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Abstract: In this paper, the non-scaling backstepping approach is used to examine the controller
design process and stability analysis of a class of leader-type stochastic nonlinear systems. By
utilizing the non-scaling backstepping design method and Lyapunov method, the controller of the
leader-type stochastic nonlinear system is derived. Different from the previous literature on controller
design, we develop a more computationally efficient way for designing controllers because the
scaling function in the coordinate transformation is not included. Meanwhile, the prescribed-time
mean-square stabilization on the equilibrium and two important estimates are derived by combining
the Lyapunov method with the matrix norm. Compared to the finite-time stabilization in other
studies, the prescribed-time stabilization can determine the convergence time without relying on the
initial value and has more real-world applicability. To illustrate the effectiveness of the controller
derived in this paper, numerical examples are provided finally.

Keywords: stochastic nonlinear system; leader-type; prescribed-time mean-square stabilization;
non-scaling backstepping method; Lyapunov method

1. Introduction

During the past two decades, a lot of attention has been payed to the stability of
stochastic control systems [1–5]. In contrast to deterministic systems [6–8], perturbations
and unmodeled dynamical behavior in real problems are always described in the model
through noise. So, stochastic control systems are also widely studied, and have yielded
important results in econometrics, biology, environmental science, and other fields [9–11].
In [12], the predefined-time stability problem of nonlinear systems was discussed by using
a nonlinear control strategy. A predefined time control for nonlinear polytopic systems
is discussed in [13]. The bulk of the first control systems, such as steam and wattage
regulators and liquid level regulators, were thought to be linear. In the actual device,
certain nonlinearities were disregarded, while others were substituted by individuals
with linear connections. The linear system paradigm is no longer relevant as science
and technology advance, due to increasing in the variety of controlled objects and the
complexity of the controls, as well as varied greater standards for control precision [6,14].
The majority of systems in practical engineering problems are nonlinear, such as electric
power systems, robot control systems, multibody systems, etc. [15–18]. There are more
widespread applications, even if the characteristics of nonlinear systems make the task
more difficult and provide certain difficulties for our research.

In recent years, attempts have been made to study finite-time control of stochastic
nonlinear systems, and Lyapunov theoretical criteria for stochastic finite-time stability have
been developed [14,19,20]. Arbi et al. [21] studied the synchronization of a competitive
neural network using a feedback control gain matrix based on Lyapunov stability theory.
The finite-time state feedback stability of a class of continuous time nonlinear systems with
conical nonlinear bounded feedback control gain perturbations and additive perturbations
is proposed [6]. The mean pulse interval approach and the construction of a controller
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with an adequate Lyapunov function are used to investigate the finite time stability of
a nonlinear pulse sampled data system [7]. The finite time random input state stability
problem for a class of pulse-switched stochastic nonlinear systems is considered [22]. All
the above studies require the system to be stable under the stochastic settling time, which
generally depends on the choice of initial value. However, it is challenging to know the
initial value, and finite-time stability is challenging to apply in practical applications. In
contrasted to finite-time control, prescribed-time control enables the specification of a
certain convergence time without carefully considering the initiation value, which makes
the method more useful [8,23,24]. The suggested approach takes advantage of a scaling of
states that grows infinitely towards terminal time through a time function, and then builds
a controller that stabilizes the system in a scaling original state representation, producing
an adjustment for the within a given finite time [8]. The stochastic zero controllability
problem of strictly feedback nonlinear systems with random perturbations is solved by
the prescribed-time mean-square stabilization problem, which offers the first feedback
solution [23]. The prescribed-time mean-square stabilization problem of stochastic non-
linear systems without sensorless uncertainty is discussed via a novel non-scaling output
feedback control method [24]. The study of prescribed-time control is driven by the fact
that stabilization is necessary in a number of real-world applications in order to achieve the
control objectives within a specified finite time [25]. Through the above literature, we can
easily see that it is important to investigate the specified time control of stochastic nonlinear
systems from both a theoretical and practical perspective.

