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W N

Abstract: Shannon entropy plays an important role in the field of information theory, and various
graph entropies, including the chromatic entropy, have been proposed by researchers based on
Shannon entropy with different graph variables. The applications of the graph entropies are found
in numerous areas such as physical chemistry, medicine, and biology. The present research aims
to study the chromatic entropy based on the vertex strong coloring of a linear p-uniform supertree.
The maximal and minimal values of the p-uniform supertree are determined. Moreover, in order
to investigate the generalization of dendrimers, a new class of p-uniform supertrees called hyper-
dendrimers is proposed. In particular, the extremal values of chromatic entropy found in the research
for supertrees are applied to explore the behavior of the hyper-dendrimers.

Keywords: chromatic entropy; vertex coloring; linear uniform supertree; dendrimer

1. Introduction

In 1949, Shannon proposed the concept of entropy for the first time, now named
Shannon entropy [1], which is defined as

I(p) = =Y (pilog pi),

where p = (p1,p2, ..., pn) is a probability distribution with p; € [0,1] and ¥} ; p; = 1.

Shannon entropy is of great importance in the field of graph structure information
theory. Based on Shannon entropy and some graph variables, many graph entropies were
proposed; we refer to the reader to [2-15]. For graph entropy, there are lots of applications
in chemistry, network, biology and so on; we refer to the reader to [16-23].

As a generalization of ordinary graphs, hypergraphs can express complex and high
order relations such that it is often used to model complex systems. A hypergraph
H = (V(H),E(H)) with n vertices and m edges consist of a set of vertices,
V(H) = {v1,v2,...,vn}, and a set of edges, E(H) = {ej,e2,...,em}, where ¢; # &,
e, C E(H),i =12,...,m If |e§f = p for Ve; € E(H), then hypergraph H is called
p-uniform. For a p-uniform hypergraph H, the degree d, of a vertex v € V(H) is defined
asd, = Hej :v € ¢j € E(H)}|, see [11]. If a vertex v with d, = 1, then vertex v is called a
pendent vertex. Otherwise, it is called a non-pendent vertex. The distance, d(u, v), between
two vertices, 1 and v, is the minimum length of a path connecting u and v. The radius, r(v),
of vertex v in H is defined by r(v) = max{d(u,v)|u € V}. A hyper-path P with the length
of t in hypergraph H is a vertex-hyperedge alternative sequence: P = vpejv1ep03e3 - - - vsey,
where v;,v;11 € €j41, i =0,1,--- ,i — 1. In particular, if there are exactly two vertices in
each hyperedge, then the hypergraph H is an ordinary graph and the hyper-path P is a
path. For more terminologies, we refer readers to reference [24].

P = vyeqv1e00p - - - 40y,
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where v;,v;41 € €j41,i =0,1,--- ,i — L

Definition of edge contracting. Let H = (V, E) be a hypergraph with hyperedge
e = {v1,0y,...,0,} and exists E{(H) C E(H) such that the edges in E1(H) are incident
with v1,vy. . .v,. In H, by contracting the hyperedge e into a vertex v, such that the vertex v, is
incident with all the edges in E1(H), we get a new hypergraph, denoted by H,. (See Figure 1).

In particular, if H = (V, E) is a p-uniform hypergraph, then by contracting for an edge e,
we get a new hypergraph, H, = (V(H,), E(H,)), satisfying |V (H,)|=|V(H)|—(p — 1) and
|E(He)|=[E(H)[-1.

Figure 1. The edge contracting H.

If there are at least two colors in each edge of hypergraph H, then H is properly colored.
If the same color appears in one edge no more than one time in H, then H is strongly colored.
The strong chromatic number x(H) is the smallest number such that hypergraph H has
a strong coloring. If a partition (V3, V3, ..., Vi) of V (H) is its k-coloring, then it is called
a chromatic decomposition of H. Define a non-decreasing chromatic decomposition by c,
whose sequence is denoted by 7.(H) = (|V4],|Val,..., |Vk|), where |V;| < |Va] < .. |V
A kind of graph entropy based on the strong coloring of hypergraphs is defined as follows.

