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Abstract: This paper introduces a novel semicircular distribution obtained by applying the quadratic
rank transmutation map to the stereographic semicircular exponential distribution, referred to as
the transmuted stereographic semicircular exponential distribution (TSSCED). This newly proposed
distribution exhibits enhanced flexibility compared to the baseline stereographic semicircular expo-
nential distribution (SSCEXP). We conduct a comprehensive analysis of the model’s properties and
demonstrate its efficacy in data modeling through the application to a real dataset.
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1. Introduction

Several innovative distributions have emerged by leveraging fundamental probabilis-
tic concepts, such as cumulative distribution functions (CDFs) [1–3], probability density
functions (PDFs), and survival functions. The intention is to introduce enhanced flexibility
and encompass a wider spectrum of behaviors compared to the original distributions. Mar-
shall and Olkin in [4] introduced an intriguing method to enhance existing distributions
with an extra parameter, resulting in what is known as the Marshall–Olkin extended distri-
butions (MO-distributions). These extended distributions include the original distributions
as special cases. This concept of extending distributions, often referred to as “transmuta-
tion”, was formulated through the utilization of the Quadratic Rank Transmutation Map
(QRTM) introduced by Shaw and Buckley in [5]. Consequently, this led to the exploration
of transmuted distributions by various researchers.

For instance, Merovci in [6] introduced a transmuted Lindley distribution and applied
it to a dataset related to bladder cancer. Merovci et al. in [7] then extended their research
by proposing and analyzing properties of the transmuted Lindley-geometric distribution.
Another contribution by Sibel Acik Kemaloglu et al. in [8] involved the introduction and
examination of diverse properties of the transmuted two-parameter Lindley distribution.

In the realm of circular distributions, researchers have successfully adapted existing
probabilistic models from the real line or plane to create a variety of valuable and capti-
vating circular models. Techniques involve wrapping linear models around a circle and
focusing on properties such as maximum entropy or applying inverse stereographic pro-
jection (S Rao Jammalamadaka et al. in [9–11]). Abe et al. [12] discussed a four-parameter
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family of symmetric unimodal distributions that extended both the Minh–Farnum in [13]
and Jones–Pewsey in [14] families. Phani et al. in [15] introduced and examined properties
of stereographic semicircular exponential and Weibull distributions through inverse stereo-
graphic projection on linear exponential and Weibull variables. Rao et al. in [16] developed
circular distributions using wrapping techniques and inverse stereographic projection on
linear distributions. Arnold et al. in [17] focused on the construction and inference of axial
distributions, with a particular emphasis on the axial normal distribution. Rambli et al.
in [18] introduced a novel semicircular distribution through inverse stereographic projec-
tion applied to a gamma distribution. Building upon this, Ali H. Abuzaid in [19] created a
semicircular distribution based on inverse stereographic projection applied to the Burr XII
distribution variable.

More recently, Rambli et al. in [20] demonstrated the utility of the half-circular gamma
distribution in modeling eye data from a glaucoma clinic. Abdullah Yilmaz et al. in [21]
introduced a wrapped exponential distribution using the transmuted rank quadratic map
method. Additionally, P. Yedlapalli et al. in [22,23] developed several semicircular models
by modifying inverse stereographic projection on linear models. In a recent contribution,
Phani et al. in [24] proposed a new family of semicircular and circular arc tan-exponential
type distributions, investigating various population characteristics. Furthermore, Ayesha
Iftikhar et al. in [25] introduced a modified half-circular Burr-III distribution and explored
different estimation methods.

In this study, we aim to formulate a novel distribution by employing the quadratic rank
transmutation map on the stereographic semicircular exponential distribution introduced
by Phani et al. in [15]. We refer to this distribution as the “transmuted stereographic semi-
circular exponential distribution” (TSSCED). The novelty of this study is that no researcher
so far has studied this technique for semicircular distributions. This newly developed
distribution offers greater flexibility compared to the baseline stereographic semicircular
exponential distribution (SSCEXP) and other established models in the literature. Our
subsequent focus involves an analysis of the properties of the proposed model. While
some existing models relate to axial distribution, assuming equivalence between angles
(Alldredge et al. [26] and Mardia et al. in [27]), our interest lies in deriving a distribution for
observations confined to a semicircle, within the range of (0, π) radians. It is important to
note that the periodicity property applicable to circular data does not hold for semicircular
data, as it is distinctly different.

The rest of this article is structured as follows: Section 2 outlines the transmuted
stereographic semicircular exponential distribution. Section 3 derives the trigonometric
moments of the proposed model, followed by parameter estimation through the maximum
likelihood method in Section 4. Section 5 presents the results of a simulation study. This
article also features a practical example involving the orientation of pebbles dataset (Fisher
B-8), specifically the horizontal axes of 100 outwash pebbles from a late Wisconsin outwash
terrace near Cary, Illinois, in Section 6. Finally, Section 7 offers concluding remarks.