Motivated by the above view, we investigate the prescribed-time mean-square stabi-
lization of the leader-type stochastic nonlinear systems. In fact, the paper focuses on the
controller design and stability analysis of a class of leader-type stochastic nonlinear systems
using the non-scaling backstepping approach. By combining the Lyapunov method with
the matrix norm and using the new approach to controller design, the paper derives the
prescribed-time mean-square stabilization on the equilibrium and two important estimates.
This approach offers advantages over finite-time stabilization as it allows for determining
convergence time without relying on the initial value, making it more applicable in real-
world scenarios. The effectiveness of the derived controller and the practical demonstration
of the proposed approach is projected by the numerical simulation. What follows are the
main contributions of this paper:

1. For stability analysis of a leader-type system model, we choose the control of the
prescribed time. By the non-scalar design approach for stochastic nonlinear systems,
the controller is designed in this paper. This approach allows for designing of a
simpler controller because it does not use a scalar function in the coordinate transfor-
mation, which can significantly reduce the computational burden of the time-varying
scalar function.

2. We considered the stability of the systems with the controller, which is obtained
by the above method. It can be proved that the controller can make the system
achieve stability for the prescribed time in this paper. Then, we obtain two important
mean-square estimates.

The remainder of this article is organized as follows. Preliminaries and the model
description are introduced in Section 2. In Section 3, we focus on the non-scaling controller
design and stability analysis. To illustrate the effectiveness of the controller derived in this
paper, we give two examples to show the theoretical results in Section 4. In Section 5, the
conclusion is drawn.

2. Preliminaries and Model Description
2.1. Preliminaries

Without loss of generality in this paper, R+ = [0,+∞) denotes the set of nonnegative
real numbers, Rn denotes the n-dimensional Euclidean space with Euclidean norm | · |,
and Z and Z+ denote the set of integers and the set of positive integers, respectively. For
a given vector or matrix X, XT denotes its transpose, Tr{X} denotes its trace when X is
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square, and |X| is the Euclidean norm of the vector X. Define |A| = (
n
∑

i=1

m
∑

j=1
a2

ij)
1
2 for a

matrix An×m, where aij are the elements of A. A complete probability space is presented as(
Ω,F , P

)
with the filtration {Ft} satisfying usual conditions. W(t) is an m-dimensional

Wiener process defined on
(
Ω,F , P

)
. Let C1,2(R+ × Rn; R+) denote a class of nonnegative

functions V(t, x) on R+ × Rn which are continuously once differentiable in t and twice
in x.

We introduce the following scaling functions:

µ(t) = (
T

t0 + T − t
)m, ∀t ∈ [t0, t0 + T), (1)

where m ≥ 2 is a integer and T > 0 is the freely prescribed time. Obviously, µ(t) is a
monotonically increasing function on [t0, t0 + T) with µ(t0) = 1 and lim

t→t0+T
µ(t) = ∞.

Consider the following stochastic nonlinear system:

dx = f (t, x)dt + gT(t, x)dW(t), ∀x0 ∈ Rn, (2)

where x ∈ Rn is the system state. The functions f : R+ × Rn → Rn and g : R+ × Rn →
Rm×n are continuous and are locally Lipschitz in x.

For any given U(t, x) ∈ C1,2 associated with the Itô stochastic system (2), the differen-

tial operator L is defined as LU ∆
= ∂U

∂t + ∂U
∂x f (t, x) + 1

2 Tr{g(t, x) ∂2U
∂x2 gT(t, x)}.

2.2. Model Description

We consider a class leader-type of stochastic nonlinear systems described by{
dxi = (xn + fi(t, x))dt + gT

i (t, x)dW(t), i = 1, 2, · · · , n− 1,
dxn = (u + fn(t, x))dt + gT

n (t, x)dW(t),
(3)

where x = (x1, x2, · · · , xn)T ∈ Rn and u ∈ R are the system state and control input. The
function fi : R+×Rn → R and gi : R+×Rn → Rm are continuous and are locally Lipschitz
in x, and fi(t, 0) = 0, gi(t, 0) = 0, i = 1, 2, · · · , n. W(t) is an m-dimensional independent
standard Wiener process. For system (3), we need the following assumption.

Assumption 1. There exist positive constants ci1, ci2 (i = 1, 2, · · · , n− 1) and cn1, cn2 such that

| fi(t, x)| ≤ ci1|xi|, |gi(t, x)| ≤ ci2|xi|, (4)

and

| fn(t, x)| ≤ cn1(|x1|+ |x2|+ · · ·+ |xn|), |gn(t, x)| ≤ cn2(|x1|+ |x2|+ · · ·+ |xn|). (5)

Remark 1. Assumption 1 is obtained by deforming the linear growth condition. The functions
satisfying Assumption 1 exist, which is found by the simulation arithmetic in Section 4.

