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Abstract: In this work, we pose and solve, in tempered distribution spaces, an open problem proposed
by Schrödinger in 1925. In particular, on the Schwartz distribution spaces, we define the linear con-
tinuous quantum operators associated with relativistic Hamiltonians of massive particles—particles
with rest mass different from 0 and evolving in the four-dimensional Minkowski vector space M4.
In other words, upon the tempered distribution state-space S ′(M4,C), we have found the most
natural way to introduce the free-particle relativistic Hamiltonian operator and its corresponding
Schrödinger equation (together with its conjugate equation, standing for antiparticles). We have
found the entire solution space of our relativistic linear continuous evolution equation by completely
solving a division problem in tempered distribution space. We define the Hamiltonian (Schwartz
diagonalizable) operator as the principal square root of a strictly positive, Schwartz diagonalizable
second-order differential operator (linked with the “Klein–Gordon operator” on the tempered dis-
tribution space S ′4 ). The principal square root of a Schwartz nondefective operator is defined in a
straightforward way—following the heuristic fashion of some classic and greatly efficient quantum
theoretical approach—in the paper itself.

Keywords: energy conservation; relativistic Schrödinger equation; Schwartz distribution spaces;
relativistic Hamiltonian

1. Introduction
1.1. Historical Introduction and Motivations

The problem of the relativistic description of fermions (half-spin particles) was histori-
cally solved by Dirac in the twenties of the last century by the formulation of his celebrated
equation. The Dirac equation can be rightfully considered the relativistic counterpart of the
Pauli equation, although it strangely acts on the state space S4, instead of the Pauli state
space S2, where S is the Schrödinger equation state space. In the literature, the problem of
finding the relativistic counterpart of Schrödinger’s equation is still not solved, nor does it
seem fully understood, as it has been simplified to the problem of a relativistic equation for
spin-1 particles (and subsequent ones). In this paper, we found an extremely natural way to
formulate (essentially) one (Lorentz-invariant) relativistic equation for all the above cases,
starting from the original idea of Schrödinger himself and from some fruitful developments
of Laurent Schwartz distribution theory.

Indeed, the classic Dirac equation deals with half-spin particles; on the contrary, the
first relativistic Schrödinger equation we propose here deals with zero-spin relativistic
particles. When applying the same equation to biwaves (bitempered distributions) or
triwaves (tritempered distributions), we simply obtain the free evolution equation for
“positive“ fermions (Dirac particles with positive energy) and “positive” spin-1 particles.
The equation we propose and solve, in its Lorentz-invariant form, is(√

µµµ2(P)− (m0c)I
)

ψ = 0, (1)
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where the following holds:

• The domain of the equation is intended to be the space of all tempered distributions ψ
obtainable by a continuous superposition of all De Broglie waves (βp)p, characterized
by strictly positive Minkowsky square norms µµµ(p, p) > 0;

• The square root operation is intended in its positive definition (see Appendix B);
• P is the operator 4-momentum;
• µµµ is the Minkowsky metric tensor, and µµµ2 represents its associated quadratic form;
• The square root of a strictly positive operator takes its proper place here, since the

quadratic form µµµ2 calculated upon the 4-momentum operator P is a strictly positive
operator upon our chosen domain (its eigenvalues upon the chosen basis vectors βp
are all strictly positive and, indeed, they are equal to the Minkowsky square norm of
the four-vector p);

• I stands for the identity operator upon the chosen domain.

As a matter of fact, the problem of a relativistic description of a quantum mechanical
particle has not been completely solved, historically, by Dirac, not in the 1920s nor later.
The story is much more complicated, interesting and rich.

In the beginning, Schrödinger studied the problem of finding an equation that admit-
ted the relativistic De Broglie waves (not only these special harmonic waves but them in
particular) as possible solutions. He tried to use the Einstein relativistic dispersion relation,
and then he tried to build up a differential equation by substituting (in the standard way)
the four-momentum by the partial derivative operators.

Unfortunately, such a simple substitution leads to an “operator-form”, which is not
a differential operator, because of the problematic square root; it was a case practically
intractable at that time for many reasons (the theory of fractional differential operators
and pseudodifferential operators is recent and not even imaginable in those days, and it is
based on distribution theory, which was fully developed and accepted in the fifties of the
last century).

This failure induced Schrödinger to abandon the idea of obtaining a relativistic equa-
tion for quantum particles (those not endowed with spin, and he never introduced the spin
in the question) and to propose its celebrated (but nonrelativistic) equation (which, by the
way, is not at all—in its applications or in its meaning—surpassed or canceled by the Dirac
equation; it remains a fundamental tool and useful piece of quantum mechanics nowadays).

We underline that the half-spin particles can also be introduced in the nonrelativistic
setting by using the square S2 of the Schrödinger state space S and the Pauli matrices,
which act naturally upon the state space S2. Indeed, when the electromagnetic field is
absent, the nonrelativistic analogous of the nonrelativistic Schrödinger equation for spin
1/2 particles is the famous Pauli equation (which, in its standard form, is nothing more than
the nonrelativistic Schrödinger equation acting on a “Pauli biwave” function: an element
of the space S2).

In 1928, Dirac came across an equation, which addressed the relativistic particles with
1/2 spin, only by a fortuitous algebraic coincidence: in order to eliminate the Einstein–
Schrödinger problematic square root of the dispersion relation. The equation revealed
the fourth-power S4 of the Schrödinger state-space S enough. Dimension 4 in the Dirac
equation is decomposed in 2 + 2: the first dimension 2 for the half-spin particles of positive
energy and the second dimension 2 for the half-spin particles of the negative energy
(whatever this meant).

On the other hand, the relativistic de Broglie waves are not solutions of the nonrela-
tivistic Schrödinger equation, and Schrödinger recognized immediately that its equation
should be a first approximation of some other equation definable by the sum of a power
series of differential operators (regrettably, nothing about that series was understandable at
that time, not even the Hilbert space approach was in place at that time, and the problem of
studying that operator series goes far beyond the Hilbert space theory). For this purpose,
we observe that the differential operators used by Schrödinger (in their classic equation)
are not even specified in their domain: Schrodinger considered these operators simply
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defined on “differentiable functions”, without considering any well-structured function
space or good topology on them; so, the problem of studying this series of operators became
intractable and utterly meaningless.

Clearly, to many theoretical physicists of that time, the basic problem of finding a
relativistic Schrödinger equation for spinless particles was of capital importance in the
development of quantum mechanics. Many fathers of quantum mechanics faced (and
failed) such a problem; among them, we remember Pauli, Dirac, Klein, Gordon, Heisenberg
and many others.

As we mentioned before, Dirac proposed a very smart algebraic way to circumnavigate
the square root problem, but it worked in S4 (we desire to emphasize again that the method
proposed by Dirac solves the fermion problem in the fourth power of the Schrödinger
state-space S of a zero-spin particle, not the original problem itself in S).

Moreover, the Dirac method introduces some negative energy states to be dangerously
interpreted (we need to observe here that—from a strictly mathematical point to view—the
presence of negative energy is highly questionable because the Einstein dispersion relation
uses the “positive square root” operation, not the complex one; so, when we calculate this
“positive square root”, we must discard any negative outcome by the very definition of the
operation involved, but this is another story).

At this moment, we do not want to underline the good and bad sides of the Dirac
equation; we desire to underline that it is not the much-desired relativistic Schrödinger
equation for zero-spin particles, and it addresses explicitly the half-spin particle evolution
problem in an unexpected space S4 instead of S2 (the natural space of action for the
Pauli matrices).

We desire to (also) recall the approach of Klein and Gordon, who directly considered
the argument under the problematic square root and found an evolution-type equation for
zero-spin particles (0, yes indeed); however, as we know, that equation offers other kinds
of issues and many interpretative questions from a probabilistic point of view.