2. Definition and Derivation of the Proposed Model

Let F1 and F2 be two distribution functions with a common sample space. The general
rank transmutation is defined by Shaw and Buckley [5] as GR12 = F2(F−1

1 (u)), u ∈ [0, 1],
GR21 = F1(F−1

2 (u)), where F−1(τ) = in fx∈R{F(x) ≥ τ}, τ ∈ [0, 1].
Hence, a quadratic rank transmutation map has the following form: GRij(u) = u +

α(1− u), −1 ≤ α ≤ 1, u ∈ [0, 1]. From this transmutation, it follows that F1 and F2 satisfy
the relationship

GRij(Fi(x)) = F(i(x) + αFi(x)(1− Fi(x)) or Fj(x) = (1 + α)Fi(x)− αF2
i . (1)
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The aforementioned equation produces a transformed distribution (Fj) for Fi. When F1
and F2 are both continuous distributions, applying the derivative operation to Equation (1)
yields the resulting transmuted probability density function.

f j(x) = (1 + α) fi(x)− 2α fi(x)Fi(x), j = 1 or 2, i = 1 or 2, i 6= j). (2)

If the cumulative distribution function F(x) of the random variable X adheres to the
subsequent relation, then X is characterized as having a transmuted distribution:

F(x) = (1 + α)G(x)− α[G(x)]2,−1 ≤ α ≤ 1, (3)

where G(x) is cdf of base line distribution.
The parameter α is called a transmutation parameter. By adopting the above method-

ology to circular distributions, we construct a new distribution called transmuted stereo-
graphic semicircular exponential distribution.

A circular random variable θ is said to have the transmuted distribution if its cdf G(θ)
and pdf g(θ), where θ ∈ (0, 2π], given by

G(θ) = (1 + α)F(θ)− α[F(θ)]2 (4)

g(θ) = f (θ)[(1 + α)− 2αF(θ)], (5)

where −1 ≤ α ≤ 1, F(θ) and f (θ) are cdf and pdf to the base distribution, respectively.
Observe that when α = 0, we obtain the base distribution of the random variable θ.

Lemma 1. g(θ), given in Equation (5), is a well-defined circular probability density function.

Proof. A function g(θ) is said to be a circular probability density function if and only if

(i) g(θ) ≥ 0, θ ∈ (0, 2π],
(ii) g(θ + 2π) = g(θ),
(iii)

∫ 2π
0 g(θ)dθ = 1.

By rewriting g(θ) as g(θ) = f (θ)[1− α(2F(θ)− 1)] , we noticed that g(θ) is non-
negative and

g(θ + 2π) = f (θ + 2π) [(1 + α)− 2αF(θ + 2π)]

= f (θ) [(1 + α)− 2αF(θ)] = g(θ) (since f(θ) is periodic with period 2 π ).

We need to show that the integration over the support of the random variable θ is 1.
We have

2π∫
0

g(θ)dθ =

2π∫
0

f (θ)[(1 + α)− 2αG(θ)]dθ

= (1 + α)

2π∫
0

f (θ)dθ − α

2π∫
0

2 f (θ)G(θ)dθ

= (1 + α)(1)− α(1)(since
2π∫
0

f (θ)dθ = 1 &
2π∫
0

2 f (θ)G(θ)dθ = 1)

= (1 + α)− α = 1.

Similarly, in the case of a semicircle, the support of the random variable is a half part
of the circle, i.e., θ ∈ (0, π) follows, except the periodicity condition.

Using the above methodology, we can develop new circular and semicircular distribu-
tions, which are more flexible than the base distributions.
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Transmuted stereographic semicircular exponential distribution (TSSCED)
The cumulative distribution function (cdf) of the stereographic semicircular exponen-

tial distribution (Phani et al. [15]) is given by

F(θ) = 1− exp
(
−λ tan

(
θ

2

))
, 0 < θ < π, λ > 0, (6)

and the probability density function (pdf) is given by

f (θ) =
λ

(1 + cos θ)
exp

(
−λ tan

(
θ

2

))
, 0 < θ < π, λ > 0. (7)

From (6) in Equation (4), we obtain the cdf of the transmuted stereographic semicircular
exponential distribution (TSSCED).

The the cdf of the TSSCED is given by

G(θ) = (1 + α)

[
1− exp

(
−λ tan

(
θ

2

))]
− α

[
1− exp

(
−λ tan

(
θ

2

))]2
, (8)

where 0 < θ < π, λ > 0 and |α| ≤ 1.
Hence, the pdf of TSSED with parameters α and λ is given as

g(θ; α, λ) =
λ(1− α)

(1 + cos θ)
exp

(
−λ tan

(
θ

2

))
+ αλ sec2

(
θ

2

)
exp

(
−2λ tan

(
θ

2

))
, (9)

where 0 < θ < π, λ > 0 and |α| ≤ 1.
It extends the concept of the stereographic semicircular exponential distribution pro-

posed by Phani et al. [15]. Figures 1–3 illustrate the variation in the probability density
function (pdf) and cumulative distribution function (cdf) of the newly introduced model
for distinct parameter values. Conversely, Figure 4 provides a circular representation of
the proposed model. In Figure 5 we present the survival function of TSSCED for various
values of λ. In Figure 6 we provide the plots of hazard rate function of TSSCED for various
values of λ.

Figure 1. The probability density functions of TSSCED for various values of λ. From these plots it is
evident that TSSCD is applicable for both positively and negatively skewed data.
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Figure 2. Density plot of TSSCED for various values of λ (circular plot).

Figure 3. Distribution function plot of TSSCED for various values of λ.
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Figure 4. Distribution function plots of TSSCED for various values of λ.

Figure 5. Plots of survival function of TSSCED for various values of λ.
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Figure 6. Plots of hazard rate function of TSSCED for various values of λ.

