(1, σ) =
Bq,1(u)(4− c2)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q
.

Because M′(1, σ) ≥ 0, it can be concluded that the function M(1, σ) exhibits a consis-
tent upward trend, meaning it increases as σ increases. The maximum value of the function
is attained when σ = 1. Consequently,

max{M(1, 1) : λ ∈ [0, 1]} = M(1, 1) =
c2B2

q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 +
Bq,1(u)(4− c2)

2[2 + [2]q(eiθ + 1)]Ω(3)[3]q
,

where c ∈ [0, 2].
As a result, we have

M(λ, σ) ≤ max{M(λ, σ) : (λ, σ) ∈ X} = M(1, 1) =
c2B2

q,1(u)

Ω2(2)[2]2q|3 + eiθ |2

+
Bq,1(u)(4− c2)

2|2 + [2]q(eiθ + 1)|Ω(3)[3]q
.
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Given that the absolute value of a3 is less than or equal to the function M(λ, σ), it can
be concluded that:

|d3| ≤ Ψ(q, θ)× c2 +
2|Bq,1(u)|

|2 + [2]q(eiθ + 1)|Ω(3)[3]q
, c ∈ [0, 2],

where

Ψ(q, θ) = |Bq,1(u)|
[

|Bq,1(u)|
Ω2(2)[2]2q|3 + eiθ |2

− 1
2|2 + [2]q(eiθ + 1)|Ω(3)[3]q

]
.

Now, let us find the highest value of the function H : R −→ R, which is defined in the
following way:

H(c) = Ψ(q, θ)× c2 +
2Bq,1(u)

[2 + [2]q(eiθ + 1)]Ω(3)[3]q

in the range of c ∈ [0, 2] and u ∈ [−π, π].
Moreover, if we take the derivative of the function H(c), denoted as H′(c), we obtain

the expression H′(c) = 2Ψ(q, θ)c, where c belongs to the interval [0, 2]. It is known that
when Ψ(q, θ) ≤ 0 (u = 0, q = 1

2 , and θ = π and 0), the value of H′(c) is less than or equal
to zero. This implies that the function H(c) is a decreasing function, and its maximum
value occurs at c = 0. Therefore, we define H : R −→ R as a function with a maximum
value, which can be described as follows.

max{H(c) : c ∈ [0, 2]} = H(0) =
2Bq,1(u)

[2 + [2]q(eiθ + 1)]Ω(3)[3]q
;

furthermore, if Ψ(q, θ, q) ≥ 0 (u = π, q = 1
2 , and θ = π and 0), the condition H′(c) ≥ 0

holds. The function H(c) is monotonically increasing, and its maximum value is attained
when c = 2:

max{H(c) : c ∈ [0, 2]} = H(2) =
4B2

q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 .

Therefore, we derive the maximum limit approximation for the absolute value of d3,
as provided subsequently:

|d3| ≤
2|u[2]q − q|

Ω(3)[2]q[3]q|2 + [2]q(eiθ + 1)|
.

Using Equations (55) and (56), and the triangle inequality, we obtain the subsequent
inequality for the absolute value of d4 based on (54):

|d4| ≤ y1(c) + y2(c)(λ + σ) + y3(c)(λ2 + σ2) := L(λ, σ)

where

y1(c) =
|Bq,3(u)|

4[3]q!|2 + [3]q(eiθ + 1)|Ω(4)[4]q
+

|Bq,1(u)|(4− c2)

2|2 + [3]q(eiθ + 1)|Ω(4)[4]q

y2(c) =
|Bq,2(u)|(4− c2)

4[2]q!|2 + [3]q(eiθ + 1)|Ω(4)[4]q
c +

5|B2
q,1(u)|(4− c2)

8Ω(2)Ω(3)[2]q[3]q|3 + eiθ ||2 + [2]q(eiθ + 1)|

y3(c) =
|Bq,1(u)|(4− c2)(c− 2)

8|2 + [3]q(eiθ + 1)|Ω(4)[4]q
.

We are required to find the maximum value of the function L(λ, σ) over the set X for
all values of c between 0 and 2.
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Because the coefficients y1(c), y2(c), and y3(c) of the function H(λ, σ) depend on the
parameter c, we need to analyze the highest value of the function H(λ, σ) for different
values of c.