Definition 1 ([5]). Let H = (V (H), E(H)) be a hypergraph with n vertices and m edges. Let
V = (W4, Va,..., Vi) be an arbitrary chromatic decomposition of H and x(H) = k, then the graph
entropy based on the vertex strong coloring I.(H) of H, called the chromatic entropy of hypergraph
H, is given by

k
I(H) =min{-y, Yioglly
174 i=1

k
= logn — max{}, 1 |V;/log|Vil}.
1=

k
Assume f(H) = max }_ |V;|log|Vj|, then I.(H) = logn — @
Voi=1

Up until now, the research works on the chromatic entropy of a hypergraph are found
in only one paper: we refer to the reader to [8]. In it, some tight upper and lower bounds of
such graph entropy, as well as the corresponding extremal hypergraphs, are obtained.

In this research, the chromatic entropy based on the vertex strong coloring of a lin-
ear p-uniform supertree is investigated and the maximal and minimal values are given.
Furthermore, a new kind of p-uniform supertrees, called hyper-dendrimers, are proposed.
And we apply the results on the extremal values of chromatic entropy for linear p-uniform
supertrees to the case of hyper-dendrimers.

The structure of this work is as follows. In Section 2, the extension of dendrimers
in hypergraphs is presented. Some basic concepts and lemmas are given in Section 3. In
Section 4, we show the main results of this work, which are about the extremal values of
the chromatic entropy for supertrees. In Section 5, the results in Section 4 are applied to
explore the behavior of hyper-dendrimers. A short conclusion of this paper is given in
Section 6.
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It is worth nothing that there are some basic information about graphs and mathe-
matical notations that need to be explained. In the whole paper, all the hypergraphs are

undirected and unweighted. Specially, P—‘ stands for the ceiling of (%), and {%] stands for

p
the int of (%).

2. The Extension of Dendrimers in Hypergraphs

Indeed, dendrimers are nanoscale radially symmetric molecules with definite, uniform,
and monodisperse structures, with typical symmetrical nuclei, inner shells, and outer shells.
Due to the richness and diversity of dendrimers, they have good biological properties such
that there are many applications in biomedical and pharmaceutical fields, as well as in
chemistry [17,18,25,26].

In 1995, Elena and Skorobogatov [27] proposed a hypergraph model of non-classical
molecular structures with multicentric delocalization bonds and presented a comparative
analysis method of organometallic molecular structure model and hypergraph model
indices. Using the characteristics of a hypergraph to represent the molecular structure
of non-classical compounds opens a new research field, which not only generalizes the
results of chemical application of graph theory, but also expands the application range of
hypergraph theory [28,29].

Inspired by the above, we are interested in the structure of dendrimer in hypergraphs.
Therefore, based on the concept of the dendrimer, the definition of hyper-dendrimer is
given below.

Definition 2. Let Dy, , be a linear p-uniform supertree with n vertices, and the size of Dy, is

Z—j, where p # 0, and n # 0. If the following conditions can be satisfied, then Dy, is called a

homogeneous hyper-dendrimer.

(i) The degrees of all non-pendant vertices of Dy, are the same; and the degree of all non-pendant
vertices of Dy, is at least 2.

(ii)  There is a central vertex u in Dy, satisfying that Dy, , is symmetric with respect to vertex u.
Otherwise, there is one central edge e in Dy, such that it can be changed into a p-uniform
supertree possessing a central vertex by contracting the edge e.

The set of these kinds of hyper-dendrimers is denoted by Iy, ,. Obviously, Dy, , # @.

Two hyper-dendrimers with a central vertex, u, and a central edge, e, are given in
Figures 2 and 3, respectively. Obviously, as p = 2, D, » is a dendrimer. Two dendrimers
with a central vertex 1 and a central edge e are shown in Figures 4 and 5, respectively.

Figure 2. The hyper-dendrimer with a central vertex, u.
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Figure 3. The hyper-dendrimer, HY, with a central edge, e.