Quantile Function

The quantile function of TSSCED (λ, α) can be obtained from the solution of equation
G(θ)− u = 0 with respect to θ as

Q(u) = 2 tan−1

 1
λ

log

 2α(
(α + 1)−

√
(α + 1)2 − 4αu

)

, where u ∈ (0, 1). (10)

The median direction of a semicircular distribution is a value M such that

M∫
0

g(θ)dθ =

π∫
M

g(θ)dθ = 0.5.

The median of the TSSCED (λ, α) distribution is obtained from equation

M = Q(0.5) = 2 tan−1

 1
λ

log

 2α(
(α + 1)−

√
(α + 1)2 − 2α

)

. (11)

3. Characteristic Function

The characteristic function of a random angle θ can be represented as the sequence
of complex numbers

{
ϕp : p = ±1, ±2, ±3, · · ·

}
arranged in a doubly-infinite manner.

This sequence is defined by:
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ϕp = E
(

eipθ
)
=

π∫
0

eipθd(G(θ))

=
λ

2

π∫
0

eipθ sec2
(

θ

2

)
e−λ tan( θ

2 )
[
(1 + α)− 2α

(
1− e−λ tan( θ

2 )
)]

dθ.

As this integral cannot admit an explicit form, we derive the first two trigonometric
moments, which are enough for studying population characteristics.

The Trigonometric Moments

We compute the initial two trigonometric moments of the transmuted stereographic
semicircular exponential distribution, which are crucial for calculating population character-
istics. These moments are represented by the sequence of complex numbers{

ϕp : p = ±1, ±2, ±3, · · ·
}

, where ϕp = αp + iβp and αp = E(cospΘ) and
βp = E(sin pΘ) denote the pth order cosine and sine moments, respectively, of the ran-
dom variable Θ. These moments are essential for subsequent population characteristics
calculations.

Theorem 1. Under the pdf of the transmuted stereographic semicircular exponential distribution,
the first two trigonometric moments αp = E(cospΘ) and βp = E(sin pΘ), p = 1, 2 are given
as follows:

α1 = 1− λ√
π

[
(1− α) G31

13

(
λ2

4

∣∣∣∣ − 1
2

0, 0, 1
2

)
+ 2αG31

13

(
λ2
∣∣∣∣ − 1

2
0, 0, 1

2

)]

β1 =
λ√
π

[
(1− α) G31

13

(
λ2

4

∣∣∣∣ 0
0, 0, 1

2

)
+ 2αG31

13

(
λ2
∣∣∣∣ 0

0, 0, 1
2

)]

α2 = 1 +
4λ(1− α)√

π

[
G31

13

(
λ2

4

∣∣∣∣ − 3
2

− 1
2 , 0, 1

2

)
− G31

13

(
λ2

4

∣∣∣∣ − 1
2

− 1
2 , 0, 1

2

)]
+

8αλ√
π

[
G31

13

(
λ2
∣∣∣∣ − 3

2
− 1

2 , 0, 1
2

)
− G31

13

(
λ2
∣∣∣∣ − 1

2
− 1

2 , 0, 1
2

)]
,

β2 =
2(1− α)λ√

π

[
G31

13

(
λ2

4

∣∣∣∣ 0
0, 0, 1

2

)
− 2G31

13

(
λ2

4

∣∣∣∣ − 1
0, 0, 1

2

)]
+

4αλ√
π

[
G31

13

(
λ2
∣∣∣∣ 0

0, 0, 1
2

)
− 2G31

13

(
λ2
∣∣∣∣ − 1

0, 0, 1
2

)]
.

Proof. The verification involves employing certain transformations. To begin with, for the
initial cosine and sine moments, use the transformation x = tan

(
θ
2

)
, cos θ = 1− 2x2

1+x2 and

sin θ = 2x
1+x2 ; the results α1 and β1 follow by the integral formula 3.389.2 Gradshteyn and

Ryzhik in [28].
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α1 =

π∫
0

cos(θ)g(θ)dθ

=

π∫
0

cos(θ) sec2
(

θ

2

)
e−λ tan( θ

2 )
[

λ(1− α)

2
+ 2λe−λ tan( θ

2 )
]

dθ

=

∞∫
0

(
1− 2x2

1 + x2

)[
(1− α)λe−λx + 2αλe−2λx

]
dx

= 1−

2(1− α)λ

∞∫
0

x2( 3
2 )−1

(
1 + x2

)0−1
e−λxdx + 4αλ

∞∫
0

x2( 3
2 )−1

(
1 + x2

)0−1
e−2λxdx

.

Therefore,

α1 = 1− λ√
π

[
(1− α) G31

13

(
λ2

4

∣∣∣∣ − 1
2

0, 0, 1
2

)
+ 2αG31

13

(
λ2
∣∣∣∣ − 1

2
0, 0, 1

2

)]

β1 =

π∫
0

sin(θ)g(θ)dθ

=

π∫
0

sin(θ) sec2
(

θ

2

)
e−λ tan( θ

2 )
[

λ(1− α)

2
+ 2λe−λ tan( θ

2 )
]

dθ

=

∞∫
0

(
2x

1 + x2

)[
(1− α)λe−λx + 2αλe−2λx

]
dx

= 2(1− α)λ

∞∫
0

x2(1)−1
(

1 + x2
)0−1

e−λxdx + 4αλ

∞∫
0

x2(1)−1
(

1 + x2
)0−1

e−2λxdx.

