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Abstract: We prove the modular convexity of the mixed norm Lp(`2) on the Sobolev space W1,p(Ω)

in a domain Ω ⊂ Rn under the sole assumption that the exponent p(x) is bounded away from 1,
i.e., we include the case sup

x∈Ω
p(x) = ∞. In particular, the mixed Sobolev norm is uniformly convex if

1 < inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) < ∞ and W1,p
0 (Ω) is uniformly convex.

Keywords: fixed point; Fredholm equations; modular function spaces; variable exponent spaces

1. Introduction

This work is devoted to the study of a uniform-convexity-like property of the modular
ρp : W1,p(x)(Ω)→ [0, ∞), defined as

ρp(u) =
∫
Ω

|∇u(x)|p(x)dx, (1)

where Ω ⊂ Rn is a bounded domain, p : Ω → (1, ∞) is a measurable function and
|v| stands for the Euclidean norm of a vector v ∈ Rn. We underline the fact that our
work clarifies two distinct points that have so far not been covered in the literature: the
consideration of the Euclidean norm |∇u| in the Sobolev integral above for the full range
1 < inf

Ω
p and the inclusion of the case sup

Ω
p = ∞. As a by-product, we obtain the uniform

convexity of the Sobolev–Luxemburg norm in the case where p is bounded away from 1
and ∞. To the best of the authors’ knowledge, the uniform convexity of the Sobolev norm
is new for 1 < inf

Ω
< p < 2 ([1]). Introduced for the first time in the early 1930s, spaces

of variable exponents acquired a new central role in mathematics after their emergence
as the natural solution space for differential equations with non-standard growth. We
refer the reader to [2,3] for a general treatment of variable exponent spaces and their basic
properties. The consideration of the Euclidean norm in (1) is of particular importance since
the corresponding Dirichlet integral is Fréchet differentiable and its derivative is precisely
the p-Laplacian variable exponent ∆p(x).

More specifically, let Ω ⊂ Rn be a domain and p be a measurable function on Ω, where
1 ≤ p < ∞. It is well known that the Luxemburg norm ‖ · ‖p on the variable exponent space
Lp(Ω) is uniformly convex if and only if 1 < p− = inf

x∈Ω
p(x) ≤ sup

x∈Ω
p(x) = p+ < ∞. Denote

by Wm,p(Ω) the usual variable exponent Sobolev space. There are certainly infinitely many
equivalent norms that can be defined on Wm,p(Ω). For example, if p is constant [4],
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‖u‖1,p =

 m

∑
|α|=0
‖Dαu‖p

p

 1
p

(2)

or [2,5]

‖u‖1,p =
m

∑
|α|=0
‖Dαu‖p, (3)

where ‖ · ‖p stands for the Lp norm. The core ideas can be reduced to the case m = 1; thus,
in the following only the space W1,p(Ω) will be considered. In general, if | · | : Rn → [0, ∞)
is a norm on Rn, the functional ρ1,p : W1,p(Ω)→ [0, ∞] defined by

ρ1,p(u) =
∫
Ω

|u|pdx +
∫
Ω

|∇u|pdx (4)

is a left-continuous convex modular, and the corresponding Luxemburg norm

‖u‖1,p = inf
{

λ > 0 : ρ1,p

( u
λ

)
≤ 1

}
(5)

is a norm on W1,p(Ω). Moreover, all such norms are equivalent. In particular, if p is
constant on Ω, the functional ‖ · ‖ : W1,p(Ω)→ [0, ∞] defined by

‖u‖ = ‖u‖p + ‖|∇u|‖p (6)

is a norm and all such norms on W1,p(Ω) are topologically equivalent. The question of
uniform convexity is considerably more delicate. It is easy to prove that if the variable
exponent p is bounded away from 1 and ∞ on Ω, then (2) and (3) are uniformly convex. This
can be seen, for example, by displaying a specific isometry between W1,p(Ω) (furnished
with either of those norms) and Lp(Ω̃) for a suitable domain Ω̃ ([2,4,5]). For a general norm

of the type (5) (in particular (6)), however, the issue is more subtle. The case |v| =
( n