L

Figure 4. The dendrimer with a central vertex, u.

Figure 5. The dendrimer with a central edge, e.

3. Preliminaries

In this section, some basic concepts and lemmas are given.
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Definition 3 ([30]). A supertree is a hypergraph which is both connected and acyclic.

Definition 4 ([31]). Let G = (V, E) be a 2-uniform graph. For any k > 3, the k-th power of
G, denoted by G := (Vk, Ek), is defined as the k-uniform hypergraph with the set of vertices

VK = VU (Ueer{ie1, + siek_2}) and the set of edges E¥ = {eU {ipq, - Jek—2}|e € E}Y,
where iy, - -+ 1, k_p are new added vertices for e.

Definition 5 ([31]). The k-th power of S, denoted by SX, is called a hyper-star.

Definition 6 ([24]). A hypergraph is linear if it is simple and |e; N e]-| <1foralli,j € I where
i#j.

In the whole paper, the linear p-uniform supertree with n vertices is denoted by T}, ;.
By the Definition 3 and Definition 6 above, it is easy to see that the size of T}, is Z%%

Moreover, the set of all this kind of supertrees is denoted by 7y, .

Definition 7 ([30]). (Moving edges operation) Let r > 1 and H = (V(H),E(H)) be a
hypergraph with u € V(H) and ey, ez,...,e, € E(H) such that u ¢ e; fori =1,2,...,r. Suppose
that v; € e; and write ¢/ = (e;\{v;}) U{u}, i =1,2,...,r.Let H = (V(H), E(H')) be the
hypergraph with E(H') = (E(H)\{e1,...,e:}) U{e},..., e, }. Then we say that H' is obtained
from H by moving edges (eq, ..., er) from (v1,...,v;) to u.

Lemma 1 ([5]). Let H = (V, E) be a k-uniform hypergraph (k > 3) on n vertices with m edges
and 1 = 1 connected component. If k > ¢(H) + 2, then x(H) = k.

Lemma 2 ([5]). Suppose f(X) = Y xjlogx; where X = {x1,...,x,} € X, and
X = {{x1,.. x> .. >0, Y0 5 =No, v, € ZY(1<i<nNyeZ")}. Forany
xi,xj € X, if |x; — xj| = 00r |x; — x| = 1, then f(X) obtains the minimal value.

4. The Chromatic Entropy of Linear Supertrees

Now we show an operation of moving edges for a linear p-uniform supertree T}, , such that
its chromatic entropy decreases. Denote the non-decreasing chromatic decomposition sequence
of Ty,,p by 71¢(Ty, p). Suppose u is the vertex with the maximum degree among V (T, ). There
exists e1 € E(Ty, p) and v1 € eq but u ¢ eq. Using the operation of moving edges in T;, , in

Definition 7, we obtain a new supertree T';, , with T’ , = (VT,,, ET, p), where

Er,, = (En, ,Mer}) U{el}, & = (e\fer}) U {u

Then we obtain a new non-decreasing chromatic sequence 7,/ (T’y, ) with a strong
color ¢’ of T’ ;. Thus, we have

Lemma 3. For any Ty p € T, p, Ic(Tnp) = 1o (T 4,p) follows.

Proof. If p = 2, then T}, , and T’ are bipartite graphs. Then x(Ty, ) = x(T's, p) = 2. As
p>3,byLemmal, x(Ty p) = x(T'n,p) =p

Let 71c (T, p) = (IVil,-. -, [Vil.... |Vi],
cases based on the colors of vertices 1 and v;.

Case 1. The colors of vertices u and v; are the same in T, ;. Then it does not change
the chromatic decomposition sequence of T,, under the operation of moving edges,
ie., 7c(Tnp) = 7 (T'n, p). Therefore, we have I.(T'y, ) = Ic(Ty, p).