Therefore,

β1 =
λ√
π

[
(1− α) G31

13

(
λ2

4

∣∣∣∣ 0
0, 0, 1

2

)
+ 2αG31

13

(
λ2
∣∣∣∣ 0

0, 0, 1
2

)]
.

To obtain the second cosine and sine moments, α2 and β2, we use the transformations
x = tan

(
θ
2

)
, cos 2θ = 1− 8x4

(1+x2)
2 − 8x2

(1+x2)
, and sin 2θ = 4x

1+x2 − 8x3

(1+x2)
2 ; the results of α2

and β2 follow from the same integral formula of α1.
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α2 =

π∫
0

cos(2θ)g(θ)dθ

=

π∫
0

cos(2θ) sec2
(

θ

2

)
e−λ tan( θ

2 )
[

λ(1− α)

2
+ 2λe−λ tan( θ

2 )
]

dθ

=

∞∫
0

(
1 +

8x4

(1 + x2)
2 −

4x3

(1 + x2)

)[
(1− α)λe−λx + 2αλe−2λx

]
dx

= 1 + 8(1− α)λ

 ∞∫
0

x2( 5
2 )−1

(
1 + x2

)−1−1
e−λxdx−

∞∫
0

x2( 3
2 )−1

(
1 + x2

)0−1
e−λxdx


+16αλ

 ∞∫
0

x2( 5
2 )−1

(
1 + x2

)−1−1
e−2λxdx−

∞∫
0

x2( 3
2 )−1

(
1 + x2

)0−1
e−2λxdx



α2 = 1 +
4λ(1− α)√

π

[
G31

13

(
λ2

4

∣∣∣∣ − 3
2

− 1
2 , 0, 1

2

)
− G31

13

(
λ2

4

∣∣∣∣ − 1
2

− 1
2 , 0, 1

2

)]
+

8αλ√
π

[
G31

13

(
λ2
∣∣∣∣ − 3

2
− 1

2 , 0, 1
2

)
− G31

13

(
λ2
∣∣∣∣ − 1

2
− 1

2 , 0, 1
2

)]

β2 =

π∫
0

sin(2θ)g(θ)dθ

=

π∫
0

sin(2θ) sec2
(

θ

2

)
e−λ tan( θ

2 )
[

λ(1− α)

2
+ 2λe−λ tan( θ

2 )
]

dθ

=

∞∫
0

(
4x

(1 + x2)
− 8x3

(1 + x2)
2

)[
(1− α)λe−λx + 2αλe−2λx

]
dx.

Therefore,

β2 =
2(1− α)λ√

π

[
G31

13

(
λ2

4

∣∣∣∣ 0
0, 0, 1

2

)
− 2G31

13

(
λ2

4

∣∣∣∣ − 1
0, 0, 1

2

)]
+

4αλ√
π

[
G31

13

(
λ2
∣∣∣∣ 0

0, 0, 1
2

)
− 2G31

13

(
λ2
∣∣∣∣ − 1

0, 0, 1
2

)]
.

In a similar manner, higher order moments can be obtained.

4. The Maximum Likelihood Estimation

Within this section, we delve into the process of employing maximum likelihood
estimation to determine the model parameters α and λ.
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Let θ1, θ2, θ3, . . . , θn be a random sample of size n from the TSSCED distribution, then
the likelihood function is given by

L(θ1, θ2, θ3, . . . , θn; α, λ) =
n

∏
i=1

g(θi; α, λ)

=

(
λ

2

)n n

∏
i=1

sec2
(

θi
2

)
exp

(
−λ tan

(
θi
2

))
[

α

(
exp

(
−λ tan

(
θi
2

))
− 1
)
+ 1
]

;

the log likelihood function is given by

l = log(L)

= n log
(

λ

2

)
+ 2

n

∑
i=1

log
(

sec
(

θi
2

))
−λ

n

∑
i=1

tan
(

θi
2

)
+

n

∑
i=1

log
[

α

(
e−λ tan

(
θi
2

)
− 1
)
+ 1
]

. (12)

If the first partial derivative of (12) with respect to parameters α and λ is taken and
equalized to zero, then we have the following two normal equations:

∂l
∂α

=
n

∑
i=1

 e−λ tan
(

θi
2

)
− 1

α

(
e−λ tan

(
θi
2

)
− 1
)
+ 1

 = 0 (13)

∂l
∂λ

=
n
λ
−

n

∑
i=1

tan
(

θi
2

)
− λα

2

n

∑
i=1

 sec2
(

θi
2

)
e−λ tan

(
θi
2

)
− 1

α

(
e−λ tan

(
θi
2

)
− 1
)
+ 1

 = 0. (14)

Due to the presence of nonlinear terms in Equations (13) and (14), it is not feasible
to derive closed-form expressions for the maximum likelihood estimators. As a result,
analytical solutions are unattainable, leading us to utilize a numerical approach in order to
obtain parameter values for α and λ.

5. Simulation Study

Take samples of size: n = 20, 40, 100, 200, and 900.
Step-I: Generating a random sample from a given distribution;
Step-(a): A random variable is generated from the U (0, 1) distribution, say u;
Step-(b): Find the expression for the quantile function for the given distribution (i.e., find
the inverse of cumulative distribution function);

Steps (a) and (b) are repeated as many times as the desirable sample size (i.e., replica-
tions say N = 10,000);
Step-II: Obtain maximum likelihood estimates of the parameters.