Given that y2(0) = 0, we can set c = 0 :

y1(0) =
2Bq,1(u)

[2 + [3]q(eiθ + 1)]Ω(4)[4]q

and y3(0) = −
Bq,1(u)

[2 + [3]q(eiθ + 1)]Ω(4)[4]q
.

Moreover, we obtain

L(λ, σ) =
2Bq,1(u)

[2 + [3]q(eiθ + 1)]Ω(4)[4]q
−

Bq,1(u)
[2 + [3]q(eiθ + 1)]Ω(4)[4]q

(λ2 + σ2), (λ, σ) ∈ [0, 1]× [0, 1].

Therefore, we have the following:

L(λ, σ) ≤ max{L(λ, σ) : (λ, σ) ∈ X} = L(0, 0) =
2|Bq,1(u)|

|2 + [3]q(eiθ + 1)|Ω(4)[4]q
.

Assuming c = 2, we have y2(2) = y3(2) = 0. Consequently,

y1(2) =
2Bq,3(u)

[3]q![2 + [3]q(eiθ + 1)]Ω(4)[4]q
.

The function L(λ, σ) remains unchanged:

L(λ, σ) = y1(2) =
2Bq,3(u)

[3]q![2 + [3]q(eiθ + 1)]Ω(4)[4]q
.

Consequently, we have the ability to prove that the function L(λ, σ) does not have a
maximum on the set X when the value of c falls within the interval (0, 2) as follows:

|d4| ≤
2|u[2]q − q|

Ω(4)[4]q[2]q|2 + [3]q(eiθ + 1)|
.

The results obtained in the theorem are sharp. Really, the obtained results hold with
equalities for the following function

l1(ξ) = ξ +
2(u[2]q − q)

Ω(2)[2]2q(3 + eiθ)
ξ2 +

2(q− [2]q[3]qu(1− u))
Ω(3)[2]2q[3]2q[2 + [2]q(eiθ + 1)]

ξ3 + · · · , (57)

l2(ξ) = ξ +
2(u[2]q − q)

Ω(3)[2]q[3]q[2 + [2]q(eiθ + 1)]
ξ3 +

2(q− [2]q[3]qu(1− u))
Ω(4)[2]2q[4]q[3]q[2 + [3]q(eiθ + 1)]

ξ4 + · · · , (58)

and l3(ξ) = ξ +
2(u[2]q − q)

Ω(4)[2]q[4]q[2 + [3]q(eiθ + 1)]
ξ4 +

2(q− [2]q[3]qu(1− u))
Ω(5)[2]2q[3]q[5]q[2 + [4]q(eiθ + 1)]

ξ5 + · · · . (59)

Based on the results derived from Theorem 1, specific parameter values yield the
following conclusions.
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Corollary 1. Let l ∈ RBn,α,ρ
ζ,υ (ω, τ, q; u). Then,

|d2| ≤
|u[2]q − q|
2Ω(2)[2]2q

,

|d3| ≤
|u[2]q − q|

Ω(3)[2]q[3]q[1 + [2]q]
,

and |d4| ≤
|u[2]q − q|

Ω(4)[2]q[4]q[1 + [3]q]
.

The outcomes achieved in this study are precise for the following functions:

l1(ξ) = ξ +
u[2]q − q
Ω(2)[2]2q

ξ2 +
q− [2]q[3]qu(1− u)

Ω(3)[2]2q[3]2q[1 + [2]q]
ξ3 + · · · ,

l2(ξ) = ξ +
u[2]q − q

Ω(3)[2]q[3]q[1 + [2]q]
ξ3 +

q− [2]q[3]qu(1− u)
Ω(4)[2]2q[4]q[3]q[1 + [3]q]

ξ4 + · · · ,

and l3(ξ) = ξ +
u[2]q − q

Ω(4)[2]q[4]q[1 + [3]q]
ξ4 +

q− [2]q[3]qu(1− u)
Ω(5)[2]2q[3]q[5]q[1 + [4]q]

ξ5 + · · · .