Case 2. The color of the vertex v; is different from that for vertex u in T}, 5. Since
vertex u is with the maximum degree in T;,,, without loss of generality, it is colored
with color i and the vertex vy is colored with color j. Since supertree T, is p-uniform,
the other (p — 1) vertices of e; are colored with colors 1, 2,...,i,..., j—1,j+1,..., p,

/| V). Now we discuss the following two
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respectively. By the operation of moving edges, a new edge ¢} can be obtained, which
consists of the (p — 1) vertices of ¢; and vertex u. Therefore, we get a supertree T';, , with
Ep, , = (ETn/ p\{el}) U {e}}, where ] = (e1\{v1}) U {u}. Since T, is strong coloring,
there is a vertex v, with color 7 in ;. Now we color v, with color j in e}. For the rest of
vertices, their colors remain unchanged. Then we get a strong coloring ¢’ of T';, . It is
easy to find that the number of vertices with color i decreases by 1, and that with color
jincreases by 1. It arrives at 7ty (T'y, p) = (|Val, ..., [Vi| = L., [Vj| +1,...,|Vp])-
Therefore,

f(ﬂc(Tn,p))—f(ﬂcf(TL,p)) = (|Vi|log|Vi| + |Vj|log|V;|) — [(|Vi] — 1) log(|Vi] — 1)
+(|Vj] + 1) 1og(|V;| +1)]
= (log &1 + fy) — (log &2 + 1)
<0

where & € (|Vi| =1, [Vil)& € ([Vj],|Vj] +1).
Then f(77c(Tup)) < f(7te(T'n,p))- By Definition 1, we have Ic (Ty,p) > I (T np). O

By using Lemma 3 repeatedly, for any linear p-uniform supertree T}, ,,, we obtain.

—_

Theorem 1. For any Tyyp € Tn, p, Lc(Ty, p) = logn — wfollows, where m — "1 and

=

=)

equality holds as Ty, = St

Proof. By Lemma 1, x (Sﬁ ) = p. For hyper-star S/, without loss of generality, we color the

vertex possessing the maximum degree with color 1, and color the other vertices in different
edges with colors 2, 3, - - -, p, respectively. Then we get a strong coloring of S}, with

me(Sh) = (Val =1, [Val = m, [Va] = m,- -, [V = m).

Then I (Sﬁ) = logn — %ﬂ. Using Lemma 3 repeatedly, we have
1(Ty, ) > I (55). 0

Theorem 2. For any Typ € Ty,p, it holds

I(Ty, p) < logn — % {a Pﬂ loga [n" +(p—a) [n]log[n} } p

p p p p

wherea =n—p {%J and equality holds as Ty, = H, where H is the linear p-uniform supertree

obtained by attaching pendant edges as many as possible to a hyper-path satisfying that its maximum
degree is 2.

Proof. By Lemma 1, x(H) = p. Let t be the number of all non-pendant edges of H. By the
structure of H, there is only one hyper-path, P, which is composed of the ¢t non-pendant
edges. That is,

P = voe1v1€202 - - - €404,

where 0i,Vit1 € €i+1,i =0,1,---,i—1.

According to the strong coloring for a hypergraph, we color the vertices of P in the
order ey, ey, - - - ,e; with p colors {1,2,- - -, p} in sequence. Then for each pendant edge, we
color p — 1 vertices of degree 1 with p — 1 colors, respectively, which are different from
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that of the non-pendant vertex in the same pendant edge. Thus, we obtain a chromatic
composition sequence of H for strong coloring, which is given as follows.

n n
Vi|=---=|Vi| = {p-‘,|va+1| - = |Vp\ _ L?J

wherea =n—p {%J . And it arrives

1 n n n n
I.(H)=1o n—[a[—‘lo a[—‘—i- —a {}lo {H
o(H) =logn =2 Ja) 7 loga| | +(p—a)| 7 log |
Note that ||V;| — |Vj|| <1, where 1 < i < j < p. By Lemma 2, the inequality follows. (]

5. Applications on Chromatic Entropy for Hyper-Dendrimers

Considering the discussions above, the structure of hyper-star can also be considered
as a hyper-dendrimer. From Theorem 1, the following corollary can be obtained directly.

holds, where m = =1 and

m(p—1)logm
n p—1

Corollary 1. For any Dy, p € Dy, p, Ic(Dy, p) > logn —
equality holds as Dy, = Sh.