The MLEs of the parameters are obtained by substituting the values obtained from
Step-I in log-likelihood function and maximizing;
Step-III: Calculate the average bias, MSE, and MRE.

Let the true value of the parameter be MSE(λ∗) = 1
N

N
∑

i=1
(λi − λ∗)2 and the MLE be

λ∗ . Then the average bias, MSE, and MRE of λ∗ are given by
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|Bias(λ∗)| = 1
N

N

∑
i=1

(|λi − λ∗|), where Bias(λ∗) =
1
N

N

∑
i=1

(λi − λ∗),

MSE(λ∗) =
1
N

N

∑
i=1

(λi − λ∗)2

MRE(λ∗) =
1
N

N

∑
i=1

|(λi − λ∗)|
λ∗

.

Similarly, the bias, MSE, and MRE for other parameters are calculated.
The data presented in Table 1 indicate that, as the sample size increases, the absolute

bias and MSE of the maximum likelihood estimation (MLE) for α and λ tend to diminish.
This trend signifies that the parameter estimates for α and λ are becoming more accurate,
precise, and, consequently, consistent.

Table 1. MLE, average bias, MSE, and MRE for α∗ and λ∗.

Sample
Size α λ

n α = −0.25 λ = 1.5

n MLE Bias MSE MRE MLE Bias MSE MRE

20 −0.30923 0.42563 0.25468 −1.70253 1.53668 0.37243 0.24245 0.24829

40 −0.25845 0.3390 0.17890 −1.35599 1.55175 0.30226 0.17154 0.20151

100 −0.23798 0.23241 0.09592 −0.92964 1.54459 0.20985 0.09844 0.13990

200 −0.24235 0.16354 0.04966 −0.65415 1.52372 0.14304 0.04808 0.09536

900 −0.25044 0.07357 0.00858 −0.29429 1.50136 0.06098 0.00595 0.04065

n α = −0.75 λ = 2

MLE Bias MSE MRE MLE Bias MSE MRE

20 −0.71745 0.27163 0.13031 −0.36217 2.07549 0.37501 0.28395 0.18751

40 −0.73827 0.20850 0.07905 −0.27800 2.04035 0.26774 0.15105 0.13387

100 −0.74988 0.13439 0.02934 −0.17918 2.00860 0.16353 0.04483 0.08177

200 −0.75048 0.09666 0.0149 −0.12888 2.00517 0.11410 0.02079 0.05705

900 −0.75002 0.04551 0.00326 −0.06067 2.00106 0.05308 0.00446 0.02654

n α = 0.25 λ = 2.75

MLE Bias MSE MRE MLE Bias MSE MRE

20 0.06332 0.46435 0.32862 1.85741 2.60236 0.6671 0.65624 0.24258

40 0.11763 0.38189 0.21671 1.52758 2.66402 0.59805 0.53040 0.21747

100 0.19594 0.29615 0.12576 1.18460 2.76669 0.50778 0.39994 0.18465

200 0.23879 0.23884 0.08486 0.95537 2.75853 0.42811 0.30909 0.15568

900 0.25602 0.19277 0.05951 0.77109 2.75097 0.35724 0.23727 0.12991

n α = 0.5 λ = 3.5

MLE Bias MSE MRE MLE Bias MSE MRE

20 0.3497 0.43623 0.31876 0.87246 3.32569 0.75798 0.81984 0.21657

40 0.38084 0.36559 0.21933 0.73117 3.38228 0.70477 0.69674 0.20136

100 0.41406 0.29573 0.13587 0.59146 3.42742 0.63041 0.55988 0.18012

200 0.44827 0.24924 0.09391 0.49849 3.46991 0.56018 0.44954 0.16005

900 0.48967 0.16542 0.04037 0.33083 3.51229 0.39465 0.23494 0.11276
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Table 1. Cont.

Sample
Size α λ

n α = 0.75 λ = 4.75

MLE Bias MSE MRE MLE Bias MSE MRE

20 0.61623 0.36033 0.23862 0.48044 4.44351 0.95696 1.31564 0.20146

40 0.66202 0.29647 0.14938 0.39530 4.56807 0.85815 1.03825 0.18066

100 0.69448 0.23836 0.08797 0.31781 4.68178 0.77811 0.84347 0.16381

200 0.70655 0.20618 0.06435 0.27490 4.71495 0.71606 0.71555 0.15075

900 0.74987 0.14159 0.03241 0.18879 4.70835 0.50387 0.38176 0.10608

n α = 1 λ = 6

MLE Bias MSE MRE MLE Bias MSE MRE

20 0.84397 0.15603 0.12359 0.15603 5.31865 1.19575 2.13013 0.19929

40 0.87742 0.12258 0.07097 0.12258 5.47974 0.97930 1.51715 0.16322

100 0.90301 0.09699 0.04792 0.09699 5.58728 0.74017 0.99825 0.12336

200 0.92618 0.07382 0.03465 0.07382 5.69486 0.55759 0.67826 0.09293

900 0.97800 0.02200 0.00591 0.02200 5.88721 0.22750 0.13504 0.03792

6. Application

In river environments, pebbles are often subjected to a variety of hydraulic forces, such
as water flow, turbulence, and sediment transport. These forces can change the orientation
of pebbles and cause them to align in certain directions. Various studies have shown that
pebble orientation in river environments can be influenced by a variety of factors, including
the direction and velocity of water flow, the size and shape of the pebbles, the slope of
the riverbed, and the presence of other sediment particles. In this study, to illustrate the
potentiality of the proposed model, we consider one such dataset from Krumbein in [29];
this dataset consists of a direction of 100 washout pebbles from a lake Wisconsin outwash
terrace along Fox River near Cary, Illinois.

