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Abstract: We consider an inverse problem of recovering the mortality rate in the honey bee difference
equation model, that tracks a forage honeybee leaving and entering the hive each day. We concentrate
our analysis to the model without pesticide contamination in the symmetric spatial environment.
Thus, the mathematical problem is formulated as a symmetric inverse problem for reaction coefficient
at final time constraint. We use the overspecified information to transform the inverse coefficient
problem to the forward problem with non-local terms in the differential operator and the initial
condition. First, we apply semidiscretization in space to the new nonsymmetric differential operator.
Then, the resulting non-local nonsymmetric system of ordinary differential equations (ODEs) is
discretized by three iterative numerical schemes using different time stepping. Results of numerical
experiments which compare the efficiency of the numerical schemes are discussed. Results from
numerical tests with synthetic and real data are presented and discussed, as well.

Keywords: forage bee losses; spatial differential difference equation; final time constraint; inverse
problem; ODEs system; non-local forward problem; iterative numerical algorithms

1. Introduction

Bees play a crucial role, not only for human beings but also for all plant species they
assist in pollinating. Some of the most globally significant crops rely on bees for their
reproduction, as these industrious pollinators visit and fertilize such plants. Furthermore,
bees actively contribute to the preservation of natural ecosystems, as their pollination
activities aid in the rejuvenation of trees. This, in turn, has a positive impact on the
conservation of forest biodiversity and the maintenance of various other ecosystem services.
In essence, bees serve as vital regulators of food production, forest equilibrium, and micro-
climate dynamics

The loss of honey bee colonies is a prevalent occurrence that has significant economic
and ecological consequences. The factors responsible for this phenomenon are currently
under active investigation by many researches. Many studies have identified potential con-
tributing factors to this problem, such as pesticides, parasites, climate change, nutritional
challenges, etc. [1–10].

Remarkably, it is recognized that the development of mathematically tractable models
is crucial for obtaining valuable insights into the ecological processes and factors that result
in colony losses.

The pioneering mathematical model that integrated colony population dynamics
influenced by biological and environmental factors was formulated in [11]. Subsequent
honeybee mathematical models have been introduced, concerning the activities inside
beehives, models investigating the influence of Varroa mites, models that simulate the
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dynamics of honeybees gathering nectar and pollen to support colony growth, models that
gain valuable insights into ecological processes and factors contributing to colony losses,
etc., see, e.g., review papers [2,12]. In all these models, the honeybee population dynamics
are governed by ordinary differential equations (ODE).

Models involving partial differential equations to study honeybee colony dynamics are
proposed in [13–15]. In [14,15], the authors model the thermoregulation process in honey
bee colonies in winter using the Keller–Segel problem with a sign-changing chemotactic
coefficient. The focus of the investigation in [13] is the exposure of forager bees to pesticides
within contaminated spatial settings. The model comprises both differential and difference
equations governing the spatial patterns of forager bees, distinguishing between those
unaffected by contamination and those affected by it. An essential aspect of this model
involves the daily return of forager bees to their hive.

Numerical simulations to study honeybee ODE problems are used in many papers. For
example, in [16], critical hive sizes were determined numerically across various scenarios,
emphasizing the significance of expedited forager recruitment in the depletion of hives
during colony collapse. Both adult and immature honeybee populations along with their
honey production are examined in [17]. For more details about the existing investigations,
see also [2,12].

A second order in space, positivity-preserving numerical method for solving the
Keller–Segel problem modeling the thermoregulation in honeybee colonies during the
winter is developed in [18].

Over the past few decades, inverse problems have been employed to investigate
numerous real-world phenomena and processes. This is primarily due to their robust
mathematical formulation, comprehensive theoretical analysis, and effective numerical
solutions [19–27].

The numerical method for solving the inverse bio-heat transfer problem for identify-
ing space- and time-dependent perfusion coefficient from temperature measurements is
constructed in [28]. The parameter identification inverse problem for a system of non-linear
ODE modeling honeybee population dynamics taking into account different factors is
studied in the literature; see [29,30] and reference therein. In [29], the authors consider a
model describing the time evolution of the population count of hive bees, foraging workers,
and contaminated foragers. A new problem for interaction of the food stock with the brood,
adult bees and produced honey is suggested and analyzed numerically in [30].