Remark 2. Different from existing works [3,8,15], etc., the proposal for a leader-type stochastic
nonlinear system, which can be seen from Equation (3) and Assumption 1, is novel. This system
embodies the one-to-many leadership characteristics, such as the food chain model in the ecosystem.

With Assumption 1, the objective of this paper is to design a prescribed-time controller
for the system (3), such that the system has an almost surely unique solution on [t0, t0 + T)
and the equilibrium at the origin is prescribed-time mean-square stabilization. A definition
and two lemmas employed throughout this paper are demonstrated.
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Definition 1 ([5]). For the stochastic system (2) with f (t, 0) = 0 and g(t, 0) = 0, the equilibrium
x(t) = 0 is a prescribed-time mean-square stabilization if there exist positive constants ki(1 ≤ i ≤
4) such that

E|x(t)|2 ≤ k1|x(t0)|2(1 + µk2
1 (t))e−k3µ

k4
1 (t), ∀t ∈ [t0, t0 + T). (6)

Lemma 1 ([5]). Consider system (2). If there exist a nonnegative function U(t, x) ∈ C1,2([t0, t0 +
T)× Rn; R+) and positive constants c0 and M0 such that

lim
|x|→+∞

inf
t∈[t0,T1]

U(t, x) = +∞, ∀T1 ∈ (t0, t0 + T), (7)

LU(t, x) ≤ −c0µU + µM0, ∀t ∈ (t0, t0 + T), (8)

then the function U(t, x) satisfies

EU(t, x(t)) ≤ e−c0
∫ t

t0
µ(s)dsU(t0, x0) +

M0

c0
, ∀t ∈ [t0, t0 + T). (9)

Lemma 2 ([23]). There exist real variables x and y, for any positive real numbers a, b, m, and n,
such that

axmyn ≤ b|x|m+n +
n

m + n
(

m + n
m

)−
m
n a

m+n
n b−

m
n |y|m+n. (10)

Applying the definition and lemmas as above, we will develop the controller design
and stability analysis in the next section.

3. Main Results

In this section, a new controller that enables system (3) to reach stability is designed
by a non-scaling backstepping design method. Based on the Lyapunov method and the
matrix norm, in Theorem 1, we proved that system (3) reaches the prescribed-time mean-
square stabilization. Further, two important mean-square estimates hold, which implies
the effectiveness of system (3).

3.1. Controller Design

In this subsection, the controller for system (3) is designed as follows:
Step 1: For i = 1, 2, · · · , n− 1, we define

Vi =
1
4

ξ4
i , ξi = xi, (11)

and from (3) and (4), and the definition of L, we have

lLVi(ξi) = ξ3
i (xn + fi(t, x)) +

3
2

ξ2
i |gi(t, x)|2

≤ ξ3
i xn + ci1ξ4

i +
3
2

c2
i2ξ4

i

= ξ3
i (xn − x∗i ) + ξ3

i x∗i + ξ4
i (ci1 +

3
2

c2
i2).

(12)

Choosing

x∗i = −µ(ci + ci1 +
3
2

c2
i2)ξi

∆
= −µαiξi, (13)

which substitutes into (12), yields

LVi(ξi) ≤ −ciµξ4
i + ξ3

i (xn − x∗i ), (14)

where ci > 0, i = 1, 2, · · · , n− 1 are design parameters.
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Step 2: Define

ξn = xn +
n−1

∑
i=1

αiµξi. (15)

By (3) and the Itô formula, we obtain

ldξn = (u + fn(t, x) +
n−1

∑
i=1

(αiµxn + αiµ fi(t, x))

+
m
T

µ1+1/m
n−1

∑
i=1

αiξi)dt + (gT
n (t, x) +

n−1

∑
i=1

αiµgT
i (t, x))dW(t).

(16)

We choose the Lyapunov function

Vn(ξ̄n) =
1
4

n

∑
i=1

ξ4
i , (17)

where ξ̄n = (ξ1, ξ2, · · · , ξn)T . It follows from (16), (17), and the definition of L that

LVn ≤
n−1

∑
i=1

ξ3
i (xn + αiµξi)−

n−1

∑
i=1

ciµξ4
i + ξ3

n(u + fn(t, x) +
n−1

∑
i=1

(αiµxn + αiµ fi(t, x))

+
m
T

µ1+1/m
n−1

∑
i=1

αiξi) +
3
2

ξ2
n|gT

n (t, x) +
n−1

∑
i=1

αiµgT
i (t, x)|2.