Data: Orientations of pebbles: Horizontal axes of 100 outwash pebbles from a lake
Wisconsin outwash terrace along Fox River near Cary, Illinois.

To check the goodness-of-fit for the proposed distribution and its baseline distribution
to the above-mentioned dataset, we compute statistics, log-likelihood, AIC (Akaike informa-
tion criterion), CAIC (corrected Akaike information criterion), BIC (Bayesian information
criterion), and HQIC (Hannan–Quinn information criterion). Table 2 shows the param-
eter estimator’s results along with the standard error of the wrapped exponential (WE),
wrapped Lindley (WL), wrapped modified Lindley (WML), wrapped xgamma (WRXG)
transmuted wrapped exponential (TWE), stereographic semicircular exponential (SSCED)
and transmuted stereographic semicircular exponential (TSSCED), stereographic semi-
circular half logistic (SSCHLD), and stereographic semicircular quasi Lindley (SSCQLD).
Table 3 shows the corresponding log-likelihood, AIC, CAIC, BIC, HQIC, and Kolmogorov–
Sminorov (KS) statistic. Table 4 shows a summary of statistics/values of log-likelihood,
AIC, CAIC, BIC, HQIC, and KS statistic for the pebbles dataset.

In Figure 7 we present Circular plot of pebbles data set (left and right).

Table 2. One hundred outwash pebbles (Fisher-B8).

Direction 0 20 40 60 80 100 120 140 160

Frequency 16 13 9 14 9 14 12 6 7

In the following Figure 8 we provide the rose diagram of orientations of pebbles.



Symmetry 2023, 15, 2030 14 of 18

Table 3. MLEs and their standard errors for pebbles data (Fisher-B8 data).

Model λ̂ (SE) α̂ (SE)

WE (α) 0.7925781 (0.08714681) –

TWE (λ, α) 0.9076947 (0.1091980 ) −0.2786174 (0.1737912)

SSCEXPD (λ) 0.8707031 (0.0870702) –

TSSCED (λ, α) 0.6486455 (0.1179918) 0.5616030 (0.2311657)

SSCHLD (α) 0.8724609 (0.07618154) –

SSCQLD (σ, λ) 37.410889 (114.4836132) 0.8929941 (0.11080331)

WRXG (λ) 1.506348 (0.1119663) –

WML (λ) 0.8916573 (0.07748228) –

WL (λ) 1.181641 (0.09453908) –

Table 4. Summary of statistics/values of log-likelihood, AIC, CAIC, BIC, HQIC, and KS statistic for
the pebbles dataset.

Model LL AIC CAIC BIC HQIC KS (p-Value)

TSSCED (λ, α) −103.8731 211.7461 211.8698 216.9565 213.8449 0.146 (0.06598)

SSCEXPD (λ) −106.4283 214.8566 214.8974 217.4617 215.9109 0.16 ( 0.03195)

WE (λ) −119.1116 240.2282 240.624 242.8284 241.2776 0.27892 (0.00003)

TWE (λ, α) −188.1661 240.3323 240.456 245.5426 242.441 0.169 (0.006355)

SSCLHD (α) −115.5355 233.071 233.1118 235.6762 234.1254 0.20069 (0.0006346)

SSCQLD (σ, λ) −106.4473 216.8946 217.0183 222.105 219.0033 0.16 (0.1195)

WRXG (λ) −114.8499 231.6999 231.7407 234.3051 232.7543 0.1823 (0.002597)

WML (λ) −121.4082 244.8164 244.8572 247.4215 245.8707 0.16 (0.01195)

WL (λ) −117.3191 236.6382 236.679 239.2434 237.6926 0.16419 (0.009111)

Figure 7. (left) Circular plot of pebbles data set (FisherB8) and (right) TTT-plot for pebbles dataset.
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Figure 8. Rose diagram of orientations of pebbles

It can be observed that the transmuted stereographic semicircular distribution has
minimum values of AIC, CAIC, BIC, HQIC, and a higher p-value, thus leading to the
conclusion that the proposed distribution achieves a better fit than other competing models.
In Figure 9 we present the fitted density, distribution, Q-Q, and P-P plots of the proposed
model for pebbles data.

Figure 9. Fitted density, distribution, Q-Q, and P-P plots of the proposed model for pebbles data.

In Figure 10 we provide estimated density function and estimated cumulative distri-
bution function of the proposed model TSSCED.
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Figure 10. Plots of (i) estimated density function and (ii) estimated cumulative distribution function
of the proposed model TSSCED with those of the other competitive models for pebbles data.