Numerical identification approaches for predicting the optimal parameters governing
the population dynamics in the beehive in the Keller–Segel problem under temperature
measurements are developed in [31,32].

Inverse problems for recovering space-dependent mortality rate of the bees and the
rate of contamination of the forager bees by pesticides under final time measurements are
posed in [33].

In this work, we consider the inverse problem for recovering space-dependent reaction
coefficient and solution, under final time measurements, in the Dirichlet parabolic problem.
Such mathematical model is constructed in [13] to describe the spatial distribution of
uncontaminated foraging bees, where the unknown solution is the bee density and the
reaction coefficient represents the mortality rate of the bees. Determination of the honeybee
mortality rate is of great importance for monitoring, studying the dynamics of the bee
populations and developing good beekeeping practices.

We transform the inverse problem to a Dirichlet forward problem for non-local
parabolic equation and non-local initial condition. Then, we further develop the iteration
approach proposed in [34–39], where, in contrast to our problem, only initial conditions are
non-local.

The remaining part of the paper is organized as follows. In the next section, we present
the model problem. The inverse problem is formulated and discussed in Section 3. In
Section 4, we construct three discrete schemes—implicit, Crank–Nicolson and averaging
Saulyev’s scheme—for solving the 1D inverse problem, and on this base, we develop an
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iterative algorithm. In Section 5, we extend this iteration method for a 2D inverse problem.
Computational results with synthetic and real data are presented in Section 6. Finally, in
Section 7, we offer a summary and concluding remarks.

2. Model Problem

In this section, motivated by the results in [13], we formulate the model problem. This
is a parabolic equation with Dirichlet boundary conditions that can be used to describe the
spatial bee density of forage bees. We briefly discuss the model suggested in [13].

The basic assumption is that the environment is free from pesticide contamination.
Forage bees depart from the hive at sunrise and come back to the hive after sunset on a
daily basis.

We consider the spatial probability density function of forager bees in the hive
G(t∗, x, y) for a given t∗: ∫

R2

∫
G(t∗, x, y)dxdy = 1, for t∗ > 0,

where G is Gaussian function

G(t∗, x, y) =
1

4πεt∗
exp

(
− (x− x0)

2 + (y− y0)
2

4εt∗

)
(1)

with the standard derivation of G for a given value of ε and t∗ defined by σ =
√

2εt∗, and
(x0, y0) is the center of the hive.

Let us denote by u(t, x, y) the forager bee density at time t and location (x, y) ∈ R2.
At the beginning of the first day, the initial distribution of forager bees is

u(0, x, y) = u0(x, y) ≥ 0, u0 ∈ L1
+(R2), (2)

and the total number of forager bees (TNFB) at time t = 0 is given by

U0 =
∫
R2

∫
u0(x, y)dxdy.

Then, the forage bee density u satisfies equation

∂u
∂t

= d4u− µu, 4u =
∂2u
∂x2 +

∂2u
∂y2 , t ∈ [0, t), (x, y) ∈ R2, (3)

where
U(t) =

∫
R2

∫
u(t, x, y)dxdy (4)

is the the total number of forager bees at time t ∈ [0, 1). Here, d denotes diffusion rate
and µ(x, y) ≥ 0 is bee mortality rate. It encompasses homing failure and all other factors
contributing to mortality in forager bees, and it is assumed in [13] that µ(x, y) is a bounded
continuous nonnegative function on R2.

At the conclusion of the initial day, we presume that all forager bees not affected by
mortality make their way back to the hive, resulting in the total population at the end of
the first day

U(1−) =
∫
R2

∫
u(1−, x, y)dxdy.
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The forager bees that come back to the hive during the first day actively assist in caring
for the hive’s young bees. The Allee function is used to characterize how they contribute to
the emergence of forager bees that subsequently depart the hive for foraging:

βU(1−)2

X 2 + U(1−)2 , (5)

where β is the maximal production parameter and X is the sigmoidal Hill function produc-
tion [40,41].