(18)

By (5), we have

| fn(t, x)| ≤ ĉn1(µ|ξ1|+ µ|ξ2|+ · · ·+ |ξn|), (19)

and
|gn(t, x)| ≤ ĉn2(µ|ξ1|+ µ|ξ2|+ · · ·+ |ξn|), (20)

where ĉn1 and ĉn2 are positive constants. In the following, the notations ai,j, ai,n,r, i, j =
1, · · · , n− 1, j 6= i; r = 1, · · · , 6 are all the arbitrary positive constants. Using Lemma 2,
we yield

|
n−1

∑
i=1

ξ3
i (xn + αiµξi)| = |

n−1

∑
i=1

ξ3
i (αiµξi + ξn −

n−1

∑
i=1

αiµξi)|

≤ |
n−1

∑
i=1

ξ3
i (ξn +

n−1

∑
j=1
j 6=i

αjµξ j)|

≤
n−1

∑
i=1

(ai,n,1 +
n−1

∑
j=1
j 6=i

ai,j +
1
4
(

4
3

aj,i)
−3

α4
i )µξ4

i + (
n−1

∑
i=1

1
4
(

4
3

ai,n,1)
−3

)ξ4
n.

(21)

From (19) and Lemma 2, we obtain

|ξ3
n fn(t, x)| ≤ |ξn|3 ĉn1(µ|ξ1|+ µ|ξ2|+ · · ·+ |ξn|)

≤ ĉn1ξ4
n +

n−1

∑
i=1

(ai,n,2µξ4
i +

3
4
(4ai,n,2)

−1/3 ĉ4/3
n1 µξ4

n)

=
n−1

∑
i=1

ai,n,2µξ4
i + (ĉn1 +

n−1

∑
i=1

3
4
(4ai,n,2)

−1/3 ĉ4/3
n1 µ)ξ4

n.

(22)
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It follows from (15) and Lemma 2 that

|ξ3
n

n−1

∑
i=1

αiµxn| ≤ |
n−1

∑
i=1

αiµξ4
n +

n−1

∑
i=1

(
n−1

∑
j=1

αj)αiµ
2ξiξ

3
n|

≤
n−1

∑
i=1

ai,n,3µξ4
i + (

n−1

∑
i=1

αiµ +
n−1

∑
i=1

3
4
(4ai,n,3)

−1/3(αi

n−1

∑
j=1

αj)

4/3

µ7/3)ξ4
n.

(23)

According to (5), it can be deduced that

|ξ3
n

n−1

∑
i=1

αiµ fi(t, x)| ≤ |
n−1

∑
i=1

αici1µξiξ
3
n| ≤

n−1

∑
i=1

ai,n,4µξ4
i +

n−1

∑
i=1

3
4
(4ai,n,4)

−1/3(ci1αi)
4/3µξ4

n. (24)

Using Lemma 2, it is easy to obtain

|ξ3
n

m
T

µ1+1/m
n−1

∑
i=1

αiξi| = |
n−1

∑
i=1

m
T

αiµ
1+1/mξiξ

3
n|

≤
n−1

∑
i=1

ai,n,5µξ4
i +

n−1

∑
i=1

3
4
(4ai,n,5)

−1/3(
m
T

αi)
4/3

µ5/3ξ4
n.

(25)

Through (5), (20) and Lemma 2, we have

3
2

ξ2
n|gT

n (t, x) +
n−1

∑
i=1

αiµgT
i (t, x)|2

≤
n−1

∑
i=1

ai,n,6µξ4
i + (

n−1

∑
i=1

3
2

nĉn2 +
1
4
(ai,n,6)

−1(
3
2

nĉn2 +
3
2

nci2αi)
2
µ3)ξ4

n.