Corollary 2. Let l ∈ RBn,α,ρ
ζ,υ (ω, τ, q; u). Then,

|d2| ≤
|u[2]q − q|
Ω(2)[2]2q

,

|d3| ≤
|u[2]q − q|

Ω(3)[2]q[3]q
,

and |d4| ≤
|u[2]q − q|

Ω(4)[2]q[4]q
.

The outcomes achieved in this study are precise for the following function:

l1(ξ) = ξ +
u[2]q − q
Ω(2)[2]2q

ξ2 +
q− [2]q[3]qu(1− u)

Ω(3)[2]2q[3]2q
ξ3 + · · · ,

l2(ξ) = ξ +
u[2]q − q

Ω(3)[2]q[3]q
ξ3 +

q− [2]q[3]qu(1− u)
Ω(4)[2]2q[4]q[3]q

ξ4 + · · · ,

and l3(ξ) = ξ +
u[2]q − q

Ω(4)[2]q[4]q
ξ4 +

q− [2]q[3]qu(1− u)
Ω(5)[2]2q[3]q[5]q

ξ5 + · · · .

Corollary 3. Let l ∈ MΣ(B). Then,

|d2| ≤
|2u− 1|

4
,

|d3| ≤
|2u− 1|

6
,

and |d4| ≤
|2u− 1|

8
.
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The outcomes achieved in this study are precise for the following function:

l1(ξ) = ξ +
2u− 1

4
ξ2 + · · · ,

l2(ξ) = ξ +
2u− 1

6
ξ3 + · · · ,

and l3(ξ) = ξ +
2u− 1

8
ξ4 + · · · .

The outcomes achieved in this study are precise, leading to an enhancement of the findings
presented by Buyankara and Caglar [55] in Theorem 2.

3. The Second Hankel Determinant and Fekete–Szegö Inequality for Several Families
Related to the q-Bernoulli Polynomials

In this section, we provide an estimate of the upper bound for the second Hankel
determinant and the Fekete–Szegö inequality. These estimates are applicable to a function
that belongs to a specific class, denoted as RBn,α,ρ

ζ,υ,θ (ω, τ, q; u), as defined in Definition 3.
We now introduce a theorem that offers an estimate for the upper bound of the second
Hankel determinant.

Theorem 2. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u). Then,

|d2d4 − d2
3| ≤

(
2|u[2]q − q|

|2 + [2]q(eiθ + 1)|Ω(3)[3]q[2]q

)2

.

The results obtained here are sharp for the function:

l2(ξ) = ξ +
2(u[2]q − q)

Ω(3)[2]q[3]q[2 + [2]q(eiθ + 1)]
ξ3 + · · · .

Proof. Suppose l belongs to the setRBn,α,ρ
ζ,υ,θ (ω, τ, q; u). In that case, the expression d2d4− d2

3
can be expressed in the following manner by utilizing Equations (52)–(54):

d2d4 − d2
3 =

[2]q![3]q!B2
q,1(u)− 2[3]q!Bq,1(u)Bq,2(u) + [2]q!Bq,1(u)Bq,3(u)

4Ω(2)Ω(4)[2]q[4]q[2]q![3]q!(3 + eiθ)[2 + [3]q(eiθ + 1)]
s4

1

−
B4

q,1(u)

Ω4(2)[2]4q(3 + eiθ)4 s4
1 +

5B3
q,1(u)(s2 − r2)

4Ω2(2)Ω(3)[2]2q[3]q(3 + eiθ)2[2 + [2]q(eiθ + 1)]
s2

1

+
B2

q,1(u)(s3 − r3)

2Ω(2)Ω(4)[2]q[4]q(3 + eiθ)[2 + [3]q(eiθ + 1)]
s1 −

B2
q,1(u)(s2 − r2)

2

4Ω2(3)[3]2q[2 + [2]q(eiθ + 1)]2

+
Bq,1(u)[Bq,2(u)− [2]q!Bq,1(u)](s2 + r2)

2Ω(2)Ω(4)[2]q[4]q[2]q!(3 + eiθ)[2 + [3]q(eiθ + 1)]
s2

1

−
B3

q,1(u)(s2 − r2)

Ω2(2)[2]2q(3 + eiθ)2[2 + [2]q(eiθ + 1)]Ω(3)[3]q
s2

1.