In fact, for any hyper-dendrimer Dy, , it can be obtained from the expending of a core
molecule, which is a supertree with small orders. Inversely, we focus on the polymerization
of a hyper-dendrimer, which can intuitively be presented in the dynamic process of reducing
the chromatic entropy value by repeatedly using Lemma 3, where the polymerization means
that the hyper-dendrimer with a complex structure scale was reduced by the operation of
moving edges, but the number of vertices and edges remained unchanged. Two cases of
polymerization for a hyper-dendrimer are shown as follows.

Case 1. Let Dn,p = H?, whose central vertex is u. The hyper-dendrimer H? can be
seen in Figure 6. Let the radius of vertex u be r. In HY, if the edge ¢ containing p vertices
whose distances from the central vertex u are all r, by the operation of moving edges, the
edge e is moved to vertex u, i.e., the edge appeared in the red cycle. After similar operations

for such kind of edges, we get hypergraph H}. By Lemma 3, IC(H%) < IC(H(l)). In Hi, if
an edge containing p vertices whose distances from the central vertex u are all ¥ — 1, by the

operation of moving edges, the edge is moved to vertex u, i.e., the edge appeared in the
green cycle. After similar operations for such kind of edges, we get hypergraph H?. By

Lemma 3, I.(H %) <I.(H %) . We repeat these operations until r = 1. Then it arrives at
- 1
L(S}) = L(Hy V) < - < I(H2) < I.(H)) < I.(H)

Figure 6. The hyper-dendrimer H?.

The corresponding process can be seen in Figure 7.
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S7
Figure 7. The process of moving edges in HY forwards a hyper-star.

Case 2. Let Dy p = Hg, in which there is a central edge, e. The hyper-dendrimer H(Z)
can be found in Figure 3. Let u € e be a non-pendant vertex, whose radius is r. Through
similar operations as Case 1, with the decreasing of the radius of u, a series of graphs H},
H%, cee, Hé_l can be obtained. Thus, by Lemma 3, we have

_ 1
1(8h) = L(Hy ') < -+ < I(H3) < I(H,) < L.(HY).

The corresponding process can be seen in Figure 8.

Therefore, the hyper-star S}, attains the minimal value among D, .

Though hyper-dendrimers are a class of special linear supertrees, they behave dif-
ferently in the extremal graphs on their chromatic entropy due to the symmetry of a
hyper-dendrimer.

Theorem 3. For any Dy, € Dy, ), it follows

I.(Dy, p) < logn — % [a Fﬂ loga V—‘ +(p—a) {n]log[n”,

p p p p

wherea =n —p {%} and equality holds as Dy, = Hy, where Hy is the hyper-dendrimer obtained
from attaching pendant edges as many as possible to a hyper-path, P, such that its maximum degree
is 2. In particular, if the size of Hy is even, then Hy is a hyper-dendrimer with a central vertex u
(see Figure 9). Otherwise, Hy is a hyper-dendrimer with a central edge, e (see Figure 10).
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A

N

Figure 9. The hyper-dendrimer Hy with a central vertex u.

P

Figure 10. The hyper-dendrimer Hy with a central edge e.

Proof. With a similar coloring as H in the proof of Theorem 2, by the structure of Hy and
Lemma 3, the result holds. O



Symmetry 2023, 15, 2061

10 of 11

Next, we give an example to show that there are different supertrees sharing the same
maximal chromatic entropy:.

Example 1. The hyper-dendrimer D49 4 and the linear 4-uniform supertree Tyg 4 are drawn in Figures 11
and 12, respectively. We can check that 1.(Dyg 4) = IC(T49,4) = log49 — 45(36l0g12 + 13l0g13).

However, the hyper-dendrimer Dag 4 is symmetrical respect to the central vertex u, which is different
from T49,4.

References

Figure 12. The linear 4-uniform supertree Tyg 4.
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