(26)

Substituting (21)–(26) into (18), it yields

LVn ≤ −
n−1

∑
i=1

(ci − ai)µξ4
i + ξ3

nu + ξ4
n(

n−1

∑
i=1

1
4
(

4
3

ai,n,1)
−3

+ ĉn1 +
n−1

∑
i=1

3
4
(4ai,n,2)

−1/3 ĉ4/3
n1 µ

+
n−1

∑
i=1

αiµ +
n−1

∑
i=1

3
4
(4ai,n,3)

−1/3(αi

n−1

∑
j=1

αj)

4/3

µ7/3 +
n−1

∑
i=1

3
4
(4ai,n,4)

−1/3(ci1αi)
4/3µ

+
n−1

∑
i=1

3
4
(4ai,n,5)

−1/3(
m
T

αi)
4/3

µ5/3 +
n−1

∑
i=1

1
4
(ai,n,6)

−1(
3
2

nĉn2 +
3
2

nci2αi)
2
µ3 +

3
2

nc2
n2),

(27)

where

ai =
6

∑
r=1

ai,n,r +
n−1

∑
j=1
j 6=i

ai,j +
1
4
(

4
3

aj,i)
−1/3

α4
i , i = 1, · · · , n− 1.

Choosing the virtual controller

u = −µ3ξn(
n−1

∑
i=1

1
4
(

4
3

ai,n,1)
−3

+ ĉn1 +
n−1

∑
i=1

3
4
(4ai,n,2)

−1/3 ĉ4/3
n1

+
n−1

∑
i=1

αi +
n−1

∑
i=1

3
4
(4ai,n,3)

−1/3(αi

n−1

∑
j=1

αj)

4/3

+
n−1

∑
i=1

3
4
(4ai,n,4)

−1/3(ci1αi)
4/3

+
n−1

∑
i=1

3
4
(4ai,n,5)

−1/3(
m
T

αi)
4/3

+
n−1

∑
i=1

1
4
(ai,n,6)

−1(
3
2

nĉn2 +
3
2

nci2α2
i ) +

3
2

nc2
n2)

∆
= −µ3αnξn.

(28)
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The following important inequation is obtained

LVn ≤ −
n

∑
i=1

(ci − ai)µ
δi ξ4

i , (29)

where cn > 0 is a design parameter, an = 0, δ1 = · · · = δn−1 = 1, δn = 3. Considering the
design parameters as

ci > ai, i = 1, 2, · · · , n, (30)

from (29) and (30), we have

LVn ≤ −
n

∑
i=1

(ci − ai)µ
δi ξ4

i ≤ −cµVn < 0, (31)

where c = 4 min
1≤i≤n

{ci − ai}.

Remark 3. In this subsection, we propose a non-scaling backstepping design scheme for a class of
leader-type stochastic nonlinear system (3) to achieve mean-square stability at a prescribed time.
The advantage of this design is that it does not use time-varying µ for the coordinate transformation

ξn = xn −
n−1
∑

i=1
x∗i . Fundamentally different from the scaling approach developed by [24], each step

of the controller design of our method is performed using the scaling transformation containing µ,
which is more time efficient in the computational process.

3.2. Mean-Square Stability Analysis

In the following theorem, we state the main stability results on the system (3).

Theorem 1. Consider the plant consisting of (3) and (28). The following conclusion hold under
Assumption 1: the equilibrium at the origin of the plant is the prescribed-time mean-square sta-
bilization with lim

t→t0+T
E|x|2 = lim

t→t0+T
Eu2 = 0. Moreover, for ∀t ∈ [t0, t0 + T), the following

important estimates hold:

E|x|2 ≤
√

n(n + (
n−1

∑
i=1

α2
i )µ

2)

· (
n−1

∑
i=1

x4
i (t0) + (xn(t0) + µ

n−1

∑
i=1

αixi(t0))
4)1/2e

− cTm
2(m−1) (

1
(t0+T−t)m−1−

1
Tm−1 ), ∀t ∈ [t0, t0 + T),

(32)

and

Eu2 ≤
√

nα2
nµ2δn

· (
n−1

∑
i=1

x4
i (t0) + (xn(t0) + µ

n−1

∑
i=1

αixi(t0))
4)1/2e

− cTm
2(m−1) (

1
(t0+T−t)m−1−

1
Tm−1 ), ∀t ∈ [t0, t0 + T).

(33)

Proof. Let ξ = {ξ1, ξ2, · · · , ξn}T . From (28), the n dimension system state x is satisfied

x =


1 0 . . . 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
−α1µ −α2µ · · · −αn−1µ 1

ξ. (34)
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By (34), we obtain

|x| ≤ (n + (
n−1

∑
i=1

α2
i )µ

2)1/2|ξ|, (35)

which means that

|ξ| ≥ (n + (
n−1

∑
i=1

α2
i )µ

2)−1/2|x|. (36)

Noting (17) and (36), the conditions (7) and (8) in Lemma 1 hold. Therefore, by
Lemma 1, we have

EVn ≤ e−c
∫ t

t0
µ(s)dµVn(t0, x0), ∀t ∈ [t0, t0 + T). (37)

Utilising Cauchy–Schwarz inequality, one has

lE|ξ|2 ≤ 2
√

n(EVn)
1/2 ≤ 2

√
ne−

c
2
∫ t

t0
µ(s)dµV1/2

n (t0, x0)

≤ 2
√

ne
− cTm

2(m−1) (
1

(t0+T−t)m−1−
1

Tm−1 )V1/2
n (t0, x0), ∀t ∈ [t0, t0 + T).