By utilizing Equations (55) and (56), the triangle inequality, and assuming that |s1| = c,
|e| is λ, and |µ| is σ, we can make an approximation for:

|d2d4 − d2
3| ≤ Y1(c) + Y2(c)(λ + σ) + Y3(c)(λ2 + σ2) + Y4(c)(λ + σ)2, (60)
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where

Y1(c) =
[2]q!|Bq,1(u)||Bq,3(u)|

4Ω(2)Ω(4)[2]q[4]q[2]q![3]q!|3 + eiθ ||2 + [3]q(eiθ + 1)|
c4 +

|B4
q,1(u)|

Ω4(2)[2]4q|3 + eiθ |4
c4

+
|B2

q,1(u)|(4− c2)

2Ω(2)Ω(4)[2]q[4]q|3 + eiθ ||2 + [3]q(eiθ + 1)|
c ≥ 0,

Y2(c) =
9|B3

q,1(u)|(4− c2)

8Ω2(2)Ω(3)[2]2q[3]q|3 + eiθ |2|2 + [2]q(eiθ + 1)|
c2

+
|Bq,1(u)||Bq,2(u)|(4− c2)

4Ω(2)Ω(4)[2]q[2]q![4]q|3 + eiθ ||2 + [3]q(eiθ + 1)|
c2 ≥ 0

Y3(c) =
|B2

q,1(u)|(4− c2)c(c− 2)

8Ω(2)Ω(4)[2]q[4]q|3 + eiθ ||2 + [3]q(eiθ + 1)|
≤ 0

Y4(c) =
|B2

q,1(u)|(4− c2)2

16Ω2(3)[3]2q|2 + [2]q(eiθ + 1)|2
≥ 0.

The function D : R2 −→ R is now defined in the following manner:

D(λ, σ) = Y1(c) + Y2(c)(λ + σ) + Y3(c)(λ2 + σ2) + Y4(c)(λ + σ)2, (λ, σ) ∈ [0, 1]2

for each c ∈ [0, 2].
Now, we need to maximize the function D on closed square X for each c ∈ [0, 2].
Since the coefficients of the function D depend on the parameter c, we must investigate

the maximum for different values of the parameter c.

1. (Case 1: When c = 0 (extreme point)). Assuming c equals 0, because Y1(0), Y2(0),
and Y3(0) are all equal to zero, and

Y4(0) =
B2

q,1(u)

[2 + [2]q(eiθ + 1)]2Ω2(3)[3]2q
.

The function D(λ, σ) can be expressed in the following manner.

D(λ, σ) =
B2

q,1(u)

[2 + [2]q(eiθ + 1)]2Ω2(3)[3]2q
(λ + σ)2, (λ, σ) ∈ X.

The maximum value of the function D(λ, σ) can be observed at the edges of the
enclosed square X.
After applying differentiation techniques to the function D(λ, σ) with respect to λ, we
obtain the following result.

Dλ(λ, σ) =
2B2

q,1(u)

[2 + [2]q(eiθ + 1)]2Ω2(3)[3]2q
(λ + σ), σ ∈ [0, 1].

The function D(λ, σ) increases as λ increases and reaches its maximum when λ
equals 1, as indicated by the condition Dλ(λ, σ) ≥ 0. Therefore, we can conclude
the following:

max{D(λ, σ) : σ ∈ [0, 1]} = D(1, σ) =
B2

q,1(u)(1 + σ)2

[2 + [2]q(eiθ + 1)]2Ω2(3)[3]2q
, σ ∈ [0, 1].
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By utilizing differentiation techniques on the function D(1, σ), we find that if D′(1, σ)
is greater than zero, then D(1, σ) is an ascending function and reaches its maximum
value when σ is equal to 1. Consequently,

max{D(1, σ) : σ ∈ [0, 1]} = D(1, 1) =
4B2

q,1(u)

[2 + [2]q(eiθ + 1)]2Ω2(3)[3]2q
.

Therefore, when c is equal to 0, we obtain the following.