We do not want to emphasize the famous issues that such an equation provides, we
desire only to underline that the Kleine Gordon equation is not the desired relativistic
Schrödinger equation. In some sense, it is the square of the dreamed relativistic Schrödinger
equation.

Again, Dirac, using a very smart algebraic trick, solved the relativistic energy momen-
tum relation issue in the power 4 state-space S of zero-spin particles, S4, which shall reveal
itself as the state space of fermions and no longer the space of the zero-spin particles, but
he did not prove that the issue can only be fulfilled using (4,4) matrices.

To prove that the problem can be conveniently transformed, changed, stated and
solved (without square roots of operators) in S4 does not prove that the problem cannot be
somehow stated and solved in S.

We did not consider, initially, the fermion problem, because it was solved by Dirac;
now, however, we have found a new simpler and natural relativistic Schrödinger form of
the Dirac equation in S2 (the Pauli matrix state space).

Actually, here, we propose the original problem proposed by Schrödinger (exactly the
original one, not transformed or changed) in the space of tempered distributions (which
therefore becomes the zero-spin particle state space).

We think that the majority of the scientific community has simply discarded the prob-
lem, because it was apparently mathematically intractable, and has preferred to consider
the problem not closable.

Our paper clarifies many misunderstood aspects of relativistic quantum mechanics,
not only because it solves the fundamental problem proposed more than 100 years ago but
also because it answers the following questions:

Is there a relativistic counterpart to the original (without spin) nonrelativistic Schrödinger
equation? Why is the Klein Gordon equation not the relativistic Schrödinger equation and
we are we unable to prove the probability current conservation in relativistic quantum
mechanics?
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In fact, by means of the relativistic Schrödinger equation for zero-spin particles, we
can now prove the conservation of probability currents.

By the way, the new equation, in any case (for any spin), is accompanied by a conjugate
equation, which admits as solutions negative energy solutions (or time-reverse solution).

The relativistic Schrödinger equation allows to avoid wrong or vague explanations
about the developments of the Schrödinger equation, Dirac equation, Pauli equation, or
Klein–Gordon equation.

For the moment, because of mysterious and vague reasons, we should believe that the
nonrelativistic Schrödinger equation can be defined correctly, while its simple relativistic
twin cannot be defined, without considering other problems or features such as non-zero-
spin particles and so on.

1.2. The Role of Schwartz Distribution Theory

The mathematical precontext of our analysis is the Laurent Schwartz distribution theory—
in particular, that based on the Minkowski space-time. For distribution theory, we refer to
Schwartz [1–6], Barros-Neto [7], Dieudonné [8,9], Bourbaki [10–12], Horváth [13], Kesavan [14],
Boccara [15], Lang [16], Trèves [17], Yosida [18] and Zeidler [19].

Tempered distribution spaces are the topological dual of the Schwartz function spaces
(with respect to their natural Schwartz topologies). In other terms, tempered distribution
spaces contains all the bras of Schwartz functions ( rapidly smoothing decreasing functions
with all their derivatives), functions considered as kets, with respect to their Schwartz
topology. Schwartz function spaces are not Hilbert spaces, but they are endowed with
the classic Dirac inner product (L2 product) but not with the (too much rigid) topology
induced by the Dirac product itself. The bra spaces of Schwartz function spaces are “much
larger” than their respective ket spaces and contain all the Dirac delta “functions” of Rn

(once Rn is fixed as the domain of the Schwartz functions). One of the basic features of the
tempered distribution spaces is that they can be generated by all their respective deltas via
superpositions in the sense of Schwartz, for instance, the position operator eigenvectors
generate all possible zero-spin quantum states.

Tempered distribution spaces contain nonseparable Hilbert subspaces induced by
any quantum mechanics observable with a continuous Schwartz eigenbasis: tempered
distribution spaces are much more than Hilbert spaces and much more useful and solve a
lot of apparent non-normalizability issues.

1.3. Schwartz Linear Algebra and Physical Hilbert Space

Distribution theory allows us to provide an efficient and deep calculus method for
quantum mechanics, inspired by the renowned Dirac Calculus [20].

Specifically, we move inside the realm of Schwartz Linear Algebra (see [21–23]), which
helps us to reach a deeper comprehension of the physical structures studied in quantum
mechanics [24]. In particular, in Schwartz Linear Algebra, we consider new state spaces for
quantum systems. State spaces are, often erroneously, identified only with separable Hilbert
spaces. On the contrary, the existence of the so-called “non-normalizable” states—which
are revealed to be fundamental for the quantization—shows that state spaces should be
a sort of disjoint union of different Hilbert spaces. In the literature, sometimes, the state
spaces are called “physical Hilbert spaces” [25], without providing a clear mathematical
definition. We have already shown in the past [26] that “physical Hilbert spaces” can
smoothly be identified with distribution spaces on suitable Euclidean spaces or Minkovski
spaces, depending on the nature of the quantum system considered. Such distribution
spaces should be endowed with some algebraic–topological structures, such as continuous
operations of superposition, extended Dirac products, partial inner products, etc.

1.4. Extended Dirac Products and Associated Nonseparable Hilbert Structures

The extended Dirac products determine new usual scalar products upon some distin-
guished subspaces of distribution space, attaching to them nonseparable Hilbert structures.
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These new nonseparable Hilbert products clarify (definitely) the probability role of the
so-called “non-normalizable states”, which indeed become normalizable with respect to
suitable Hilbert products. As two fundamental examples, the Dirac delta distributions and
the celebrated “Unitary” De Broglie waves become, respectively, Hilbert basis of two new
nonseparable Hilbert spaces (subspaces of tempered distribution space) and, consequently,
they assume the right status of normalizable states. That normalizability seems completely
natural and even obliged, since the physical usual probability interpretation of such states
dictates that those states represent certainty (for position and momentum measurements,
respectively); in other words , those states represent the basic elements in any probability
theory: the elemental certainty bricks of any probabilistic approach.

1.5. Continuous Superpositions

The new operation of continuous superposition revealed the right tool in order to
build—in a mathematically meaningful way—the Dirac “extended Linear Algebra” in
distribution spaces, adopting the Schwartz topological linear structures of distribution
spaces.

More precisely, we verified that the natural algebraic–topological structure of distribu-
tion spaces allows to define an extension of the finite linear combination when the index
sets of distribution families are continuous sets, especially when the systems of coefficients
possess a continuous infinity of terms different from zero.

Some features of Schwartz Linear Algebra (for instance, the informal use of superposi-
tions and the extended Dirac products) could be identified, here and there, in the works of
Antoniou and Prigogine [27], Balescu [28], Pauli [29], Penrose [30] and Prigogine [31–33].

1.6. Some Previous Studies

For what concerns the square root of operators, we suggest reading [34,35]. Previous
studies about relativistic quantum theory are presented in [36–39]. For what concerns the
classic quantum theory, we refer to [40–45], while for the celebrated Dirac equation, we
refer to the studies of Dirac [46,47], Foldy [48–50] and Case [51]. For what concerns the
Hermite expansions of tempered distributions, we considered [52,53].

2. Theoretical Background: Relativistic Hamiltonian

For what concerns our approach to relativistic dynamics, see Appendix A. We here
start directly by recalling the definition of relativistic Hamiltonian.