∑
j=1

v2
j

) 1
2

is of particular interest due to its applications in partial differential equations. In [1], it is
shown that the Luxemburg norm on W1,p

0 (Ω) (defined as the closure of C∞
0 (Ω) in W1,p(Ω))

corresponding to the modular

ρ(u) =
∫
Ω

(
n

∑
j=1
|Dju|2

) p
2

dx

is uniformly convex on W1,p
0 (Ω) provided 2 ≤ p ≤ sup

Ω
p(x) < ∞ in Ω. On the other hand,

it has been shown in [6] that under the sole condition 1 < p−, the modular ρp : Lp(Ω) →
[0, ∞] defined by

ρp(u) =
∫
Ω

|u|p dx

possesses a uniform-convexity-like property. This work aims at obtaining uniform convex-
ity results in the case of an unbounded exponent, i.e., p+ = ∞, for the Sobolev modular (4),
in the particular case where the norm | · | is the Euclidean norm. As a by-product, we show
that the Sobolev space W1,p

0 (Ω) is uniformly convex when furnished with the norm

‖u‖1,p = inf

λ > 0,
∫
Ω

∣∣∣∣∣ n

∑
1

(
Dju

λ

)2∣∣∣∣∣
p
2

dx ≤ 1

.
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2. Inequalities

In this section, vector Clarkson-type inequalities are proven. These inequalities will be
of utmost importance in the following. First, the scalar case is discussed, for whose proof
references are given.

Lemma 1. For a, b ∈ R, |a|+ |b| 6= 0, 1 ≤ p ≤ 2 ([7]):∣∣∣∣ a + b
2

∣∣∣∣p + p(p− 1)
2p+1

|a− b|2
(|a|+ |b|)2−p ≤

1
2
(|a|p + |b|p). (7)

In addition, if p ≥ 2 it holds ([8]):∣∣∣∣ a + b
2

∣∣∣∣p + ∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2
(|a|p + |b|p). (8)

Inequalities (7) and (8) in turn, imply their own validity in the complex case.

Lemma 2. For 1 < p ≤ 2, z1 ∈ C, z2 ∈ C, |z1|2 + |z2|2 6= 0, it holds∣∣∣∣ z1 + z2

2

∣∣∣∣p + p(p− 1)
2p+1

|z1 − z2|2

(|z1|2 + |z2|2)
2−p

2

≤ 1
2
(|z1|p + |z2|p). (9)

In addition, if p ≥ 2, one has, for any two complex numbers z1 and z2,∣∣∣∣ z1 + z2

2

∣∣∣∣p + ∣∣∣∣ z1 − z2

2

∣∣∣∣p ≤ 1
2
(|z1|p + |z2|p). (10)

Proof. Let us first focus on the case 1 < p ≤ 2. Before we prove the inequality (9), we will
need the following estimate

0 ≤ (p− 1)
2

2−p < e−2, (11)

for 1 ≤ p < 2. Set g(p) = (p− 1)
2

2−p . It is easy to show that g(1) = 0 and that g(p)→ e−2

when p→ 2−. Furthermore,

g′(p) = 2(p− 1)
p

2−p (2− p)−2(2− p + (p− 1) ln (p− 1)).

Writing h(p) = 2 − p + (p − 1) ln (p− 1), it follows that h(1) = 1, h(2) = 0 and
h′(p) = ln (p− 1) < 0. Thus, h(p) > 0 on [1, 2), and hence g′(p) > 0, which gives the
estimate. By setting w = z2z−1

1 = reiθ , −π < θ ≤ π, r > 0, it is easy to rewrite the target
inequality (9) as ∣∣∣∣1 + reiθ

2

∣∣∣∣p + p(p− 1)
2p+1

|1− reiθ |2

(1 + r2)
2−p

2

≤ 1
2
(1 + rp). (12)

Fix r and denote the left-hand side by F(θ), i.e.,

F(θ) =
1
2p

(
1 + 2r cos θ + r2

) p
2
+

p(p− 1)

2p+1(1 + r2)
2−p

2

(
1− 2r cos θ + r2

)
.