Among forager bees, two types of behaviors emerge as they return home at the end of
the day and prepare for another day of foraging. A portion of foragers return to the hive,
essentially starting anew the next day without any memory of their prior day’s whereabouts.
We describe their foraging pattern on the subsequent day using a diffusion model. The
second behavior involves foragers that remember productive foraging sites from the prior
day. The next morning, these bees head directly to these remembered locations.

Integrating these two behavioral modes and under the assumption that forager bees
spread within the hive according to the Gaussian probability density G(t∗, x, y), we calcu-
late u1(x, y). This function illustrates the spatial distribution of forager bees within the hive
during the morning of the second day.

u1(x, y) = G(t∗, x, y)
(

βU(1−)2

X 2 + U(1−)2 + (1− q)U(1−)
)
+ qu(1−, x, y), q ∈ [0, 1],

where q is the fraction of forager bees that follow the second type of behavior. The portion
of forager bees exhibiting this second behavior type consists of individuals with the ability
to recall advantageous foraging sites from the prior day. When the next day begins, these
bees immediately head towards these locations.

In this work, we consider Problems (2) and (3) defined in domain QT = Ω× [0, T],
Ω = [0, X]× [0, Y] with Dirichlet boundary conditions

u(t, 0, y) = ul(t, y), u(t, X, y) = ur(t, y), y ∈ [0, Y], t ∈ (0, T],

u(t, x, 0) = vd(t, x), u(t, x, Y) = vu(t, x), x ∈ [0, X], t ∈ (0, T].
(6)

3. The Inverse Problem

In this section, we discuss the posing of the inverse problem for recovering reaction
space-dependent unknown coefficients µ(x, y) in parabolic Equation (3) with measurements
at the final time t = T as it is performed in [33].

We consider Equation (3) at final time constraint

u(T, x, y) = ϕ(x, y), ϕ(x, y) > 0, (x, y) ∈ Ω, (7)

where at first day T = 1, and at second day T = 2.
Frequently, despite the rapid advancements in electronic technology, beekeepers en-

counter challenges in obtaining adequate observational data to model forager bee behavior
in food fields. We now utilize the observations stated in Equation (7) to approximately
determine u(t, x, y) by solving the inverse problem.

Equation (3), equipped with known coefficient d and µ and provided with suitable
initial and boundary conditions, is referred to as the direct problem.

The focus of the present work is to find µ(x, y) that satisfy Equation (3) and Observa-
tion (7). We consider the case of

v(t, x, y) =
∂u
∂t

(t, x, y), (t, x, y) ∈ QT . (8)
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Differentiating Equation (3) with respect to t, we derive

∂v
∂t

= d4v− µ(x, y)v = 0. (9)

From Equation (3) and Observations (7), we find

µ(x, y) =
− ∂u

∂t (T, x, y) + d4ϕ(x, y)
ϕ(x, y)

=
−v(T, x, y) + d4ϕ(x, y)

ϕ(x, y)
. (10)

Thus, Problems (2), (3), (6) and (7) are equivalent to the following inverse problem,
formulated as a direct problem for unknown solution v(t, x, y), (x, y) ∈ Ω = (0, X)× (0, Y),
0 < t ≤ T:

∂v
∂t

= d4v +
v(T, x, y)− d4ϕ(x, y)

ϕ(x, y)
v,

v(0, x, y) = d4u0(x, y) +
v(T, x, y)− d4ϕ(x, y)

ϕ(x, y)
u0(x, y),

(11)

with Dirichlet boundary conditions, derived from (6), applying (8),

v(t, 0, y) = vl(t, y), v(t, X, y) = vr(t, y), y ∈ [0, Y], t ∈ (0, T],

v(t, x, 0) = vd(t, x), v(t, x, Y) = vu(t, x), x ∈ [0, X], t ∈ (0, T].
(12)

Using the results of [33] (Section 3), the following assertion can easily be proven.

Theorem 1. Let us assume that ϕ(x, y) ∈ C4+γ(Ω), 0 < γ < 1 and ϕ(x, y) > 0 in Ω. Then,
there exists at least one solution of Problems (9)–(12).