Definition 1. The relativistic Hamiltonian

H : R2n → R,

of a free material particle evolving upon a spatial manifold of dimension n is defined by

H(q, p) =
√
|cp|2 + (m0c2)2 = c

√
|p|2 + p2

0 ,

for every position-momentum pair (q, p) in the phase-space R2n. In the above definition:

• The positive real number m0 stands for the rest mass of the particle;
• |.| represents the Euclidean norm in Rn;
• The momentum

p0 = m0c

stands for what we call the “rest-momentum” of the particle (in the present formalization, it is
a real number);

• The energy
cp0 = m0c2

stands for the so-called “rest-energy” of the particle.
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Since the above Hamiltonian function H actually depends only upon the second vari-
able (momentum variable), we can introduce the 4-momentum variable complex function

H : R×Rn → C : (E/c, p) 7→ Hp := c
√
|p|2 + p2

0 = c |(p0, p)| ,

which we call the Hamiltonian of the particle as well.
Above, we used the symbol |.| for both the Euclidean norm in Rn and in R1+n.
We are ever so slightly changing the framework to allow an easy quantization of the

Hamiltonian functionH.
In the following, we denote the 4-momentum vector space by P4 and the Minkowski

4-vector space by M4. The de Broglie–Fourier transformations (and, in particular, the
Minkowski–Fourier transformation) will provide us topological isomorphism between the
tempered distribution spaces S ′(M4,C) and S ′(P4,C).

Remark 1. In the presence of a smooth 4-positional potential V, the “complex” Hamiltonian H
would become the function

H : M4 × P4 → C : (x, p) 7→ c |(p0, p)|+ V(x) ,

which is smooth if the rest mass is positive. In this work, we assume no potentials are defined around.

3. Theoretical Core: Relativistic Hamiltonian Operator in S ′(M4)

We observe that if the rest mass of the particle is different from 0, then the Hamiltonian
function

H : P4 → C : (E/c, p) 7→ c
√
|p|2 + (m0c)2

is smooth (despite the presence of the squareroot function) and “slowly increasing at
infinity” (at infinity, it reveals linearity: it is asymptotically linear).

Smoothness and a slow increase will allow us to conveniently define the associated
quantum Hamiltonian operator Ĥ by a well-established theorem from Schwartz Linear Al-
gebra. However, we explicitly show the construction and basic properties of the observable.

Definition 2 (Quantization of the relativistic Hamiltonian). We define the Hamiltonian operator

Ĥ : S ′(M4)→ S ′(M4)

by the Schwartz integral (superposition)

Ĥ(ψ) =
∫
P4

H(ψ)β β := [H(ψ)β] ◦ β̂,

for every tempered wave (i.e., tempered scalar field) ψ. Here, the following holds:

• β = (βp)p∈P4 represents the de Broglie family, the family of regular bounded tempered
distributions defined by

βp = [e(ı/h̄)(p·x − Et)] ,

• (ψ)β is the coordinate distribution of the wave ψ with respect to the de Broglie family β. It is
the unique tempered wave living in S ′(P4), such that

ψ =
∫
P4

(ψ)ββ = (ψ)β ◦ β̂.

• H(ψ)β is the product of the function H times the distribution ψβ;
• β̂ is the operator associated with the Schwartz family β, defined by

β̂ : S(M4)→ S(P4) : β̂(φ)(p) = βp(φ),
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for every φ ∈ S(M4) and for each p ∈ P4.

3.1. Analysis of the Definition

In the above expression, we used an integral, in the sense of distribution, of the family
(vector valued test function) β. We clarify here briefly some terms of the above definition.

1. β = (βp)p∈P4 represents the de Broglie family, the family of regular bounded tempered
distributions defined by

βp = [e(ı/h̄)(px − Et)] = [e(ı/h̄)(−E/c, p)·(ct, x)] = [e−(ı/h̄)µµµ(p, x)] ,

here, the following holds:

• x, t, x are the standard coordinates—canonical projections—in M4, viewed as
complex functions; specifically, x represents the canonical immersion of M4 in
C4 and x = (ct, x);

• µµµ : P4 ×M4 → C is the Minkowski pairing defined by

µµµ(p, x) = p0x0 − p · x .

2. (ψ)β is the coordinate system of the wave function ψ with respect to the de Broglie
family β. (ψ)β is the unique tempered wave living in S ′(P4), such that

ψ =
∫
P4

(ψ)ββ.

Indeed, we could prove that the operator β̂ is a topological isomorphism of S(M4)
onto S(P4). Therefore, the coordinate distribution ψβ can be immediately obtained by
the inverse of the operator β̂ as

ψβ = ψ ◦ (β̂)− .

Observe, also, that
ψ = t β̂(ψβ),

and the transpose operator t β̂ is a topological isomorphism of S ′(P4) onto S ′(M4).
3. The term H(ψ)β is the (standard defined) product of the smooth function H ∈ OM(P4)

times the representation ψβ ∈ S ′(P4).
4. In other terms, the Schwartz integral∫

P4

: S ′(P4)× S(P4,S ′(M4))→ S ′(M4) : (a, v) 7→
∫
P4

av

is defined by

<
∫
P4

av, φ > = < a, v(φ) >,

for every test function φ ∈ S(M4), as soon as the wave family v = (vp)p∈P4 (of
tempered waves in S ′(M4)) reveals “scalarly Schwartz”—sending every Schwartz
test function φ to a Schwartz test function v(φ) by

(vφ)(p) := vp(φ),

for every index p ∈ P4.

Remark 2. The product of the smooth, slowly increasing complex function H times the coordinate
system (ψ)β is, according to the standard manner, well-defined by

(Hψβ)(ω) := ψβ(Hω),



Symmetry 2023, 15, 1984 8 of 26

for every test function ω, and it belongs to the space of tempered distributions defined upon the
4-momentum space P4.

3.2. Minkowski Transforms Induced by de Broglie Families

In this brief section, we show the connection between the (non-normalized) de Broglie
family β and the (non-normalized) Minkowski–Fourier transformM on the test function
space S(M4): we show thatM is the operator β̂ induced by the family β.

Theorem 1. Let
M : S(M4)→ S(P4) : φ 7→ < f , φ > ,

stand for the (nonunitary) Minkowski–Fourier transform, where

• f is the family of smooth bounded complex functions fp : M4 → C, defined by

fp(x) = e−(ι/h̄)µµµ(p, x) ,

for each 4-momentum p and 4-position x;
• The action < f , φ > of the family f upon the test function φ by the pairing < ., . > is defined

by

< f , φ > (p) =
∫
M4

fpφ dx.

Then, the Minkowski transformM is the operator β̂ induced canonically by the family β.

Proof. We notice that the wave βp is the regular tempered distribution generated just by
the smooth bounded complex function fp : M4 → C, defined by

fp(x) = e(ı/h̄)(px − Et) = e(ι/h̄)(−E/c, p)·(ct, x) = e−(ι/h̄)µµµ(p, x) ,

for each 4-momentum p = (E/c, p) ∈ P4 and 4-position x = (ct, x) ∈M4. This means

β̂(φ)(p) := βp(φ) =

= [ fp](φ) =

=
∫
M4

fpφ dx =

=
∫
M4

φ e−(ι/h̄)µµµ(p, x) dx =

= M(φ)(p),

for every 4-momentum p.

Remark 3. We desire to underline that the natural extension ofM to the corresponding tempered
distribution spaces is the transpose of the Schwartz adjoint (transpose) of M. The Schwartz
transpose ofM is characterized by

<Mφ, ω >=< φ,M∗ω >,

it is the adjoint ofM with respect to the pairing < ., . >. Therefore, we see that

M̃ : S ′(M4)→ S ′(P4) : u 7→ u ◦M∗,

with
M∗ : S(P4)→ S(M4) : M∗(ω)(x) =

∫
P4

ω e−(ι/h̄)µµµ(., x) dp.
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While, the inverse of the Minkowski transform is

M−1 : S(P4)→ S(M4) : M−1(ω)(x) = N
∫
P4

ω e(ι/h̄)µµµ(., x) dp,

for a convenient real positive normalization constant N.