D(λ, σ) ≤ max{D(λ, σ) : (λ, σ) ∈ [0, 1]2} = D(1, 1) =
(

2|Bq,1(u)|
|2 + [2]q(eiθ + 1)|Ω(3)[3]q

)2

.

Since |d2d4 − d2
3| ≤ D(λ, σ), we have

|d2d4 − d2
3| ≤

(
2|Bq,1(u)|

|2 + [2]q(eiθ + 1)|Ω(3)[3]q

)2

.

2. (Case 2: when c = 2). Now, when we set c equal to 2, we have Y2(2) = Y3(2) =
Y4(2) = 0 and

Y1(2) =
4[2]q!Bq,1(u)Bq,3(u)

Ω(2)Ω(4)[2]q[4]q[2]q![3]q!(3 + eiθ)[2 + [3]q(eiθ + 1)]
+

16B4
q,1(u)

Ω4(2)[2]4q(3 + eiθ)4 .

the function D(λ, σ) is a function as follows

D(λ, σ) =
2Ω3(2)[2]3q(1 + eiθ)3[2]q!Bq,1(u)Bq,3(u) + 16Ω(4)[4]q[2]q![3]q![2 + [3]q(eiθ + 1)]

Ω4(2)Ω(4)[2]4q[4]q[2]q![3]q!(3 + eiθ)4[2 + [3]q(eiθ + 1)]

Hence, we have

|d2d4 − d2
3| ≤

V
Ω4(2)Ω(2)Ω(4)[2]4q[4]q[2]q![3]q!|eiθ + 3|4||2 + [3]q(eiθ + 1)|

,

where

V =2Ω3(2)[2]3q|3 + eiθ |3[2]q!|Bq,1(u)||Bq,3(u)|+ 16|B4
q,1(u)|Ω(4)[4]q[2]q![3]q!

|2 + [3]q(eiθ + 1)|

3. (Case 3: When c is between 0 and 2). We are given a range for the variable c, which
lies between 0 and 2. Our objective is to analyze the maximum value of the function
D(λ, σ) while considering the sign of a certain expression denoted by χ(D(λ, σ)).
This expression is given by the equation

χ(D(λ, σ)) = Dλλ(λ, µ)Dσσ(λ, σ)− (Dλσ(λ, σ))2.

We have observed that the equation

χ(D(λ, σ)) = 4Y3(c)[Y3(c) + 2Y4(c)]

is visible to us. We will now examine two instances where we determine the sign of
χ(D(λ, σ)).

(a) In the given interval of c values, specifically between 0 and 2, it is required
that Y3(c) + 2Y4(c) remains less than or equal to zero. In this particular case,
since both Dλσ(λ, σ) and Dσλ(λ, σ) are equal to 2Y4(c) and greater than or
equal to zero, and χ(D(λ, σ)) is also greater than or equal to zero, the function
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D(λ, σ) cannot achieve its maximum value within the square X as per basic
calculus principles.

(b) Additionally, suppose there exists a value of c within the range of 0 to 2 where
Y3(c) + 2Y4(c) ≥ 0. In this particular case, if χ(D) ≤ 0, it is not possible for the
function D(λ, σ) to have a maximum within the square X = [(λ, σ) : (λ, σ) ∈
[0, 1]2].

Due to these three occurrences, In the first case, we take the maximum, which is the
extreme point, and then proceed to express it in writing.

|d2d4 − d2
3| ≤

(
2|Bq,1(u)|

|2 + [2]q(eiθ + 1)|Ω(3)[3]q

)2

.

Therefore, the proof of Theorem 2 is concluded.

Based on the results derived from Theorem 2, specific parameter values yield the
following conclusions.

Corollary 4. Let l ∈ RBn,α,ρ
ζ,υ (ω, τ, q; u). Then,

|d2d4 − d2
3| ≤

( |u[2]q − q|
|1 + [2]q|Ω(3)[3]q[2]q

)2

.

The outcomes achieved in this study are precise for the function:

l2(ξ) = ξ +
u[2]q − q

Ω(3)[2]q[3]q[1 + [2]q]
ξ3 + · · · .

Corollary 5. Let l ∈ RBn,α,ρ
ζ,υ (ω, τ, q; u). Then,

|d2d4 − d2
3| ≤

( |u[2]q − q|
Ω(3)[3]q[2]q

)2

.

