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Abstract: We consider a classical case of integrals containing an irrational integrand in the form of a
square root of a quadratic polynomial. It is known that such “irrational integrals” can be expressed
in terms of elementary functions by one of three of Euler’s substitutions. It is less well known that
the Euler substitutions have a geometric interpretation. In the framework of this interpretation, one
can see that the number 3 is not the most suitable. We show that it is natural to introduce a fourth
Euler substitution. In his original treatise, Leonhard Euler used two substitutions which are sufficient
to cover all cases.

Keywords: integral calculus; irrational integrals; conics; rational parameterization; fourth Euler’s
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1. Introduction

Integrals of rational functions can be expressed in terms of elementary functions.
Therefore, a natural method of integration consists of using suitable substitutions and
integration by parts to reduce our problem to integration of rational functions.

In this paper, we consider irrational integrals containing the quadratic root of a
quadratic polynomial, i.e., integrals of the form∫

R(x, y)dx , (1)

where R is a rational fuction (a quotient of two polynomials) of x and y, and

y =
√

ax2 + bx + c . (2)

The subject is, in principle, known. A standard method to deal with such integrals
consists of using one of the so-called Euler’s substitutions [1–3]. However, there are some
details which need to be clarified. We will describe in detail a geometric approach to this
problem and explain how many Euler substitutions actually exist.

In fact, to the best of our knowledge, all sources and textbooks mention exactly three
types of substitutions in this context. It is not clear who was the first to introduce such
classification. Leonhard Euler himself used only two of these substitutions (which is
sufficient to cover all cases). Three Euler substitutions are usually introduced and discussed
in Russian sources; see, e.g., [4–6] (Leonhard Euler, although of Swiss origin, lived and
worked in Saint Petersburg for many years). Surprisingly enough, the three substitutions
appeared in an old textbook, published in 1892 by a Harvard professor, William E. Byerly [7],
without any reference to Euler.

In our paper, we present a clear geometric intepretation of this problem, shortly
mentioned in some sources, mainly of Russian origin [2,8]. The textbook [8] is not translated
into English. Another book by the same author [4] does not mention this geometric
approach in the section on Euler’s substitutions.

The main novelty of this paper is the introduction of the fourth Euler substitution,
which is a natural consequence of the geometric approach discussed in our paper.
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2. Three Classical Euler’s Substitutions

The main idea of Euler’s substitutions consists of expressing
√

ax2 + bx + c as a linear
function of x and a new parameter t in such a way that the resulting equation is linear with
respect to x. In this paper, we use the most common numbering of these three substitutions,
compare [1,2,4,5,7]. In some sources, a different order is used; see [6,9,10].

2.1. First Euler Substitution

This substitution can be done only in the case a > 0:√
ax2 + bx + c = ±x

√
a + t . (3)

Squaring both sides we get:

ax2 + bx + c = ax2 ± 2xt
√

a + t2 .

Terms quadratic in x cancel out and the resulting equation is linear in x. Computing x, we
get a rational dependence on t:

x =
t2 − c

b∓ 2t
√

a
. (4)

Then, from (2) and (3), we get

y =
∓t2√a + tb∓ c

√
a

b∓ 2t
√

a
. (5)

2.2. Second Euler Substitution

This substitution can be done only in the case c > 0:√
ax2 + bx + c = xt±

√
c . (6)

Squaring both sides we get:

ax2 + bx + c = x2t2 ± 2xt
√

c + c . (7)

The constant c cancels out and dividing both sides by x we again derive an equation linear
in x. Hence, similarly as in the previous case,

x =
b∓ 2t

√
c

t2 − a
, y =

bt∓ (t2 + a)
√

c
t2 − a

. (8)

2.3. Third Euler Substitution

This substitution can be done only in the case ∆ > 0, where

∆ ≡ b2 − 4ac (9)

is the discriminant of the quadratic polynomial. Then the polynomial has two distinct real
roots x1 and x2, and the third Euler substitution is given by:√

ax2 + bx + c = (x− x1)t . (10)

Squaring both sides we get:

a(x− x1)(x− x2) = (x− x1)
2t2 ⇒ a(x− x2) = (x− x1)t2 . (11)