We have

F′(θ) =
2pr sin θ

2p+1

(
−(1 + 2r cos θ + r2)

p
2−1 +

p− 1

(1 + r2)
2−p

2

)
.
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It is readily seen that for −π

2
≤ θ ≤ π

2
, it holds

−(1 + r2)
2−p

2 + (p− 1)(1 + 2r cos θ + r2)
2−p

2 ≤ (p− 1)(1 + r)2−p − (1 + r2)
2−p

2 .

We claim that
(p− 1)(1 + r)2−p − (1 + r2)

2−p
2 ≤ 0.

Indeed, it is enough to show that

(p− 1)
2

p−2 ≤ 1 + r2

(1 + r)2 .

This follows directly from estimate (11) and the fact that e2 > 2. Therefore, F increases

on
(
−π

2
, 0
)

and decreases on
(

0,
π

2

)
, i.e., on

[
−π

2
,

π

2

]
one has

F(θ) ≤ F(0) =
∣∣∣∣1 + r

2

∣∣∣∣p + p(p− 1)
2p+1

|1− r|2

(1 + r2)
2−p

2

. (13)

On the other hand, on
(
−π,−π

2

)
∪
(π

2
π
]
, one has 1 + 2r cos θ + r2 < 1 + r2. Conse-

quently,

(1 + 2r cos θ + r2)
p−2

2 > (1 + r2)
p−2

2 ≥ (p− 1)(1 + r2)
p−2

2 .

Thus, F(θ) increases on
(
−π,−π

2

)
and decreases on

(π

2
, π
)

and the bound in (13)

holds on (−π, π]. On account of inequality (7), F(0) is bounded above by the right-hand
side of inequality (12), and this observation proves the desired inequality.

The proof of (10), for p > 2, follows by the same arguments and will be omitted.

Using the above lemma, we are ready to state and prove the vector version of the
fundamental inequalities of Lemma 1 in any Hilbert space.

Theorem 1. Let u, v be vectors in a Hilbert space (H, ‖ · ‖). If 1 ≤ p ≤ 2, it holds that∥∥∥∥u + v
2

∥∥∥∥p
+

p(p− 1)
2p+1

‖u− v‖2

(‖u‖+ ‖v‖)2−p ≤
1
2
(‖u‖p + ‖v‖p), (14)

provided ‖u‖+ ‖v‖ 6= 0. In addition, if p ≥ 2, it holds that∥∥∥∥u + v
2

∥∥∥∥p
+

∥∥∥∥u− v
2

∥∥∥∥p
≤ 1

2
(‖u‖p + ‖v‖p). (15)

Proof. If the vectors u, v are linearly dependent, the two inequalities reduce to the scalar
case. Assume that u and v are linearly independent. Set W as the subspace of H spanned
by these two vectors. Using Gram–Schmidt, there exists an orthonormal basis {I, J} of W.
We have

u = xI + yJ and v = aI + bJ,

for (x, y) ∈ R2 and (a, b) ∈ R2. Set z1 = x + iy and z2 = a + ib in C. Clearly, the
following hold 

‖u‖2 = |z1|2 = x2 + y2,
‖v‖2 = |z2|2 = a2 + b2,
‖u + v‖2 = |z1 + z2|2 = (x + a)2 + (y + b)2,
‖u− v‖2 = |z1 − z2|2 = (x− a)2 + (y− b)2.
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Lemma 2 implies∣∣∣∣ z1 + z2

2

∣∣∣∣p + p(p− 1)
2p+1

|z1 − z2|2

(|z1|2 + |z2|2)
2−p

2

≤ 1
2
(|z1|p + |z2|p),

for 1 < p ≤ 2, and for p ≥ 2, we have∣∣∣∣ z1 + z2

2

∣∣∣∣p + ∣∣∣∣ z1 − z2

2

∣∣∣∣p ≤ 1
2
(|z1|p + |z2|p),

which obviously implies∥∥∥∥u + v
2

∥∥∥∥p
+

p(p− 1)
2p+1

‖u− v‖2

(‖u‖+ ‖v‖)2−p ≤
1
2
(‖u‖p + ‖v‖p),

for 1 < p ≤ 2, provided ‖u‖+ ‖v‖ 6= 0. Additionally, if p ≥ 2, it holds that∥∥∥∥u + v
2

∥∥∥∥p
+

∥∥∥∥u− v
2

∥∥∥∥p
≤ 1

2
(‖u‖p + ‖v‖p).