The outcomes achieved in this study are precise for the function:

l2(ξ) = ξ +
u[2]q − q

Ω(3)[2]q[3]q
ξ3 + · · · .

Corollary 6. Let l ∈ MΣ(B). Then,

|d2d4 − d2
3| ≤

(
2|u− 1|

6

)2

.

The outcomes achieved in this study are precise for the function:

l2(ξ) = ξ +
2u− 1

6
ξ3 + · · · .

Now, we will present the theorem regarding the Fekete–Szegö inequality.

Theorem 3. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u), ϑ ∈ C. Then,

∣∣∣d3 − ϑd2
2

∣∣∣ ≤


4|u[2]q−q|2G(θ,q)
Ω2(2)[2]4q |3+eiθ |2 |1− ϑ| ≤ G(q)

4|u[2]q−q|2|1−ϑ|
Ω2(2)[2]4q |3+eiθ |2 |1− ϑ| ≥ G(q).
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where

G(q) =
Ω2(2)[2]3q|3 + eiθ |2

2|u[2]q − q||2 + [2]q(eiθ + 1)|Ω(3)[3]q
.

The results obtained here are sharp for the function:

l1(ξ) = ξ +
2(u[2]q − q)

Ω(2)[2]2q(3 + eiθ)
ξ2 +

2(q− [2]q[3]qu(1− u))
Ω(3)[2]2q[3]2q[2 + [2]q(eiθ + 1)]

ξ3 + · · · .

Proof. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u) and ϑ ∈ C. Subsequently, utilizing Equations (52),

(53), (55), and (56), we determine the value of the expression d3 − ϑd2
2:

d3 − ϑd2
2 =

s2
1B2

q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 (1− ϑ) +
Bq,1(u)(4− s2

1)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q
(e− µ) (61)

for some e, µ with |e| ≤ 1 and |µ| ≤ 1.
By utilizing the triangle inequality on Equation (61), we can determine the maximum

value of |d3 − ϑd2
2|. This can be achieved by considering the following conditions: |e| is

equal to λ, |µ| is equal to σ, and |s1| is equal to c.

|d3 − ϑd2
2| ≤

|1− ϑ||B2
q,1(u)|

Ω2(2)[2]2q|3 + eiθ |2
c2 +

|Bq,1(u)|(4− c2)

4|2 + [2]q(eiθ + 1)|Ω(3)[3]q
(λ + σ), (62)

for each c ∈ [0, 2].
We have the ability to establish the function χ : R2 −→ R in the following manner:

χ(λ, σ) =
|1− ϑ|B2

q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 c2 +
Bq,1(u)(4− c2)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q
(λ− σ), (λ, σ) ∈ X,

for each c ∈ (0, 2). We need to verify that the function χ(λ, σ) is maximized on the set X
for every value of c ranging from 0 to 2.

It is evident that the function χ(λ, σ) achieves its highest value at the edges of the
enclosed square X. Therefore, by performing straightforward differentiation of the function
χ(λ, σ) with respect to λ, we obtain

χλ(λ, σ) =
Bq,1(u)(4− c2)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q
, c ∈ [0, 2]. (63)

As the value of χλ(λ, σ) is greater than 0, the function χ(λ, σ) exhibits an upward
trend with respect to λ, and its maximum value is attained when λ is equal to 1.

max{χ(λ, σ) : σ ∈ [0, 1]} = χ(1, σ) =
|1− ϑ|B2

q,1(u)

Ω2(2)[2]2q(3 + eiθ)2 c2

+
Bq,1(u)(4− c2)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q
(1− σ)

for each σ ∈ [0, 1] and c ∈ [0, 2].
Moreover, by differentiating χ(1, σ), we obtain the following result.

χ′(1, σ) =
Bq,1(u)(4− c2)

4[2 + [2]q(eiθ + 1)]Ω(3)[3]q

for each c ∈ [0, 2].
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If the condition χ′(1, σ) > 0 is satisfied, the function χ(1, σ) is monotonically increas-
ing, and its maximum value is achieved when σ is equal to 1. Therefore,

χ(λ, µ) ≤ max{χ(λ, σ) : (λ, σ) ∈ [0, 1]× [0, 1]} = χ(1, 1) =
|1− ϑ||B2

q,1(u)|

Ω2(2)[2]2q|3 + eiθ |2
c2

+
|Bq,1(u)|(4− c2)

2|2 + [2]q(eiθ + 1)|Ω(3)[3]q
.