Symmetry 2023, 15, 1932 3 of 11

Computing x from the resulting equation and then using (10) and (2) we obtain

x =
t2x1 − ax2

t2 − a
, y =

(x1 − x2)at
t2 − a

, (12)

where, of course,

x1,2 =
−b±

√
b2 − 4ac

2a
. (13)

2.4. Original Euler’s Approach

It is interesting that Leonhard Euler himself, in his famous monograph, used only
two of these substitutions, see [11]. He considered two cases: ∆ > 0 and ∆ < 0. In the first
case (∆ > 0) he proposed the substitution (6), while in the second case (∆ < 0) he proposed
the substitution (3) in a slightly modified form:√

ax2 + bx + c = x
√

a− t
√

c . (14)

Obviously, the case ∆ = 0 is not included because then the quadratic polynomial is a
square of the linear function in x and y is linear is x as well. Hence, the integrand in (1) is
rational in x from the very beginning.

3. Geometric Interpretation

It is convenient to square both sides of (2) resulting in the equation of a quadratic curve

y2 = ax2 + bx + c . (15)

We will denote this curve (a conic section) by Qabc, i.e., (x, y) ∈ Qabc.

3.1. Elliptic Case: a < 0

The canonical form of the quadratic polynomial yields:

y2 + |a|
(

x− b
2|a|

)2
= c− b2

4a
. (16)

We can distinguish three cases, depending on the sign of the discriminant ∆:

∆ < 0 =⇒ Qabc = ∅ (empty set) , (17)

∆ = 0 =⇒ Qabc =

{(
b

2|a| , 0
)}

(single point) , (18)

∆ > 0 =⇒ Qabc is an ellipse . (19)

Only in the last case, we get a non-degenerated quadratic curve.

3.2. Parabolic Case: a = 0

For a = 0 (and b 6= 0) the conic Qabc is a parabola with the symmetry axis y = 0.

3.3. Hyperbolic Case: a > 0

The canonical form of the quadratic polynomial yields:

y2 − a
(

x +
b

2a

)2
= c− b2

4a
. (20)
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We can distinguish three cases, depending on the sign of the discriminant ∆:

∆ < 0 =⇒ Qabc is a hyperbola with vertices at the line x = − b
2a

, (21)

∆ = 0 =⇒ Qabc is a pair of intersection lines , (22)

∆ > 0 =⇒ Qabc is a hyperbola with vertices at x axis . (23)

Therefore, for ∆ 6= 0 we get a non-degenerated quadratic curve.

3.4. Rational Parameterization: Standard Approach

The key idea leading to a rational parameterization consists of fixing an arbitrary point
P0 = (x0, y0) on the conic Qabc and assigning to any other point P = (x, y) of this conic the
line P0P. Taking as a parameter t the slope of this line, we obtain a rational parameterization
of the conic Qabc [2,8]. Thus, we have the system of three equations:

y2 = ax2 + bx + c ,

y2
0 = ax2

0 + bx0 + c ,

y− y0 = t(x− x0) .

(24)

The points (x, y) and (x0, y0) belong to the conic Qabc and t is the slope of the straight line
passing through (x, y) and (x0, y0). Subtracting the second equation from the first one
we get:

(y− y0)(y + y0) = (x− x0)(a(x + x0) + b) ,

y2
0 = ax2

0 + bx0 + c ,

y− y0 = t(x− x0) .

(25)

Substituting the last equation into the first one we obtain:

(t(y + y0)− a(x + x0)− b)(x− x0) = 0 ,

y2
0 = ax2

0 + bx0 + c ,

y− y0 = t(x− x0) .

(26)

Assuming x 6= x0, we get
t(y + y0) = a(x + x0) + b ,

y2
0 = ax2

0 + bx0 + c ,

y− y0 = t(x− x0) .

(27)

Now, the first and the last equation form a system of two linear equations for two
variables x, y, which can be solved in the standard way. As a result, we obtain:

x =
x0t2 − 2y0t + ax0 + b

t2 − a
,

y =
−y0t2 + (2ax0 + b)t− ay0

t2 − a
,

(28)

which means that we expressed x and y as rational functions of the parameter t.

Corollary 1. There are many Euler-like substitutions. Each of them is determined by the choice of
x0, provided that ax2

0 + bx0 + c > 0. Then the point P0 ≡ (x0, y0) is given by:

P0 =

(
x0,±

√
ax2

0 + bx0 + c
)

, (29)
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and other points P = (x, y) ∈ Qabc are parameterized by (28).