The proof of Theorem 1 is complete.

3. Variable Exponent Spaces

It is by today’s standards abundantly clear that the normed space structure is much too
stringent to completely capture certain mathematical subtleties that are only visible under a
more flexible lens. To name an example (in fact, it may be the most important to understand
the aim of this work), the variable exponent p-Laplacian is modular in nature. With this
in mind, we set out to a present brief summary of definitions and known results. The
reader is referred to [2,3,9,10] for a more detailed discussion of the topics briefly outlined
in this section.

Definition 1. [10–13] A convex modular on a real vector space X is a function $ : X → [0, ∞]
satisfying the following conditions:

(1) $(x) = 0 if and only if x = 0;
(2) $(αx) = $(x), if |α| = 1;
(3) $(αx + (1− α)y) ≤ α$(x) + (1− α)$(y), for any α ∈ [0, 1] and any x, y ∈ X.

Furthermore, it is considered that $ exhibits left-continuity when, for all x ∈ X,

lim
r→1−

$(rx) = $(x).

A modular function defined on a vector space X naturally gives rise to a modular space.

Definition 2. When a convex modular function $ is defined on the vector space X, the resulting
modular space consists of the following set:

X$ = {x ∈ X; lim
α→0

$(αx) = 0}.

The Luxemburg norm, denoted as ‖ · ‖$ and defined on the vector space X$, is given by the
following expression:

‖x‖$ := inf
{

α > 0; $
( x

α

)
≤ 1

}
.

In preparation for the next section, a concept related to the geometry of modular spaces
is introduced [14]. Specifically, for x ∈ X and r > 0, it is a natural and, as shall be seen in
Section 5, relevant question, whether the modular ball {y ∈ X : ρ(x− y) < r} is uniformly
convex in the modular sense. Though an exhaustive discussion of this subject is beyond
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the scope of this work [2,10], the following type of uniform convexity introduced in [14]
will have far reaching consequences in the applications to be discussed in Section 5. Notice
that one can routinely verify that Definition 3 generalizes the idea of the norm-uniform
convexity of a ball in a normed space.

Definition 3 ([14]). Given a modular $ on a vector space X, we introduce the following uniform
convexity-type properties of $:

(a) Let r > 0 and ε > 0 be given. Define

D2(r, ε) :=
{
(x, y); x, y ∈ X$, $(x) ≤ r, $(y) ≤ r, $

(
x− y

2

)
≥ εr

}
.

Set

δ2(r, ε) = inf
{

1− 1
r

$

(
x + y

2

)
; (x, y) ∈ D2(r, ε)

}
if D2(r, ε) 6= ∅ and write δ2(r, ε) = 1 otherwise. $ is said to satisfy (UC2) if for every r > 0
and ε > 0, one has δ2(r, ε) > 0. Observe that given r > 0, ε > 0 can be chosen small enough
so that D2(r, ε) 6= ∅.

(b) $ is said to satisfy (UUC2) if for every s ≥ 0 and ε > 0, there exists η2(s, ε) > 0 depending
on s and ε such that

δ2(r, ε) > η2(s, ε) > 0 f or r > s.

Definition 4 ([2]). A convex modular ρ on a vector space V is said to be uniformly convex (in
short (UC∗)) if for every ε > 0 there exists δ = δ(ε) > 0 such that for every u ∈ V and v ∈ V:

ρ

(
u− v

2

)
> ε

ρ(u) + ρ(v)
2

implies ρ

(
u + v

2

)
≤ (1− δ)

ρ(u) + ρ(v)
2

.

Notice that if ρ happens to be a norm, then the preceding definition is the usual
uniform convexity for norms.

4. Modular Uniform Convexity in Variable Exponent Lebesgue–Sobolev Spaces

The class of variable exponent Lebesgue spaces was first introduced in 1931 [15]. The
interested reader can consult [2,3,9] for an exhaustive treatment of these spaces. This section
will focus on the modular uniform convexity properties of such spaces. We open the section
with standard definitions.