From the last two relations of the above remark 3, we immediately deduce

M−1 = NM̄∗ = NM†.

In other terms, the Minkowski transform is a unitary operator up to a normalization constant N.

Clearly, we immediately obtain

(
√

NM)−1 = (
√

NM)†.

Thus, the operator
U =

√
NM

is unitary, and we call it the unitary Minkowsky transform; as it is well known, the
normalization constant amounts to

√
N =

1
(2πh̄)2 .

3.3. Principal Properties of the Hamiltonian Operator

Now, let us see the principal theorem of the section.

Theorem 2. The relativistic Hamiltonian operator Ĥ reveals the unique linear continuous operator
on S ′(M4) sending each de Broglie wave βp to the tempered distribution Hpβp, where p denotes
the spatial part of p. Moreover, we see the following:

• Ĥ reveals to be Schwartz diagonalizable (Schwartz nondefective): there exists a Schwartz basis
of S ′(M4) constituted by eigenvectors of Ĥ;

• The operator Ĥ reveals to be regular and Hermitian in the Schwartz sense: it could be restricted
to an endomorphism of the test function space S(M4), and its restriction reveals Hermitian
with respect to the standard Dirac inner product of S(M4).

Proof. We proceed by steps.
1. The family β is an eigenfamily of Ĥ. Indeed, we immediately see

Ĥ(βp) =
∫
P4

H(βp)β β =

=
∫
P4

Hδp β =

=
∫
P4

H(p)δp β =

=
∫
P4

Hpδp β =

= Hp

∫
P4

δp β =

= Hpβp,

for every 4-momentum p = (E/c, p) ∈ P4.
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2. The operator Ĥ is linear and continuous. Indeed, it is a composition of three linear
continuous operators:

Ĥ = t β̂ ◦MH ◦ t β̂−1 : Ĥ(ψ) = t β̂
(

MH

(
t β̂−1(ψ)

))
,

where MH represents the multiplication operator by H.
3. The operator Ĥ is Schwartz diagonalizable. Indeed, first of all, any linear and

continuous operator reveals to be Schwartz linear (characterization of Schwartz linear
operators). Schwartz linearity means that

Ĥ
(∫

Rn
av
)
=
∫
Rn

aĤ(v),

for every natural number n, tempered distribution a ∈ S ′n and for every Schwartz family v
in S ′(M4), indexed by Rn. Now, the eigenfamily β is indeed a Schwartz basis of S ′(M4),
just because the associated operator β̂ reveals a bijective operator (the Minkowski transform
is a topological isomorphism).

4. The operator Ĥ is the unique linear continuous operator with eigen-system (H, β).
Indeed, the family β is total in S ′(M4); therefore, there exists at most one linear continuous
operator on S ′(M4) assigning a fixed family w in S ′(P4) to the family β. Alternatively, we
could remember that two Schwartz linear operators equal upon the same Schwartz basis
are everywhere equal.

5. The operator Ĥ is Hermitian in the Schwartz sense. LetM be the unitary Minkowski
transform upon S(M4) and β the corresponding normalized de Broglie family. We proved
already that

Ĥ = t β̂ ◦ t MH ◦ t β̂−1 = tM◦ t MH ◦ tM−1,

where MH denotes the multiplication operator in S(M4) by the function H. From the above
relation, we deduce, by topological transposition (remember the inverse order rule), that

t Ĥ =M−1 ◦MH ◦M.

Hence, by Schwartz transposition—remembering again the inverse order rule of trans-
position and the symmetry of the Minkowski transform with respect to the test function
pairing—we obtain the endomorphism restriction of Ĥ to the test function space:

ĤS = (tĤ)∗ =M◦MH ◦M−1.

Now, by applying the Hermitian transposition (remembering the inverse order rule and
the unitary character ofM), we obtain

Ĥ†
S = (M−1)† ◦MH ◦ (M)† =M◦MH ◦M−1 = ĤS ;

so that the restriction
ĤS := (tĤ)∗ : S(M4)→ S(M4)

—of the Hamiltonian Ĥ—reveals, indeed, to be self-adjoint with respect to the Dirac inner
product upon S(M4).

Remark 4. We invite readers to observe that the eigenvalue of the observable Ĥ, corresponding
to the eigenstate βp, depends only upon the relativistic momentum p and not upon the energy
component of p, since—as we have already well-underlined before—

H(E/c, p) = Hp

for every (E/c, p) ∈ P4.
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3.4. Schrödinger Equation of a Free Particle

Our quantum evolution equation remains the general Schrödinger equation

EH : ıh̄ ∂tψ = Ĥψ, (2)

framed within the tempered distribution space S ′(M4) built upon the Minkowski 4-vector
space M4.

Alternatively, in space-time coordinates, we can write

ıh̄ ∂0ψ = (1/c) Ĥψ,

where
∂0 : S ′(M4)→ S ′(M4) : ψ→ (1/c)

∂

∂t
ψ

is the (globally defined and continuous) partial derivative operator—of the tempered
distribution space S ′(M4)—with respect to the “time variable”

ct : M4 → C : (ct, x) 7→ ct + 0ı.

Using the above notations, we can write the Lorentz-invariant form of our relativistic
Schrödinger Equation (2): (

ı
√

µµµ2(∂)− m0c
h̄

I
)

ψ = 0. (3)

The domain of the above Equation (3) is the tempered distribution space S ′(M4) for
0-spin particles, the second power S ′(M4)

2 for half-spin particles and the cube S ′(M4)
3

for 1-spin particles. The standard-spin operator matrices act naturally on the above three
spaces, respectively.

3.5. Energy Operator in S ′(M4)

Observe that, applying the momentum operator

P = −ıh̄
∂

∂x
: S ′(M4)→ [S ′(M4)]

3 : ψ 7→ −ıh̄
(

∂

∂x j
ψ

)
j∈I∗4

to the De Broglie waves βp, we obtain

P(βE/c,p) = p βE/c,p .

While, applying the energy operator

Ê = ıh̄
∂

∂t
: S ′(M4)→ S ′(M4),

we obtain
Ê(βE/c,p) = ıh̄

∂

∂t
(βE/c,p) = E βE/c,p,

for every 4-momentum (E/c, p).

Moreover, concerning the explicit form of energy operator Ê, we know that there exists
one unique continuous operator Ê ∈ L(S ′(M4)) such that

Êβ = Eβ,

where E/c represents the first projection of the 4-momentum vector space P4.
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The operator Ê expands as follows, in the De Broglie basis β:

Ê(ψ) =
∫
P4

E(ψ)β β,

for every tempered distribution ψ. We can, consequently, formulate the following proposition.

Proposition 1. The value of the energy operator Ê, at any tempered wave ψ, equals the superposi-
tion of the De Broglie family β with respect to the tempered distribution E(ψ)β—obtained from the
product of the energy projection

E : P4 → C : p 7→ cp0

times the representation of ψ in the basis β itself.

Interlude: The 4-Position Operator

We conclude this section with a note on symmetry. Energy and momentum operators
find their counterpart, with respect to the Minkowski transform, in the 4-position operator:

X : S ′(M4)→ S ′(M4)
4 : ψ 7→ xψ,

where x represents (again) the immersion of the Minkowski vector space M4 in C4. The
time-location operator X0/c corresponds directly to the energy operator Ê by “Minkowski
conjugation” or Heisenberg pairing. The eigenbasis of X is the Dirac basis δ, indexed by
M4 itself.

4. Results: Solution Space of the Schrödinger Equation

In this section, we desire to focus upon the subspace S of the waves ψ that could be
actual states of the free particle, from an energy point of view, in the sense that they fulfill
the Einstein energy relation

E = c
√
|p|2 + (m0c)2 , (4)

which, in operator form, can be translated into the Schrödinger relation

Êψ = Ĥψ.