7. Conclusions

This article introduced a novel semicircular distribution using the widely recognized
Quadratic Rank Transmutation Map (QRTM) technique applied to the stereographic semi-
circular exponential distribution. We derive the closed-form expressions for the first two
trigonometric moments and employ the maximum likelihood method to estimate the pa-
rameters of this newly proposed distribution. Moreover, we validate the practical utility
of our model by applying it to real-world data sets. Our observations reveal that both
the proposed distribution and its underlying distribution offer a superior fit compared
to various other distributions, including the wrapped exponential distribution (Jammala-
madaka and Kozubowski in [11]), the wrapped Lindley (Joshi et al. in [30]), the wrapped
xgamma distribution (Hazem-AI-Mofleh et al. in [31]), the wrapped modified Lindley
distribution (Christophe et al. in [32]), the stereographic semicircular half logistic distribu-
tion (P. Yedlapalli et al. in [23]), the stereographic semicircular quasi Lindley distribution
(P. Yedlapalli et al. in [22]), and the transmuted wrapped exponential distribution (Abdul-
lah Yilmaz in [21]). Furthermore, our findings indicate that the transmuted distribution
exhibits greater flexibility than its base distribution.

Areas of Future Exploration: (i) Circular regression: Extend circular regression tech-
niques to semicircular data, enabling the modeling of relationships between circular and
linear variables in mixed data types. (ii) Bayesian approaches: Explore Bayesian approaches
for semicircular data analysis, which can provide a robust framework for parameter estima-
tion, uncertainty quantification, and model comparison [33,34]. (iii) Investigate modeling
semicircular data with multiple modes, which is common in many real-world scenarios,
such as directional bimodality.

Author Contributions: Conceptualization, P.Y. and G.N.V.K.; methodology, P.Y. and G.N.V.K.; soft-
ware, P.Y., W.B. and G.N.V.K.; validation, W.B., A.K. and N.M.; formal analysis, W.B., A.K. and
N.M.; investigation, P.Y., W.B., A.K. and N.M.; resources, W.B., A.K. and N.M.; data curation, P.Y.,
G.N.V.K., W.B., A.K. and N.M.; writing—original draft preparation, P.Y., G.N.V.K., W.B., A.K. and
N.M.; writing—review and editing, P.Y., G.N.V.K., W.B., A.K. and N.M.; visualization, W.B. and N.M.;
supervision, W.B., A.K. and N.M.; project administration, W.B. and N.M.; funding acquisition, W.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data required for this research are included within the paper.



Symmetry 2023, 15, 2030 17 of 18

Acknowledgments: The authors W. Boulila, A. Koubaa and N. Mlaiki would like to thank the Prince
Sultan University for paying the publication fees for this work through RIOTU LAB.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hamasha, M.M. Practitioner advice: Approximation of the cumulative density of left-sided truncated normal distribution using

logistic function and its implementation in Microsoft Excel. Qual. Eng. 2017, 29, 322–328. [CrossRef]
2. Khan, M.A.; Meetei, M.Z.; Shah, K.; Abdeljawad, T.; Alshahrani, M.Y. Modeling the monkeypox infection using the Mittag–Leffler

kernel. Open Phys. 2023, 21, 20230111. [CrossRef]
3. Kamal, S.; Rohul, A.; Thabet, A. Utilization of Haar wavelet collocation technique for fractal-fractional order problem. Heliyon

2023, 9, e17123. [CrossRef]
4. Albert, W.M.; Ingram, O. A New Method for Adding a parameter to a family of Distributions with Applications to the Exponential

and Weibull Families. Biometrika 1997, 84, 641–652.
5. Shaw, W.; Buckley, I. The Alchemy of Probability Distributions. Beyond Gram-Charlier Expansions and A Skew-Kurtotic –Normal

Distribution from a Rank Transmutation Map. arXiv 2007, arXiv:0901.0434.
6. Merovci, F. Transmuted Lindley Distribution. Int. J. Open Probl. Compt. Math. 2013, 6, 64–72. [CrossRef]
7. Merovci, F.; Ibrahim, E. Transmuted Lindley-geometric distribution and its applications. J. Stat. Appl. Probab. 2014, 3, 77–91. [CrossRef]
8. Kemaloglu, S.A.; Yilmaz, M. Transmuted two-parameter Lindley distribution. Commun. Stat.-Theory Methods 2017, 46, 11866–11879.

[CrossRef]
9. Rao, J.S.; Gupta, S. Topics in Circular Statistics; World Scientific Press: Singapore, 2001.
10. Jammalamadaka, S.R.; Kozubowski, T.J. A new family of circular models: The wrapped Laplace distributions. Adv. Appl. Stat.

2003, 3, 77–103.
11. Jammalamadaka, S.R.; Kozubowski, T.J. New Families of Wrapped distributions for modeling Skew circular data. Commun.

Stat.-Theory Methods 2004, 33, 2059–2074. [CrossRef]
12. Abe, T.; Shimizu, K.; Pewsey, A. Symmetric unimodel models for directional data motivated by inverse stereographic projection.