Definition 5. Let Ω ⊂ Rn be a domain. The notationM(Ω) will be used for the vector space of
all real-valued, Borel-measurable functions defined on Ω. Let P(Ω) be the subset ofM consisting
of functions p : Ω −→ [1, ∞]. For each such p, define the set Ω∞ := {x ∈ Ω : p(x) = ∞}. The
function $ :M(Ω) −→ [0, ∞], defined by

$(u) =
∫

Ω\Ω∞

|u(x)|p(x)dµ + sup
x∈Ω∞

|u(x)|,

is a convex and continuous modular onM(Ω). The associated modular vector space is denoted by
Lp(·)(Ω) or simply Lp(Ω) if no confusion arises.

Definition 6. For Ω and p as in the preceding definition, W1,p(Ω) will stand for the vector
subspace of Lp(Ω) consisting of functions whose weak derivatives also belong to Lp(Ω). The
Sobolev space W1,p(Ω) will be equipped with the convex modular ρ : W1,p(Ω) → [0, ∞]
defined as:
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ρ(u) = $(u) + $(|∇u|) = $(u) + $


 n

∑
j=1

(
∂u
∂xj

)2
 1

2


and the corresponding Luxemburg norm introduced in Definition 2 will be denoted by ‖ · ‖ρ.

The following result follows easily from Theorem 1.

Corollary 1. Set Ω1 = {x ∈ Ω : p(x) ≥ 2}. For u ∈W1,p(Ω), v ∈W1,p(Ω) it holds that

∫
Ω1

∣∣∣∣∇(u + v)
2

∣∣∣∣p dx +
∫

Ω1

∣∣∣∣∇(u− v)
2

∣∣∣∣p dx ≤ 1
2

∫
Ω1

|∇u|p dx +
∫

Ω1

|∇v|p dx


and ∫

Ω\Ω1

∣∣∣∣∇(u + v)
2

∣∣∣∣p dx +
∫

Ω\Ω1

p(p− 1)|∇(u− v)|2

2p+1(|∇u|2 + |∇v|2)
p−2

p

dx ≤ 1
2

∫
Ω\Ω1

|∇u|p dx

+
1
2

∫
Ω\Ω1

|∇v|p dx.

The next result will be crucial to establish the main result of this work.

Theorem 2. Let Ω ⊆ Rn be a domain and p ∈ P(Ω) finite a.e. The functional $ : W1,p(Ω) →
[0, ∞] defined by

$(u) =
∫
Ω

(
n

∑
1

u2
j

) p(x)
2

dx

(here uj denotes the jth partial derivative of u) is a convex pseudomodular (i.e., it has all the properties
exhibited in Definition 1, except (1)) and is (UC∗) provided p− > 1. Moreover, when restricted to
W1,p

0 (Ω), $ is (UC∗) when p− > 1.

Proof. This proof follows along the same lines as that of Theorem 3 in [6]. We provide the
details in the interest of completeness. It is obvious that $ is a convex modular on Lp(Ω).

In the course of the proof, it will be understood that |(x1, x2, ..., xn)| =
(

n
∑

j=1
x2

j

) 1
2

and for a

subset A ⊆ Ω, we set $A(u) =
∫
A
|u|pdx. Let ε ∈ (0, 1]. Assume

$

(
u− v

2

)
≥ ε

(
$(u) + $(v)

2

)
.

Set Ω1 = {x ∈ Ω : p(x) ≥ 2}; then, necessarily, either

∫
Ω1

∣∣∣∣∇u−∇v
2

∣∣∣∣p ≥ ε

2

(
$(u) + $(v)

2

)
(16)

or ∫
Ω\Ω1

∣∣∣∣∇u−∇v
2

∣∣∣∣p ≥ ε

2

(
$(u) + $(v)

2

)
. (17)
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In the first case, by virtue of Theorem 1, it is readily concluded that

∫
Ω1

∣∣∣∣∇u +∇v
2

∣∣∣∣p ≤ 1
2

∫
Ω1

|∇u|p dx +
∫

Ω1

|∇v|p dx

− ε

2

(
$(u) + $(v)

2

)

which implies

∫
Ω1

∣∣∣∣∇u +∇v
2

∣∣∣∣p ≤ 1
2

∫
Ω1

|∇u|p dx +
∫

Ω1

|∇v|p dx

− ε

2

(
$Ω1(u) + $Ω1(v)

2

)
.