Since |d3 − ϑd2
2| ≤ χ(λ, σ), we obtain

|d3 − ϑd2
2| ≤ |B2

q,1(u)|
[
|1− ϑ| − G(q)

Ω2(2)[2]2q|3 + eiθ |2

]
c2 +

4|B2
q,1(u)|G(q)

Ω2(2)[2]2q|3 + eiθ |2

where

G(q) =
Ω2(2)[2]2q|3 + eiθ |2

2|Bq,1(u)||2 + [2]q(eiθ + 1)|Ω(3)[3]q
.

Now is the time to determine the maximum value of the function Ξ : [0, 2] −→ R
defined by:

Ξ(c) = B2
q,1(u)

[
|1− ϑ| − G(q)

Ω2(2)[2]2q(3 + eiθ)2

]
c2 +

4B2
q,1(u)G(q)

Ω2(2)[2]2q(3 + eiθ)2 .

When we use the differentiation principle on the function Ξ(c), we obtain the follow-
ing result.

Ξ′(c) =
2B2

q,1(u)[|1− ϑ| − G(q)]

Ω2(2)[2]2q(3 + eiθ)2 c, c ∈ [0, 2].

If the absolute difference between 1 and ϑ is less than or equal to G(q), and the
maximum occurs when c is equal to 0, then the function Ξ(c) is decreasing because its
derivative Ξ′(c) is less than or equal to 0.

max{Ξ(c) : c ∈ [0, 2]} = Ξ(0) =
4B2

q,1(u)G(q)

Ω2(2)[2]2q(3 + eiθ)2 .

If Ξ′(c) ≥ 0 and Ξ(c) represents an increasing function, then when |1− ϑ| ≥ G(q) and
the maximum value is achieved at c = 2,

max{Ξ(c) : c ∈ [0, 2]} = Ξ(2) =
4B2

q,1(u)|1− ϑ|
Ω2(2)[2]2q(3 + eiθ)2 .

We consequently arrive at

∣∣∣d3 − ϑd2
2

∣∣∣ ≤


4|B2
q,1(u)|G(q)

Ω2(2)[2]2q |3+eiθ |2 |1− ϑ| ≤ G(q)

4|B2
q,1(u)||1−ϑ|

Ω2(2)[2]2q |3+eiθ |2 |1− ϑ| ≥ G(q).

The result achieved in this scenario is precise and definitive for |1− ϑ| ≥ G(q).

Based on the results derived from Theorem 3, specific parameter values yield the
following conclusions.
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Corollary 7. Let l ∈ RBn,α,ρ
ζ,υ (ω, τ, q; u), ϑ ∈ C. Then,

∣∣∣d3 − ϑd2
2

∣∣∣ ≤

|u[2]q−q|2G(q)

4Ω2(2)[2]4q
|1− ϑ| ≤ G(q)

|u[2]q−q|2|1−ϑ|
4Ω2(2)[2]4q

|1− ϑ| ≥ G(q).

where
G(q) =

4Ω2(2)[2]3q
|u[2]q − q|[1 + [2]q]Ω(3)[3]q

.

The outcomes achieved in this study are precise for the function:

l1(ξ) = ξ +
u[2]q − q
Ω(2)[2]2q

ξ2 + · · · .

Corollary 8. Let l ∈ RBn,α,ρ
ζ,υ (ω, τ, q; u), ϑ ∈ C. Then,

∣∣∣d3 − ϑd2
2

∣∣∣ ≤

|u[2]q−q|2G(q)

Ω2(2)[2]4q
|1− ϑ| ≤ G(q)

|u[2]q−q|2|1−ϑ|
Ω2(2)[2]4q

|1− ϑ| ≥ G(q).

where
G(q) =

Ω2(2)[2]3q
|u[2]q − q|Ω(3)[3]q

.