This section also presents a natural definition, by means of superpositions, of the restriction
of the Hamiltonian operator Ĥ to the subspace X Schwartz generated by those eigenvectors
of Ĥ satisfying the relativistic Schrödinger equation.

4.1. The Family χ

Our relativistic Hamiltonian operator of a free particle reveals, in particular, to be
measurable upon the De Broglie waves

χp = β(Hp/c, p),

of definite momentum p and energy Hp. Note that these waves respect the Einstein
energy relation in operator form

Êχp = Hpχp.

We already proved, in fact, that the eigenvalue of the operator Ĥ, corresponding to eigen-
vector χp, equals the Einstein value Hp.

Clearly, we are induced to think that the Schwartz span of the family χ will play a
special role in the resolution of the relativistic Schrödinger equation; we shall see that our
intuition reveals to not be so bad, although the solution space of the relativistic Schrödinger
equation will offer us some surprises.
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In order to consider the Schwartz span of χ, we observe that the family χ is a Schwartz
family. Indeed, observe, first of all, that the set of all 4-momenta p satisfying the Einstein
energy equation is a three-dimensional smooth manifold G:

G = {(E/c, p) ∈ P4 : E = Hp}.

Now, introducing the parameterization

h : R3 → P4 : p→ (Hp/c, p),

we obtain
χ(φ)(p) = χp(φ) = β(Hp/c, p)(φ) = β(φ)(h(p)),

for every test function φ. Hence, we see

χ(φ) = β(φ) ◦ h.

In other terms, the image of φ by χ is the Schwartz function βφ : P4 → C composed with
the parameterization

h : R3 → P4 : p→ (Hp/c, p).

This composition is surely smooth, and it is Schwartz because the parameterization is
asymptotically flat and of order 1.

We remark that χ is Schwartz linearly independent because it is a section of a another
Schwartz linearly independent family. Henceforth, we can talk about the coordinate
distribution ψχ of any point in its Schwartz span.

Now, we can prove our first step towards the resolution of the equation EH .

Proposition 2. The Schwartz span of the family χ is contained in the solution space S of the
relativistic Schrödinger equation.

Proof. Indeed,

Êψ = Ê
∫
R3
(ψ)χ χ =

∫
R3
(ψ)χ Êχ =

∫
R3
(ψ)χ Ĥχ = Ĥ

∫
R3
(ψ)χ χ = Ĥψ,

for every ψ in the Schwartz span of χ.

4.2. The Operator Ĥ

Let us introduce the function

H : R3 → C : p 7→ Hp.

If the rest mass m0 of our free particle is strictly positive, the operator Ĥ corresponding
to the Hamiltonian H and to the Schwartz family

χ = (β(Hp/c, p))p∈R3

is defined by

Ĥ : X → X : ψ 7→
∫
R3

H (ψ)χ χ,

for every wave ψ in the Schwartz linear span X = Sspanχ. Observe that the above
superposition belongs indeed to X , because it is a superposition of the family χ.

The operator Ĥ is characterized, on the subspace X of the tempered distribution space
S ′(M4), by

Ĥχp = H(p) χp = Hp χp,
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for every momentum p in R3; and it reveals, obviously, the endomorphism restriction of Ĥ
to the subspace X (the bilateral restriction is possible just because X is invariant under Ĥ).

4.3. Solution of the Schrödinger Equation

Let us show now the complete solution of the relativistic Schrödinger equation.

Theorem 3. Let EH be the (relativistic) Schrödinger equation corresponding to the relativistic
Hamiltonian H. Then, we see the following:

1. The closed subspace
S = sol(EH),

the solution space of the relativistic Schrödinger equation, contains the closed (Schwartz)
linear span of the section

χ : p 7→ χp = β(Hp/c,p)

of the De Broglie family

(E/c, p) 7→ βE/c,p = [e(ı/h̄)(p·x−Et)];

2. The solution space of the Schrödinger equation is the solution of the distribution division
problem

(E− H)(ψ)β = 0,

with ψ ∈ S ′(M4,C), where (ψ)β ∈ S ′(P4,C) is the representative of the tempered wave
ψ—in the 4-momentum space P4—according to the de Broglie family β;

3. The solution space of the relativistic Schrödinger equation is contained in the space of all
tempered distributions ψ ∈ S ′(M4,C) whose component system ψβ vanishes outside of the
inverse graph of the function H/c;

4. The solution space of the Schrödinger equation EH strictly contains the closed linear span χ̄;
5. In two dimensions, the solution space S, represented by β in P2, is the sum

solP2(EH) = span(δG) + span(δ′(m0c,0));

6. In four dimensions, the solution space S, represented by β in P4, is

solP4(EH) = span(δG) +
3

∑
j=1

span

(
∂

∂p j
δp

)
p∈Pj

.

where
Pj = {(Hp, (I3 − Ij

3)p) ∈ P4 : p ∈ R3},

with I3 being the identity 3-matrix and Ij
3 being the elementary matrix whose only term

different from zero is a unit placed in position (j, j).

Proof. The proof follows the points of the thesis.
1. We already proved that the Schwartz linear span X is contained in the solution

space S; therefore, the subspace S reveals to be nonempty and infinite-dimensional. Since
S is a closed subspace (since it is the kernel of the linear continuous operator Ê− Ĥ), the
closure of the Schwartz linear span of χ still remains inside S.

2. Let us prove the characterization of S as a division problem. To this end, consider
any wave ψ ∈ S ′4. The distribution wave ψ lives in the solution space S if it satisfies the
Einstein–Schrödinger equation

Êψ = Ĥψ;
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explicitly, the above equation reads∫
P4

E(ψ)ββ =
∫
P4

H(ψ)ββ,

where
E : P4 → C : p = (E/c, p) 7→ E

stands for the first canonical coordinate of the 4-momentum space P4 multiplied by c.
Therefore, because of the Schwartz linear independence of the de Broglie family β, we
deduce that the wave ψ lives in S if and only if

E(ψ)β = H(ψ)β,

that is, if
(E− H)(ψ)β = 0S ′ .

3. From the above equality, we infer that a necessary (not sufficient) condition for ψ to
belong in S is that the coordinate system (ψ)β must vanish upon the complement of the
level zero (null set) of the smooth function

E− H : P4 → C : (E/c, p) 7→ E−H(p).

We recall here that a distribution u vanishing outside a closed set C means that u sends to
0 every test function with compact support contained in the complement of C. Now, the
above level zero is the set

G = {(E/c, p) ∈ P4 : E/c = (H/c)(p)}.

Thus, we observe that the level zero above is nothing more than the inverse graph (symmet-
ric graph) of the function H/c, a graph which lives in the 4-momentum space P4. Moreover,
we can write

ψ =
∫
P4

(ψ)β β =
∫

Ω
(ψ)β β,

for every open neighborhood Ω of the inverse graph

G := gr−(H/c).

We observe that the distribution ψ reveals to be supported by G and can act upon the
smooth vector family β.

4. We desire to prove now that the closed linear span of the family χ remains strictly
included in the solution space S. First of all, we note that a wave ψ belongs to the Schwartz
span X if

ψβ ∈ Sspan(δG),

where
δG : G → δ(G) : p 7→ δp

represents the section of the Dirac family δ determined by the graph G. Consequently, the
wave ψ belongs to the closed span X̄ if

ψβ ∈ Sspan(δG).

Now, let M be the subset
δ(G) = {δp}p∈G.