J. Jpn. Stat. Soc. 2020, 40, 45–61. [CrossRef]
13. Minh, D.L.P.; Farnum, N.R. Using bilinear transformations to induce probability distributions. Commun. Stat.-Theory Methods

2003, 32, 1–9. [CrossRef]
14. Jones, M.C.; Pewsey, A. A family of symmetric distributions on the circle. J. Am. Stat. Assoc. 2005, 100, 1422–1428. [CrossRef]
15. Yedlapalli, P.; Girija, S.V.S.; Rao, A.V.D. On Construction of Stereographic Semicircular models. J. Appl. Probab. Stat. 2013,

8, 75–90.
16. Rao, A.V.D.; Sharma, I.R.; Girija, S.V.S. On wrapped version of some life testing models. Commun. Stat.-Theory Methods 2007, 36,

2027–2035. [CrossRef]
17. Arnold, B.; Sen, C.; Gupta, A. Probability distributions and statistical inference for axial data. Environ. Ecol. Stat. 2016, 13,

271–285. [CrossRef]
18. Rambli, A.; Mohamed, I.B.; Shimizu, K.; Khalidin, N. Outlier detection in a new half-circular distribution. In Proceedings of the

AIP Conference Proceedings, Selangor, Malaysia, 24–26 November 2015; p. 050018. [CrossRef]
19. Ali, H.A. A half circular distribution for modeling the posterior corneal curvature. Commun.-Stat.-Theory Methods 2017, 47,

3118–3124. [CrossRef]
20. Rambli, A.; Mohamed, I.B.; Shimizu, K.; Khalidin, N. A Half-Circular Distribution on a Circle. Sains Malays. 2019, 48, 887–892.

[CrossRef]
21. Abdullah, Y.; Cenker, B. A new wrapped exponential distribution. Math. Sci. 2018, 12, 285–293. [CrossRef]
22. Yedlapalli, P.; Girija, S.V.S.; Akkayajhula, V.D.R.; Sastry, K.L.N. On Stereographic Semicircular Quasi Lindley Distribution. J. New

Results Sci. (JNRS) 2016, 8, 6–13.
23. Yedlapalli, P.; Subrahmanyam, P.S.; Girija, S.V.S.; Rao, A.V.D. Stereographic Semicircular Half Logistic Distribution. Int. J. Pure

Appl. Math. (IJPAM) 2017, 113, 142–150.
24. Yedlapalli, P.; Girija, S.V.S.; Rao, A.V.D.; Sastry, K.L.N. A New Family of Semicircular and Circular Arc Tan-Exponential Type

Distributions. Thai J. Math. 2020, 18, 775–781.
25. Ayesha, I.; Azeem, A.; Hanif, M. Half circular modified burr-III distribution, application with different estimation methods. PLoS

ONE 2022, 17, e0261901. [CrossRef]
26. Alldredge, J.R.; Mahtab, M.A.; Panek, L.A. Statistical analysis of axial data. J. Geol. 1974, 82, 519–524. [CrossRef]
27. Mardia, K.V.; Jupp, P.E. Directional Statistics, 2nd ed.; John Wiley Sons, Ltd.: Hoboken, NJ, USA, 2000.
28. Gradshteyn, R. Table of Integrals, Series and Products, 7th ed.; Academic Press: Cambridge, MA, USA, 2007.
29. Krumbein, W.C. Preferred Orinetation of Pebbles in Sedimentary Deposits. J. Geol. 1939, 47, 673–706. [CrossRef]
30. Joshi, S.; Jose, K.K. Wrapped Lindley Distribution. Commun. Stat.-Theory Methods 2018, 47, 1013–1021. [CrossRef]
31. Al-Mofleh, H.; Sen, S. The wrapped xgamma distribution for modeling circular data appearing in geological context. arXiv 2019,

arXiv:1903.00177.
32. Christophe, C.; Lishamol, T.; Meenu, J. Wrapped modified Lindley distribution. J. Stat. Manag. Syst. 2021, 24, 1025–1040.

http://doi.org/10.1080/08982112.2016.1196373
http://dx.doi.org/10.1515/phys-2023-0111
http://dx.doi.org/10.1016/j.heliyon.2023.e17123
http://dx.doi.org/10.12816/0006170
http://dx.doi.org/10.18576/jsap/030107
http://dx.doi.org/10.1080/03610926.2017.1285933
http://dx.doi.org/10.1081/STA-200026570
http://dx.doi.org/10.14490/jjss.40.045
http://dx.doi.org/10.1081/STA-120017796
http://dx.doi.org/10.1198/016214505000000286
http://dx.doi.org/10.1080/03610920601143832
http://dx.doi.org/10.1007/s10651-004-0011-8
http://dx.doi.org/10.1063/1.4932509
http://dx.doi.org/10.1080/03610926.2017.1348521
http://dx.doi.org/10.17576/jsm-2019-4804-21
http://dx.doi.org/10.1007/s40096-018-0268-y
http://dx.doi.org/10.1371/journal.pone.0261901
http://dx.doi.org/10.1086/627998
http://dx.doi.org/10.1086/624827
http://dx.doi.org/10.1080/03610926.2017.1280168


Symmetry 2023, 15, 2030 18 of 18

33. Boulila, W.; Farah, I.; Ettabaa, K.; Solaiman, B.; Ghézala, H. Improving spatiotemporal change detection: A high level fusion
approach for discovering uncertain knowledge from satellite image databases. Icdm 2009, 9, 222–227.

34. Ferchichi, A.; Boulila, W.; Farah, I. Propagating aleatory and epistemic uncertainty in land cover change prediction process. Ecol.
Inform. 2017, 37, 24–37. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ecoinf.2016.11.006

	Introduction
	Definition and Derivation of the Proposed Model
	Characteristic Function
	The Maximum Likelihood Estimation
	Simulation Study
	Application
	Conclusions
	References