(38)

Combining (35) and (38), we can obtain

lE|x|2 ≤
√

n(n + (
n−1

∑
i=1

α2
i )µ

2)

· (
n−1

∑
i=1

x4
i (t0) + (xn(t0) + µ

n−1

∑
i=1

αixi(t0))
4)1/2

· e
− cTm

2(m−1) (
1

(t0+T−t)m−1−
1

Tm−1 ), ∀t ∈ [t0, t0 + T).

(39)

Noting that c > 0, T > 0, m ≥ 2 and the definition of u, we obtain

lim
t→t0+T

E|x|2 = 0. (40)

From (28) and (38), we obtain

lEu2 ≤
√

nα2
nµ2δn(

n−1

∑
i=1

x4
i (t0) + (xn(t0) + µ

n−1

∑
i=1

αixi(t0))
4)1/2

· e
− cTm

2(m−1) (
1

(t0+T−t)m−1−
1

Tm−1 ), ∀t ∈ [t0, t0 + T),

(41)

and
lim

t→t0+T
E|u|2 = 0. (42)

The proof is completed.

Remark 4. In this subsection, we propose a non-scaling backstepping design scheme for stochastic
nonlinear system (3) to achieve prescribed-time mean-square stabilization. Theorem 1 is proven
to hold by the form of the controller designed in Section 3.1 and the matrix norm. Compared to
finite-time stabilization [7,14,19], etc., prescribed-time mean-square stabilization can define a known
specific convergence time, regardless of the initial conditions, and has more practical applications.

4. Simulation Example

In this section, we give two simulation examples to show the effectiveness of the
prescribed-time control design schemes developed in the last section.



Symmetry 2023, 15, 2049 9 of 14

Example 1. Consider the circuit system shown in Figure 1. By Ohm’s law, this system is
described as: 

duc

dt
=

u− uc

RcC
,

diL
dt

=
u− iLRL

L
,

du
dt

=
Bd
m

(F− B(
u− uc

Rc
+ iL)d),

(43)

where m represents the mass, d represents the distance between two parallel guides, B represents
the magnetic induction intensity, F represents the external force, C denotes the capacitor, L denotes
the inductor, Rc and RL are the resistance of C and L, respectively, and u and uc are the voltage, iL
denotes the current through L.

Figure 1. Circuit system.

For the above system by physical deformation with suitable parameter selection, and
then organize the form of this text system, the form of the system is obtained as follows:

dx1 = (x3 − 10x1)dt + x1dω,

dx2 = (x3 − x2)dt + x2dω,

dx3 = (u +
x1

900
− x2

18
− x3

900
)dt + (x1 + x2 + x3)dω.

(44)

Step 1: Define

V1 =
1
4

ξ4
1, ξ1 = x1.

From (44), we have

dξ1 = dx1 = (x3 − 10ξ1)dt + ξ1dω.

By the definition of L, we have

LV1 ≤ ξ3
1(x3 + 10ξ1) +

3
2

ξ2
1|ξ1|2. (45)

Choosing

x∗1 = −(c1 + 10 +
3
2
)µξ1.
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which substitutes into (45), it yields

LV1 ≤ −c1µξ4
1 + ξ3

1(x3 − x∗1). (46)

Next, we define

V2 =
1
4

ξ4
2, ξ2 = x2.

From (44), we have
dξ2 = dx2 = (x3 − ξ2)dt + ξ2dω.

By the definition of L, we have

LV2 ≤ ξ3
2(x3 + ξ2) +

3
2

ξ2
2|ξ2|2. (47)

Choosing

x∗2 = −(c2 + 1 +
3
2
)µξ2,

which substitutes into (47), and yields

LV2 ≤ −c2µξ4
2 + ξ3

2(x3 − x∗2). (48)

Step 2: Define

V3 =
1
4
(ξ4

1 + ξ4
2 + ξ4

3), ξ3 = x3 + (c1 +
23
2
)µξ1 + (c2 +

5
2
)µξ2.