From the “biorthogonal theorem”, we know that

Sspan(δG) = (M∗)∗,
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where (following Dieudonne) by ∗ we denote the orthogonal in the duality (S ′4,S4). Ex-
plicitly, the orthogonal M∗ is the subspace of all test functions φ which are orthogonal
to the family δG—in other terms, all the test functions vanishing over G. Therefore, the
biorthogonal M∗∗ is the subspace of all waves vanishing at the test functions sending each
point of the graph G to 0. Clearly, we can find waves ψ belonging to the solution space S
but with their representations ψβ (in the basis β) not belonging to M∗∗. Indeed, for a fixed
3-momentum p, consider, for example, the partial derivative

ω
j
p =

∂

∂p j
δ(Hp/c,p),

for some j ∈ I∗4 = {1, 2, 3}. Clearly, the distribution ω
j
p vanishes outside of G and,

consequently, the wave

ψ
j
p =

∫
P4

ω
j
p β,

could reveal a solution of EH ; indeed, it is, if pj = 0. Nevertheless, ω
j
p does not vanish upon

each test function which simply sends every point of G to 0: since the distribution ω
j
p takes

also into account the values of the partial j-derivative of test functions and not only the
mere values of the test functions. Hence, the wave ψ

j
p does not belong to X̄ .

5. Let us solve the equation in M2. First, note that for every p different from 0, the only
solutions of our division problem supported by the point (Hp/c, p) are the distributions
proportional to the basis vector δ(Hp/c,p). We need only to examine the case p = 0. In
dimension 1, we know well that

f δ0 = f (0)δ0, f δ′0 = − f ′(0)δ0 + f (0)δ′0, f δ′′0 = f ′′(0)δ0 − 2 f ′(0)δ′0 + f (0)δ′′0 .

Now, at the point p∗ = (m0c, 0), we see, for f = E− H,

f (p∗) = 0,
∂

∂p
f (p∗) = 0,

∂2

∂p2 f (p∗) 6= 0,

more specifically
∂2k

∂p2k f (p∗) 6= 0,
∂2k−1

∂p2k−1 f (p∗) = 0

for k > 0. Therefore, our equation reveals to also be verified by the elements of the
straight line

span(δ′p∗).

The solution space of the division problem f u is the sum

Sβ = span(δG) + span(δ′(m0c,0)).

6. To find find the wave ψ represented by the doublet δ′(m0c,0) (we indicate the partial
derivation with respect to the 1-momentum argument by a prime), we see

ψ =
∫
P2

δ′(m0c,0) β = t β̂(δ′(m0c,0)) =M(δ′(m0c,0)),

whereM represents the Minkowski–Fourier transform

M : S ′(P2)→ S ′(M2) : u 7→ u ◦ β̂.
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It reveals to be defined by

<M(u), φ > = < u, β(φ) > = < u, (βpφ)p∈P2 > = < u,
(∫

M2

βpφ

)
p∈P2

> .

The test function βφ inside the brackets acts as follows:

p 7→
∫
M2

e(ı/h̄)µµµ(p,x)φ dx,

if we apply the distribution δ′p∗ , we obtain

δ′p∗(βφ) = −(βφ)′(p∗) = −(ı/h̄)
∫
M2

xe(ı/h̄)µµµ(p∗ , x)φ dx.

From the above equality, we try

ψ = −(ı/h̄)[xe(ı/h̄)µµµ(p∗ , x)],

that is the regular tempered distribution generated by the OM(M2) function

−(ı/h̄)x fp∗ = −(ı/h̄)xe−(ı/h̄)(m0c2)t,

where, as usual, x and t are the spatial and time complex projections

x : (ct, x) 7→ x + 0ı , t : (ct, x) 7→ t + 0ı.

7. Analogously, the solution space of our relativistic equation in the 4-momentum
space P4 is

solP4(EH) = span(δG) +
3

∑
j=1

span

(
∂

∂p j
δp

)
p∈Pj

.

where
Pj = {(Hp, (I3 − Ij

3)p) ∈ P4 : p ∈ R3},

with I3 is the identity 3-matrix and Ij
3 is the elementary matrix whose only term different

from zero is a unit placed in position (j, j). The proof ends here.

5. Conclusions and Epilogue

The present manuscript deals with the classic problem of finding a self-consistent
“square root” Hamiltonian for a relativistic zero-spin particle. Indeed, we desire to point
out that we have also extended the same equation to the square and cube powers of
tempered distribution space (upon Minkowski space), say S′, obtaining two other Lorentz-
invariant relativistic equations, which also address also 1/2-spin and 1-spin particles,
again with a mass different from 0. In other terms, we have recognized that the same
equation form is valid in the description of Fermions (for instance), obtaining the positive
energy spinor solutions (two components out of four) of the celebrated Dirac equation,
while the negative energy spinor solutions come from the associated conjugate relativistic
Schrödinger equation (in the suitable power 2 of distribution space S′).

We specifically propose a proficient approach based on the tempered distribution
theory (developed by mathematicians like Schwartz and Dieudonné) and, in particular,
we use the main definitions and results of Schwartz Linear Algebra and Schwartz Spectral
theory, introduced by D. Carfì in [23].

We desire to underline that the general distribution treatment of QM and QFT is
widely adopted, more or less consciously, (Schwartz, Simon, Zeidler, Shankar, Dirac and so
on) but, on one hand, the distribution theory is used more as a tool than a foundational
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approach and, on the other, the use is limited to a calculus perspective more than to a
structural standpoint, as is the Hilbert space theory, for example.

5.1. Square Root Operator in QM and QFT

The idea of a square root operator is not new, and every QFT book starts with an
introduction to this topic. We desire to clarify the good points of our approach with respect
to the previous approaches to square roots and functional calculus in QM and QFT.

We want to observe here that, essentially—in the QM literature—we find the following
ways to introduce the square roots of operators, both in quantum mechanics and quantum
field theory:

• Practical and “ad hoc” methodologies, mostly based on the presumed strict paral-
lelism between infinite-dimensional complex Hilbert spaces and finite-dimensional
complex Euclidean spaces. Such methodologies reveal to be particularly efficient
when adopted in tanded with experimental knowledge and heuristic techniques, but
they are completely lacking a solid mathematical theory or crystalline universal def-
initions. Clearly, for the correct statement and resolution of a differential equation,
such methods cannot be enough, because—for instance—we do not even know where
we are working and what kind of functional objects we need to consider in order to
find the actual solutions of the equation, nor do we know the topological properties (if
any) of the involved operators:

• Spectral theories in separable Hilbert spaces;
• Spectral theories in separable Banach spaces;
• Algebraic methods based on finite dimensional matrices that, essentially, avoid the

problematic definition of the square roots of differential operators by constructing
higher-dimensional “perfect squares” operators which lie “under square roots”. These
methodologies allow us to introduce and solve a higher-dimensional differential
problem associated with the original fractional differential equation and (somehow)
also give the solutions of the original problem. The Dirac method of formulating
its celebrated equation falls in this category, as well as Foldy’s approach (with its
generalizations and variants from many authors).

5.2. Necessity of Distribution Spaces and Topology for Relativistic QM

We immediately observe that the above classic Hilbert/Banach space methods cannot
be used for the position and resolution of the free relativistic Schrödinger equation, because
the very fundamental solutions of this equation cannot be framed in a Hilbert or Banach
space context, as we explain later.

Now, we can justify the necessity—the absolute necessity—to use distribution theory,
for (at least) two main reasons:

1. If we lock ourselves down in separable Hilbert space theory, we cannot hope to
satisfactorily solve (from a physical point of view) the relativistic Schrödinger equation
for free particles. The simple reason is that the very main (and generating) solutions
of the relativistic Schrödinger equation for free particles cannot be considered as
elements of a separable Hilbert Space:

• First of all, if we desire to consider the standard L2 product, we immediately
observe that the de Broglie waves do not belong to the space of square integrable
functions.