In particular, the second Euler substitution corresponds to x0 = 0 (provided that
the graph of the quadric Qabc intersects the axis y), see Figures 1 and 2. The third Euler
substitution corresponds to x0 being a root of the polynomial ax2 + bx + c (provided that
the graph of Qabc intersects the axis x), see Figures 3 and 4.

The first Euler substitution apparently does not fit this picture. However, its geometric
interpretation is even simpler and more evident. The Formula (3) describes the family of
lines parallel to asymptotes of the corresponding hyperbola, see Figure 5. We may treat it
as a special case of (28) when the point (x0, y0) lies at a very large number. Note that points
(x0,±x0

√
a) belong to the conic (15) in the limit for x0 → ∞.

Figure 1. Geometric interpretation of the second Euler substitution in the case a < 0 and c > 0. The
point P is parameterized by the slope t of the line P0P.

Figure 2. Geometric interpretation of the second Euler substitution in the case a > 0 and c > 0. The
point P is parameterized by the slope t of the line P0P.
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Figure 3. Geometric interpretation of the third Euler substitution in the case a < 0 and ∆ > 0. The
point P is parameterized by the slope t of the line P0P.

Figure 4. Geometric interpretation of the third Euler substitution in the case a > 0. The point P is
parameterized by the slope t of the line P0P.

Figure 5. Geometric interpretation of the first Euler substitution. The points P and P1 are parameter-
ized by intersections t and t1, respectively, of the y-axis with the line parallel to one of the asymptotes
of the hyperbola y2 = ax2 + bx + c.
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4. New Insights from the Geometric Interpretation

The description given in the previous section is more or less known (see, e.g., [2,8]),
although we are not aware of any reference containing all these details. We are going to
derive from this geometric picture more quite interesting consequences.

First of all, we identify characteristic points on the graph of a quadratic curve which
can be chosen as P0 in the most natural way: vertices (M1, M2, R1, R2) and intersections
with coordinate axes (R1, R2, V1, V2); see Figures 6 and 7.

In particular, in the case of the second Euler substitution, P0 = V2 (see
Figures 1 and 2) or P0 = V1, while in the case of the third Euler substitution P0 = R1
(see Figure 3) or P0 = R2 (see Figure 4). The first Euler substitution is related to P0.

Figure 6. Characteristic points on the graph of an ellipse: intersections with the coordinate axes
(provided that they exist) and extremes (minimum M1 and maximum M2).

Figure 7. Characteristic points on the graphs of hyperbolas (two hyperbolas with the same |a| are
presented): intersections with the coordinate axes (V1, V2, R1, R2) and extremes (M1, M2).

4.1. Fourth Euler’s Substitution

The geometric approach presented above includes all three classical Euler’s substi-
tutions, but it is still missing vertices M1 and M2. Therefore, it is natural to introduce
another (fourth) Euler’s substitution, geometrically related to missing vertices: P0 = M1
(see Figures 8 and 9) or P0 = M2.
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Figure 8. Geometric interpretation of the fourth Euler substitution in the case a > 0. The point P is
parameterized by the slope t of the line P0P, where P0 = M1.

Figure 9. Geometric interpretation of the fourth Euler substitution in the case a < 0. The point P is
parameterized by the slope t of the line P0P, where P0 = M1.

The algebraic description of the fourth Euler substitution is based on the canonical
form of the quadratic polynomial:

y =
√

a(x− p)2 + q (30)

where
p = − b

2a
, q = − ∆

4a
. (31)

The fourth Euler substitution is defined by:

y =
√

q + (x− p)t . (32)

Squaring both sides we get:

a(x− p)2 + q = q + 2(x− p)t
√

q + (x− p)2t2. (33)
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The constant q cancels out and dividing both sides by x− p, we obtain

a(x− p) = 2t
√

q + (x− p)t2, (34)

which is linear in x. Hence

x− p =
2t
√

q
a− t2 , (35)

and using (32) we get

y =
a + t2

a− t2
√

q . (36)

Thus we have a rational dependence of x and y on the parameter t. Moreover,

dx
dt

=
2(a + t2)

√
q

(a− t2)2 , (37)

and we can easily transform the irrational integral function (1) into an integral function
rational with respect to t.