In all,

$

(
u + v

2

)
=

∫
Ω1

+
∫

Ω\Ω1

∣∣∣∣∇u +∇v
2

∣∣∣∣p dx

=
∫

Ω1

∣∣∣∣∇u +∇v
2

∣∣∣∣p dx +
∫

Ω\Ω1

∣∣∣∣∇u +∇v
2

∣∣∣∣p dx

≤ 1
2

∫
Ω1

|∇u|p dx +
∫

Ω1

|∇v|p dx

− ε

2

(
$(u) + $(v)

2

)

+
∫

Ω\Ω1

∣∣∣∣∇u +∇v
2

∣∣∣∣p dx

≤ 1
2

∫
Ω1

|∇u|p dx +
∫

Ω1

|∇v|p dx

− ε

2

(
$(u) + $(v)

2

)

+
1
2

 ∫
Ω\Ω1

|∇u|p dx +
∫

Ω\Ω1

|∇v|p dx


=

1
2
($(u) + $(v))− ε

2

(
$(u) + $(v)

2

)
= (1− ε/2)

(
$(u) + $(v)

2

)
.

The last statement settles the issue in case (16) holds. If instead (17) holds, define

Ω2 =

{
x ∈ Ω \Ω1 : |∇u−∇v| < ε

4

(
|∇u|2 + |∇v|2

) 1
2
}

.

It follows ∫
Ω2

∣∣∣∣∇u−∇v
2

∣∣∣∣p dx ≤
∫

Ω2

∣∣∣∣ ε

4
1
2
(|∇u|2 + |∇v|2)

1
2

∣∣∣∣p dx

≤ ε

4

∫
Ω2

∣∣∣∣12 (|∇u|+ |∇v|)
∣∣∣∣p dx

≤ ε

8
($(u) + $(v)).
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Set Ω∗ = Ω \ (Ω1
⋃

Ω2). On account of inequality (17), it is readily obtained that

∫
Ω∗

∣∣∣∣∇(u− v)
2

∣∣∣∣p dx =

 ∫
Ω\Ω1

−
∫

Ω2

∣∣∣∣∇(u− v)
2

∣∣∣∣p dx

≥ ε

2

(
$(u) + $(v)

2

)
− ε

4

(
$(u) + $(v)

2

)
=

ε

4

(
$(u) + $(v)

2

)
.

By definition of Ω∗, one has

(p− − 1)
ε

8

∣∣∣∣∇(u− v)
2

∣∣∣∣p ≤ p(p− 1)
2

( ε

4

)2−p
∣∣∣∣∇(u− v)

2

∣∣∣∣p
≤ p(p− 1)

2

(
|∇(u− v|)

(|∇u|2 + |∇v|2) 1
2

)2−p∣∣∣∣∇(u− v)
2

∣∣∣∣p,

which implies ∣∣∣∣∇(u + v)
2

∣∣∣∣p + (p− − 1)
ε

8

∣∣∣∣∇(u− v)
2

∣∣∣∣p ≤ 1
2
(|∇u|p + |∇v|p),

on account of the first part of Theorem 1. Integrating the above inequality and taking into
consideration (17), it follows that∫

Ω∗

∣∣∣∣∇(u + v)
2

∣∣∣∣p dx ≤ 1
2

∫
Ω∗

|∇u|p dx +
1
2

∫
Ω∗

|∇v|p − (p− − 1)
ε2

32

(
$(u) + $(v)

2

)
.

Finally,

$

(
u + v

2

)
=

 ∫
Ω1

⋃
Ω2

+
∫

Ω∗

∣∣∣∣∇(u + v)
2

∣∣∣∣p dx

≤ 1
2

 ∫
Ω1

⋃
Ω2

|∇u|p dx +
∫

Ω1
⋃

Ω2

|∇v|p dx


+

1
2

∫
Ω∗

|∇u|p dx +
∫

Ω∗

|∇v|p
− (p− − 1)

ε2

32

(
$(u) + $(v)

2

)

=
1
2
($(u) + $(v))− (p− − 1)

ε2

32

(
$(u) + $(v)

2

)
≤
(

1− (p− − 1)
ε2

32

)(
$(u) + $(v)

2

)
.