The outcomes achieved in this study are precise for the function:

l1(ξ) = ξ +
u[2]q − q
Ω(2)[2]2q

ξ2 + · · · .

Corollary 9. Let l ∈ MΣ(B), ϑ ∈ C. Then,

∣∣∣d3 − ϑd2
2

∣∣∣ ≤

|2u−1|

6 |1− ϑ| ≤ 8
3(2u−1)

|2u−1|2|1−ϑ|
16 |1− ϑ| ≥ 8

3(2u−1) .

The outcomes achieved in this study are precise for the function:

l1(ξ) = ξ +
2u− 1

4
ξ2 + · · · ,

leading to an enhancement of the findings presented by Buyankara and Caglar [55] in Theorem 3.

The theorem referred to as the presentation of Theorem 3 is as follows, assuming that
ϑ belongs to the set of real numbers, denoted as R.

Theorem 4. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u), ϑ ∈ R. Then:

|d3 − ϑd2
2| ≤



4|u[2]q−q|2(1−ϑ)

Ω2(2)[2]4q |3+eiθ |2 if ϑ ≤ 1− G(q)

4|u[2]q−q|2G(q)
Ω2(2)[2]4q |3+eiθ |2 if 1− G(q) ≤ ϑ ≤ 1 + G(q)

4|u[2]q−q|2(ϑ−1)
Ω2(2)[2]4q |3+eiθ |2 if 1 + G(q) ≤ ϑ,

(64)
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where

G(q) =
Ω2(2)[2]3q|3 + eiθ |2

2|u[2]q − q||2 + [2]q1 + eiθ |Ω(3)[3]q
.

Proof. Let l belong to a specific class denoted as RBn,α,ρ
ζ,υ,θ (ω, τ, q; u) and let ϑ be a real

number. In the scenario where ϑ is a real number, the inequalities |1− ϑ| ≥ G(q) and
|1− ϑ| ≤ G(q) can be considered as equivalent.

ϑ ≤ 1− G(q) or ϑ ≥ 1 + G(q)

and
1− G(q) ≤ ϑ ≤ 1 + G(q),

respectively. The conclusion of the theorem is obtained based on the findings of Theorem 3.

Given the value of parameter ϑ as 1, the subsequent corollary can be stated as follows:

Corollary 10. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u), ϑ ∈ R. Then:

|d3 − d2
2| ≤

2|u[2]q − q|
Ω(3)[2]q[3]q|2 + [2]q(eiθ + 1)|

.

Given the parameter ξ = 0, we can deduce the following corollary:

Corollary 11. Let l ∈ RBn,α,ρ
ζ,υ,θ (ω, τ, q; u), ϑ ∈ R. Then:

|d3| ≤


4|u[2]q−q|2

Ω2(2)[2]4q |3+eiθ |2 if G(q) ≤ 1

4|u[2]q−q|2G(q)
Ω2(2)[2]4q |3+eiθ |2 if G(q) ≥ 1,

(65)

where

G(q) =
Ω2(2)[2]3q|3 + eiθ |2

2|u[2]q − q||2 + [2]q(eiθ + 1)|Ω(3)[3]q
.

Remark 3. By modifying the parameters in Theorems 1–4, we obtained additional results that are
connected to the established operators and are derived using the newly introduced q-convolution
operator described in this research paper.

4. Conclusions

This article introduces new subfamilies of Σ by utilizing the concepts of the new
q-convolution operator, bi-univalent functions, and q-Bernoulli polynomials. We examined
the coefficient bounds, Fekete–Szegö functional, and second Hankel determinant for these
newly defined subfamilies, and our results are proven to be precise. Furthermore, our
research showcases how the outcomes can be improved and broadened by adjusting the
parameters, incorporating some recently discovered findings.

In future research, scientists can choose to investigate alternative extended q-operators
as substitutes for the q-convolution operator. This would enable them to create multiple
new subcategories within the bi-univalent function class Σ. Furthermore, by employing the
q-Bernoulli polynomial method, researchers interested in this field can analyze coefficient
estimates for different recently defined subclasses of bi-univalent functions. Depending on
their inspiration and the insights gained from this area, researchers may decide to explore
various approaches.
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