4.2. Simplifying Euler’s First Substitution

A geometric approach suggests some modifications or new variants of the existing
rational parameterizations. Introducing a new parameter τ

τ = b∓ 2t
√

a =⇒ t = ∓ (τ − b)
2
√

a
, (38)

and substituting it into (4) and (5), we obtain the following simplification of the first Euler
substitution:

x =
1
4a

(
τ +

∆
τ
− 2b

)
, y = ∓ 1

4
√

a

(
τ − ∆

τ

)
. (39)

Geometrically, the parameter t is related to intersections with the y axis (compare
Figure 5), while the parameter τ is related to intersections with the vertical symmetry axis
(i.e., the line x = p). Indeed, the parameter τ = 0 corresponds to the line passing through
the point (p, 0) and this is one of two asymptotes (that is why x → ∞ and y → ∞ for
τ → 0).

4.3. Euler’s First Substitution as a Limit of the Generic Case

We are going to show that the first Euler substitution can be derived from the generic
case (28) by taking a suitable limit x0 → ∞ and y0 → ∞. We consider the pencil of
lines y− y0 = t(x− x0) (compare (24)) but as a parameter we take the ordinate τ of the
intersection of the line P0P with the y-axis (i.e., y = τ for x = 0). Hence

t =
y0 − τ

x0
. (40)

This change of variable, replacing t with τ, works for any x0 6= 0. Therefore, the
second Euler substitution (related to the case x0 = 0) is excluded.

Substituting (40) into (28) we obtain

x =
(τ2 − c)x0

bx0 + c + τ2 − 2τy0
, y =

τ(bx0 + 2c)− (c + τ2)y0

bx0 + c + τ2 − 2τy0
. (41)

Assuming a > 0 and taking into account y2
0 = ax2

0 + bx0 + c we take the limit |x0| → ∞.
Hence y0 → ±x0

√
a and

x −→
|x0|→∞

τ2 − c
b∓ 2τ

√
a

, y −→
|x0|→∞

τb∓ (c + τ2)
√

a
b∓ 2τ

√
a

. (42)
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Comparing (42) with (4) and (5) we easily see that both solutions are identical, provided
that we identify τ with t. Note, of course, that the t parameter given by (40) is different
from the t parameter used in Section 2.1.

5. Euler’s Substitutions versus Trigonometric Substitutions

Another popular method for computing irrational integrals (1) consists of making
a suitable trigonometric or hyperbolic substitution. We use the canonical form of the
quadratic curve (compare (30)):

y2 = a(x− p)2 + q . (43)

Assuming q 6= 0 (otherwise y depends linearly on x) we introduce new variables ξ, η
as folows:

η =
y√
|q|

, ξ =
(x− p)

√
|a|√

|q|
. (44)

Then (43) becomes
η2 = (sgn a) ξ2 + sgn q , (45)

because a/|a| = sgn a, etc.
Thus we have three separate cases (in the fourth case –both signs negative– there are

no real solutions), where trigonometric or hyperbolic substitutions are well known:

η =
√

ξ2 − 1 =⇒ ξ = cosh ϑ , η = sinh ϑ ,

η =
√

1− ξ2 =⇒ ξ = cos ϑ , η = sin ϑ ,

η =
√

ξ2 + 1 =⇒ ξ = sinh ϑ , η = cosh ϑ .

(46)

Is it better than Euler’s substitutions? This is a matter of taste. Perhaps it is easier to
memorize, however, one has to remember that integrals of trigonometric or hyperbolic
functions have to be converted into integrals of rational functions by another substitution:

t = tan
θ

2
or t = tanh

θ

2
. (47)

6. Conclusions

We presented and discussed a geometric approach to Euler substitutions. One con-
sequence of this thorough discussion was the introduction of a fourth Euler substitution,
in addition to three traditionally mentioned Euler substitutions. In fact, we can say that
more (one parameter family) Euler-like substitutions exist and can be further modified or
simplified by suitable linear or fractional linear transformations.

Surprisingly, the subject of constructing rational parametrization of algebraic curves
(rationalizing roots) has recently become important in the context of Feynman integrals and
computations in high energy particle physics [12,13]. Furthermore, Euler’s substitutions
were applied for reducing square roots in some mathematical finance calculations [14].
It would be interesting to appply, in those fields, some geometric ideas presented in
this paper.
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