• Moreover, the set of all harmonic waves is a continuous set (not a discrete
one) and, if we select its “naturally orthonormal” subfamily (that generating
the unitary Minkowsky–Fourier transform as integral kernel), we are again
obtaining a continuous family that should be orthogonal by right, from a physical
perspective, but cannot be as such in any separable Hilbert space (even different
from L2); we cannot find continuous orthonormal families in a separable Hilbert
space, only discrete orthonormal systems!
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• Furthermore, even forcing the matter and considering a Hilbert space generated
by all those “unitary orthogonal waves”, we would obtain a nonseparable Hilbert
space, which would enormously complicate the matter from a functional calculus
point of view, because we have no reasonable or natural spectral theory for
nonseparable Hilbert spaces. We are not saying, here, that we should not use
nonseparable Hilbert spaces in Quantum mechanics, but we see that they do not
help in the formulation and resolution of the relativistic Schrödinger equation.

The analogous problems we would risk to face if we lock ourselves down in separable
Normed Space theory are asfollows: it is very hard to keep, in a unique functional
theory, a reasonable and convenient separable norm with a good spectral theory and
the presence of the continuous family of de Broglie waves.
This is a general problem in quantum mechanics and quantum field theory: when we
consider harmonic waves and related differential equations (or operator equations),
we, theoretical physicists, actually do not use Hilbert Space theory—and we (some-
how) know it—instead, we use smooth function theory, differentiable function theory,
working, essentially, with calculus techniques and distribution theory.
Here, we have another general problem of Hilbert space theory in QM: even when
we solve the classic Dirac free equation, the manipulations and resolutions proceed,
essentially, in a differentiable theory context. Indeed, the basis solutions of the free
Dirac equation are bispinors constructed by harmonic waves, and then, automatically,
we work out of the Hilbert space theory.
Moreover, when we work out of the Hilbert space theory, we also work out of the
spectral theory on Hilbert spaces.
Consequently, we cannot expect to find a correct and unambiguous definition of the
square root of an operator by Hilbert space techniques, if the domain of such an
operator should contain the de broglie waves, because in this case, we are playing
outside of any separable Hilbert space.
It is not the case (and it does not surprise at all) that Dirac’s equation was solved by
smooth calculus and finite algebraic methods rather than infinite-dimensional Hilbert
space techniques.
In order to define the square roots of differential operators in a quantum mechanical
context (where we need to manage harmonic waves, eigenstates of position operator,
continuous spectra and so on. . . ), we need a spectral theory constructed elsewhere,
not in Hilbert spaces.

2. In some way, quantum mechanics needs to coordinate and put together two apparently
incompatible aspects: the state space of a quantum system can be generated by both
discrete and continuous bases: the position and momentum basis ((|x >), (|p >)) are
continuous, while the the Hermite function basis is discrete.
Very often, we read “let’s solve the harmonic oscillator problem in the position basis”,
or “let’s solve the harmonic oscillator problem in the momentum basis”, which are
continuous basis (in some sense to be correctly defined), only to see, after a while,
that the harmonic oscillator is solved by the discrete Hermite function basis of L2 (it
would be better to say of the Schwartz function Space S).
How can the position basis and momentum basis (that completely stay out of L2)
generate the same state space generated by the L2 Hermite function basis?
In what sense can a continuous family of vectors generate a functional space?
The position eigenstates are not even functions, they are measures.
In what space are we moving?
Is the state space separable or not?
What is its Hilbert dimension, ℵ0 or ℵ1?
How could a separable Hilbert (or Banach) space contain “non-normalizable” vectors
and continuous orthogonal families of non-normalizable vectors that, from a physical
point of view, simply represent the certainty to observe a specific result?
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In tempered distribution spaces, we know that the Hermite function family is a
discrete basis in a rightful algebraic–topological sense; it is a total family, and it is
also a basis in a generalized Hilbert sense (with respect to the tempered distribution
topology).Moreover, the position and momentum basis lives in S′ and generate S′ in
the Schwartz Linear Algebraic sense: S′ is a separable topological vector space, it is
wonderfully generated by a discrete and continuous basis, in two different rigorous
and operative meanings and, by the way, exactly the meaning used practically by
quantum physicists, in a more heuristic way.
In addition to this, in the distribution approach, any quantum mechanics observable
are a continuous and everywhere-defined operator, while in the Hilbert space ap-
proach, we almost surely face discontinuous (unbounded) operators and very strange,
unnatural domains, even for the most simple observables (position, momentum,
ladder operators, number operator and so on and so forth).
Consequently, in Hilbert spaces, we face any kind of difficulties, even to add or
multiply two straightforward operators such as a derivative operator and the position
operator—which show different domains—and that without, and well before, coming
to ask “what the principal square root of a discontinuous, non-everywhere-defined,
not properly hermitian, densely defined (or perhaps closable) operator is”.

5.3. Schwartz Linear Algebra

What does our new Schwartz Linear Algebra theory clarify compared with previous
methods?

The new theory definitely clarifies where we are working, in quantum theories and
quantum field theory, especially in relativistic quantum mechanics.

We clarify that the state spaces of quantum objects are not Hilbert spaces (if we exclude
the finite-dimensional spaces that, anyway, are subspaces of the tempered distribution
space S′) but powers of tempered distribution spaces.

Fortunately, tempered distribution spaces contain a lot of good inner product spaces,
useful in the evaluation of probabilities and expectation values for quantum mechanics. By
those inner products, we finally understand the possible way to properly “normalize” the
eigenvectors of the position and momentum operators (eigenstates that should be normal-
izable because of their straightforward physical meaning: they simply represent certainty).

First of all, we solve the problem of evolution in the tempered distribution space. Then,
when necessary, we find the right inner product subspace of tempered distribution space in
which we calculate the probabilities and expectation values.

5.4. No Pathological Features Associated with the Distributional Square Root Operator

To prove that the new formalism has no pathological features, we need general
theorems and correct definitions.

The principal square root of (continuous) Schwartz diagonalizable strictly positive
operators is always well-defined; it never shows pathological features.

The principal square root of (continuous) Schwartz diagonalizable positive (non-
negative, just to clarify) operators is always well-defined, but it needs more work and
caution. It shows no pathological features, but the domain is a subspace of the tempered
distribution space. In this more “dangerous” case, we need to restrict our attention (domain)
only to the subspace generated by the eigenvectors not belonging to the zero eigenvalue,
roughly speaking.

Fortunately, to solve our problem of a relativistic Schrödinger equation for massive par-
ticles, we need only the first simpler definition of a square root of strictly positive operators.

By the way, in the definition of the square root of Schwartz nondefective strictly
positive operators, we do not find any complication, because we have a general theorem of
Schwartz Linear Algebra assuring us of the following:

“for any choice of a smooth, slowly increasing function a and any Schwartz basis b of
the tempered distribution space, there exists a Schwartz linear operator A such that the
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Schwartz basis b is an eigensystem of the operator A, corresponding to the eigenvalue
family a.”

Therefore, in order to define the square root of a strictly positive operator, we can go
(with practical physicists) and affirm that: “the principal square root of a strictly positive
operator A is the only Schwartz diagonalizable operator which has the square root of
the eigenvalue system a as its eigenvalue system corresponding to the same Schwartz
eigenbasis of A”.

Indeed, this is the most natural definition of the square root of an operator in the
finite-dimensional case.

What about the problem of external fields which makes the previous operators often
badly defined?

Well, a good point of the theory is that we can discern perfectly among the cases in
which we can define the square root of an operator, or not.

For example, if we prove that the perturbed operator inside the square root is Schwartz
diagonalizable and strictly positive, then we know that the square root operator is well-
defined. And we can work inside the realm of tempered distributions to find, for example,
actual converging approximations of the square root operator, in the right topology, with
the right object in the right context. The rest is usual, well-established, mathematical
hard work.