If we set

δ = min
{

ε

2
,
(

1− (p− − 1)
ε2

32

)}
,

then δ > 0 since p− > 1, and the following holds

$

(
u + v

2

)
≤ (1− δ)

(
$(u) + $(v)

2

)
,

i.e., $ is (UC∗) as claimed.
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Using Lemma 1 and along the same lines, the following theorem can be proven (see
also [6]).

Theorem 3. If 1 < p− ≤ p < ∞ in Ω, the modular ρ : Lp(Ω)→ [0, ∞] defined by

ρ(u) =
∫
Ω

|u|p dx

is (UC∗).

The following is the main result of this section.

Theorem 4. For 1 < p− ≤ p < ∞, the modular ρ : W1,p(Ω)→ [0, ∞] defined by

ρ(u) =
∫
Ω

(
|u|pdx + |∇u|p

)
dx

is (UC∗).

Proof. The proof follows immediately from Theorem 2, Theorem 3 and the fact that uniform
convexity is preserved under sums ([2], Lemma 2.4.16).

5. Uniform Convexity of the Luxemburg Norm on W1,p
0 (Ω)

This section is devoted to the proof of the fundamental result that for a variable
exponent p bounded away from 1 and ∞, the Luxemburg norm on the Sobolev space
W1,p

0 (Ω) is uniformly convex. The originality in this section is the range 1 < p < 2. A few
well-known facts about the modular spaces Lp are summarized below.

Theorem 5 ([2,14]). Assume p+ < ∞. In the notation of Definition 5, for any u ∈ Lp(Ω),

(i) $(u) = 1 if and only if ‖u‖$ = 1.

(ii) min{‖u‖p+
$ , ‖u‖p−

$ } ≤ $(u) ≤ max{‖u‖p+
$ , ‖u‖p−

$ }.

Let us recall the following definition.

Definition 7. Let Ω ⊆ Rn be a domain and p ∈ P(Ω) be an admissible exponent. Denote the
closure of C∞

0 (Ω) in W1,p(Ω) (Definition 6) by W1,p
0 (Ω).

The following theorem is well known.

Theorem 6 ([3,16]). For 1 < p− ≤ p+ < ∞, then on W1,p
0 (Ω) the norm ‖|∇u|‖$ is equivalent

to the Luxemburg norm ‖u‖ρ. Specifically, there exists α > 0 depending only on Ω and p such that
for all u ∈W1,p

0 (Ω),
1
α
‖u‖ρ ≤ ‖|∇u|‖$ ≤ α ‖u‖ρ ·

The following result holds.

Theorem 7. Let Ω ⊂ Rn be a domain and p be an admissible exponent with 1 < p− ≤ p+ < ∞.
Then, the Sobolev–Luxemburg norm ‖ · ‖ρ on W1,p(Ω) is uniformly convex. Likewise, the norm
u→ ‖|∇u|‖$ defined on W1,p

0 (Ω) is uniformly convex.

Proof. Let 0 < ε < 2 and take u and v with ‖u‖ρ = ‖v‖ρ = 1, ‖u− v‖ρ ≥ ε; that is, by
virtue of Theorem 5, ρ(u) = ρ(v) = 1 and ρ

( u−v
2
)
≥
(

ε
2
)p+ . On account of Theorem 4
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for some η > 0 it holds ρ
( u+v

2
)
< 1− η. On account of (ii) in Theorem 5, it follows that∥∥ u+v

2

∥∥
ρ
< 1− θ, for some 0 < θ < 1.

The rest of the claim follows along the same lines from a direct application of Theorem 2.

6. Conclusions

In conclusion, we proved the modular uniform convexity of the Sobolev space
W1,p(x)(Ω) in the case sup

x∈Ω
p(x) = p+ = ∞. We have also proven that the Luxemburg

norm in W1,p(Ω) is uniformly convex even for 1 < p− < 2. To the best of our knowledge,
both results are new and have concrete applications in the study of the solvability of bound-
ary value problems involving partial differential equations with non-standard growth.
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