From (43), we have

dξ3 = [u +
ξ1

900
− ξ2

18
− ξ3

900
+ (c1 +

23
2
)µ(x3 + 10ξ1) + (c2 +

5
2
)µ(x3 + ξ2) + 2((c1 +

23
2
)ξ1

+(c2 +
5
2
)ξ2)µ

3/2]dt + [ξ1 + ξ2 + x3 + (c1 +
23
2
)µξ1 + (c2 +

5
2
)µξ2]dω.

Considering the definition of L, we have

LV3 ≤ −c1µξ4
1 + ξ3

1(x3 − x∗1)− c2µξ4
2 + ξ3

2(x3 − x∗2) + ξ3
3[u +

ξ1

900
− ξ2

18
− ξ3

900

+ (c1 +
23
2
)µ(x3 + 10ξ1) + (c2 +

5
2
)µ(x3 + ξ2) + 2((c1 +

23
2
)ξ1 + (c2 +

5
2
)ξ2)µ

3/2]

+
3
2

ξ2
3|ξ1 + ξ2 + ξ3|2.

(49)

According to the design procedure developed in Section 3, the controller is designed as

u = −µ3(
1
2
(

4
3
)−3 +

1
900

(1 + α1)
3
4

4−1/3 + (
1

900
α2 +

1
18

)
3
4

4−1/3

+
1

900
+ (α1 + α2)(1 +

3
4

4−1/3α1) + (α1 + α2)(
3
4

4−1/3α2)

+ 10
3
4

4−1/3α1 +
3
4

4−1/3α2 + 2
3
4

4−1/3(α1 + α2) + 3 +
3
2
)ξn

(50)

For simulation, we select t0 = 0, T = 1, m = 2, randomly set the initial conditions

as x1(0) = −1.5, x2(0) = 0.2, x3(0) = −0.7, and the parameters c1 =
7
2

, c2 =
5
2

. Figure 2a
shows the state of system (44) without control u applied. Figure 2b shows the response
of system (44) and (50). Figure 3 illustrates the effectiveness of controller u. According
to Figure 4, we find that lim

t→1
E|x|2 = lim

t→1
Eu2 = 0, which means that the prescribed-time

mean-square stabilization is achieved. Therefore, the effectiveness of the controller design
developed in Section 3 is demonstrated.
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(a) No control applied (b) Control applied

Figure 2. Comparison of no control applied and control applied for Example 1.

Figure 3. Effectiveness of controller for Example 1.

(a) E|x|2 (b) Eu2

Figure 4. Stability analysis for Example 1.

In the next example, we choose a nonlinear system to verify the effectiveness of the
method in this paper.
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Example 2. Consider the following systems:
dx1 = (x3 − 10x1)dt + x1dω,
dx2 = (x3 − x2 max{cos x2, 0.5})dt + x2dω,
dx3 = (u + sin x1 − sin(x2 − x3))dt + (x1 + x2 + x3)dω.

(51)

The derivation of this example will not be repeated. For simulation, we select t0 = 0,
T = 0.7, m = 2, and randomly set the initial conditions as x1(0) = −4, x2(0) = 2,
x3(0) = 3.5. Figure 5a shows the state of system (51) without control u applied. Figure 5b
shows the response of system (51) with controller u for Example 2. Figure 6 illustrates the
effectiveness of controller u. Therefore, the validity of the controller design developed in
Section 3 is demonstrated.

(a) No control applied (b) Control applied

Figure 5. Comparison of no control applied and control applied for Example 2.

Figure 6. Effectiveness of controller for Example 2.

5. Conclusions

In this paper, we discussed the specified time mean square stability problem of a class
of leader-type stochastic nonlinear system (3) with the help of a new controller. Firstly,
we defined new Lyapunov functions (11) and (17) for system (3). By developing a scale-
free backstepping design method, a new controller has been designed to ensure that the
equilibrium of the system origin is the time mean square stability specified in Theorem 1.
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At the same time, two important estimates, (32) and (33), were given. In addition, the
special cases of circuit systems (43) and nonlinear systems (51) achieved the specified time
mean square stability through the application of controllers. In future work, it is necessary
to consider the influence of the time-delay of leader-type stochastic nonlinear systems.
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