We desire to observe that a lot of problems arise when one is working with operators
and other functional objects without knowing to what space they belong, without knowing
the topology one is dealing with: it is almost sure that one will end up in a mess.

5.5. Special Cases to Compare the New Approach with Previous Ones

We give an indicative example in the “discrete case”—we already observed that in
the continuous case we have no match, because separable Hilbert spaces are intolerant to
continuous orthonormal families in every respect and meaning.

Consider for example any ladder operator L. We know well that there exists an explicit
discrete L2-orthonormal eigenbasis b of L.

We know that every element f of L2 is of the form

f = ∑ < b| f > b,

where the denumerable sum is intended in the L2 topology. So, we would like to apply L
to both sides,

L( f = ∑ < b| f > b),

in order to obtain the natural spectral decomposition of L:

L( f ) = ∑ < b| f > L(b) = ∑ < b| f > l(b)b, (5)

where L(b) = l(b)b. Unfortunately, we cannot, because L is not L2-continuous, and hence,
the operator L cannot overcome the L2-sum. Consequently, we cannot even define a
functional calculus for the operator L, in its natural form:

g(L)( f ) := ∑ < b| f > g(l(b))b, (6)

because the definition is sick even when g is the identity function.
Note indeed that the summations in (5) and (6) are not always well-defined or conver-

gent in Hilbert spaces.
We lose, in Hilbert space, the natural way to define a functional calculus, and also the

natural way to define the principal square root when l(b) > 0, by simply putting

g =
√ .
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On the other hand, if we work in S′, L is continuous and the above series expansion should
be interpreted in the distribution sense; so, any ladder operator L is compatible with
the Hermite distribution expansion and an efficient functional calculus can be defined—
in the natural unsurpassed way—and we define the square roots of operators by the
simple relation

√
L( f ) := ∑ < b| f >

√
l(b)b,

as soon as the function l is strictly positive. The above definitions should be interpreted in
the distribution topology (the easy pointwise topology).

So, we see that even in a realm apparently covered by Hilbert spaces, the distribution
approach is better, easier and by far more complete.

Another example is a “student problem”, which is very hard in Hilbert space (indeed,
not meaningfully solvable there) and extremely simple in distribution spaces: “find the
square root of number operator N”.

The immediate obvious answer would be that, since

N = ∑ n |n >< n|, (7)

where (|n >) is the Hermite function basis, then
√

N = ∑
√

n |n >< n|. (8)

The problem here is again that the number of operators N is L2-unbounded (discontinuous)
and, consequently, the above relation (7) is not true, and we do not even know when the
above summations are convergent in Hilbert space.

So, in order to solve that “student problem” in L2, we need general spectral theory
for unbounded operators in separable Hilbert spaces, spectral measures, general defined
spectrum of operators, resolvent operators, unnatural domains and other amenities.

On the contrary, the above two relations (7), (8) are straightforwardly true in Schwartz
distribution space (without any problem of domains, convergence or continuity), and,
consequently, the problem is immediately solved–in distribution spaces–in its most natural
and desirable physical form.
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Appendix A. Hamiltonian 4-Vector Formulation

In this relativistic Hamiltonian context, we need to define the classic 4-vectors as-
sociated with the relativistic free particle using only its Hamiltonian function and the
momentum variable.

Definition A1 (Lorentz factor determined by relativistic three-momentum). Consider a free
particle with nonzero rest mass

m0 = p0/c.

We define the Lorentz factor corresponding to any relativistic 3-momentum p ∈ R3 as the ratio

γp :=
Hp

cp0
=
|(p0, p)|

p0
.

Definition A2. In the conditions of the above definition, we define the following:

• The relativistic mass
m0

p := γpm0,
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corresponding to p;
• The relativistic velocity

vp := p/m0
p ,

corresponding to the momentum p;
• The 4-velocity

vp := γp (c, vp) ,

corresponding to the momentum p;
• The 4-momentum

pp = m0vp = (γp p0, p) ,

corresponding to the momentum p.

Definition A3. It also reveals to be convenient for introducing the 4-energy and 4-mass of our
particle

Ep := (γp m0c2, cp) = c pp , mp := (γp m0, p/c) = Ep/c2.

All the above-defined 4-quantities induce contravariant 4-vectors, in the sense that they respect
(follow) the Lorentz transformation when passing from a Lorentz frame to another.

We desire to remark that it is revealed to be impossible to define the 4-position of the particle or
other related observables by only using the momentum-related 4-vectors.

Proposition A1. We observe that

µµµ(mp) = m0, µµµ(vp) = c, µµµ(pp) = m0c, µµµ(Ep) = m0c2,

for every relativistic momentum vector p ∈ R3, while

Hp = E0
p = E0γp = µµµ(Ep)γp,

where E0 = m0c2 is the rest energy of the particle.

Remark A1. The definition of the relativistic Hamiltonians of free particles appears simplified by
the use of the Euclidean norm |.| of the hybrid space R× P3 of all vectors (p0, p) (which are not
proportional to the 4-momenta pp of the particle) defined by the rest momentum m0c and by the
relativistic momentum p. Indeed, we already have seen that

H(p) = c|(p0, p)|,

for every 4-momentum p, with
p = (γpm0c, p).

Appendix B. Square Root of Strictly Positive Operators

Appendix B.1. Strictly Positive Operators

A Schwartz diagonalizable operator A is called strictly positive (negative) if any its
eigenvalues are positive (negative).

For example, the operator

Ĥ2 : S ′2 → S ′2 : Ĥ2 = c2(P2 + (m0c)2I)

is strictly positive iff m0 > 0.
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Appendix B.2. Square Root of Strictly Positive Operators

Let A be a subspace of the space S ′1+n admitting a Schwartz basis α of topological
dimension d. Let

A : A → A,

be a Schwartz diagonalizable operator, let α be a Schwartz eigenbasis of the operator A and
let a be the smooth system of eigenvalues corresponding to the eigenbasis α. We know that

Aαs = a(s)αs,

for every s in Rd; moreover, we can immediately prove that

A(ψ) =
∫
Rd

a.(ψ)α α,

for every ψ ∈ A.

Definition A4 (Principal root). In the above conditions, if the operator A is strictly positive, we
call the principal root of A the unique operator

√
A defined over A by

√
A(ψ) =

∫
Rd

√
a.(ψ)α α,

for every ψ ∈ A. Here, for every y ∈ R>, the square root
√

y is the unique positive real z such that
z2 = y.

If the operator A is strictly negative, we call the principal root of A the unique operator√
A defined over A by √

A(ψ) =
∫
Rd

√
a.(ψ)α α,

for every ψ ∈ A. Here, for every y ∈ R<, the square root
√

y is the unique positive
imaginary number z such that z2 = y.

We desire to observe that if A is strictly positive, then its opposite −A is strictly
negative, and we have √

−A = ι
√

A.

Appendix B.3. Hamiltonian as a Square Root

Now, we can define the relativistic Hamiltonian Ĥ via the square root operation.
We define Ĥ as the everywhere-defined operator

Ĥ : S ′4 → S ′4 : Ĥ = c
√
|P|2 + (m0c)2I.

It is evident that the energy operator Ê equals the above Hamiltonian operator Ĥ over the
subspace X .

Indeed, observe that
Ê(βE/c,p) = EβE/c,p,

for every 4-momentum (E/c, p) in P4, while

Ĥ(βE,p) = c
√
|p|2 + (m0c)2βE/c,p,

for every (E/c, p) in R2. Therefore, when assigned a 4-momentum pair (E/c, p), the above
two distributions coincide if

E = c
√
|p|2 + (m0c)2,
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that is, over the section of the family β indexed by the inverse graph of the Hamiltonian
function H.
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