Corollary 1. Under the assumptions of Theorem 1, inverse Problems (3) and (7) have at least one
solution.

Proof. Indeed, we saw that if u(t, x, y) is a solution of Problems (3) and (7) with zero Dirich-
let boundary conditions, then v(t, x, y) is a solution to Problems (11) and (12). Conversely,
assuming that u(t, x, y) is a solution of Problems (3) and (7), it follows that

u(t, x, y) = u0(x, y) +
t∫

0

v(λ, x, y)dλ, µ(x, y) =
−v(T, x, y) + d4ϕ(x, y)

ϕ(x, y)

is a solution of inverse Problems (3) and (7) with zero Dirichlet boundary conditions.

4. Iterative Method for Solving a 1D Inverse Problem

In this section, we propose three numerical iterative schemes for solving Problems (11)
and (12). For clarity, first, we explain the method for the following one-dimensional
prototype problem of (11) and (12):

∂v
∂t

= d
∂2v
∂x2 +

v(T, x)− d d2 ϕ

dx2

ϕ(x)
v, (x, t) ∈ QT = Ω× (0, T],

v(t, 0) = vl(t), v(t, x) = vr(t), 0 < t ≤ T, (13)

v(0, x) = d
d2u0(x)

dx2 +
v(T, x)− d d2 ϕ

dx2

ϕ(x)
u0(x), x ∈ Ω = (0, X).

For the solution of (13), we construct iterative finite difference methods using ideas
from papers [34,36–39], where linear parabolic problems with non-local terms only in the
initial condition are solved.
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4.1. Discrete Schemes

We introduce uniform partition of the interval [0, X]. We let h > 0 be small and
xi = ih, i = 0, 1, . . . , I, where I = X/h is a positive integer.

The semi-discrete solution vi(t) = v(xi, t) of (13) satisfies the following ODE system:

∂vi
∂t

= d4hvi +
vi(T)− d4h ϕi

ϕi
vi, i = 1, 2, . . . , I − 1,

v0 = vl(t), vI = vr(t),

vi(0) = d4h(u0)i +
vi(T)− d4h ϕi

ϕ(xi)
(u0)i, i = 1, 2, . . . , I − 1.

(14)

In the time interval [0, T], we define the uniform grid with nodes tk = kτ, k =
0, 1, . . . , K, τ = T/K. The values of the solution and mesh functions at grid nodes are
denoted by wk

i = w(xi, tk).
Further, we apply three different temporal discretizations for the ODE system (14).

• The implicit backward Euler scheme: we find {vk
i }, k = 1, 2, . . . , K such that

vk
i − vk−1

i
τ

= d4hvk
i +

vK
i − d4h ϕi

ϕi
vk

i , i = 1, 2, . . . , I − 1,

vk
0 = vl(tk), vk

I = vr(tk),

v0
i = d4h(u0)i +

vK
i − d4h ϕi

ϕ(xi)
(u0)i, i = 1, 2, . . . , I − 1,

(15)

where4hwk
i = (wk

i+1 − 2wk
i + wk

i−1)/h2.

• The Crank–Nicolson scheme. Now, {vk
i }, k = 1, 2, . . . , K is defined by

vk
i − vk−1

i
τ

= d4h
vk

i + vk−1
i

2
+

vK
i − d4h ϕi

ϕi

vk
i + vk−1

i
2

, i = 1, 2, . . . , I − 1, (16)

with the same initial and boundary approximate conditions as above.

• The Saulyev-type alternating direction explicit (ADE) scheme. For the approximation,
we use Saulyev’s first- and second-kind formula in order to obtain an unconditional
stable numerical scheme, which can be realized in an explicit manner.

In discrete Scheme (15), we replace 4hvk
i by 41

hvk
i = (vk

i−1 − vk−1
i − vk

i + vk−1
i+1 )/h2 and

42
hvk

i = (vk−1
i+1 − vk−1

i − vk
i + vk

i−1)/h2. In order to obtain better accuracy, we combine these
approximations and derive the Barakat and Clark scheme.

We find {vk
i } at each time layer k = 1, 2, . . . , K, as an averaging solution of numerical

schemes

vk
i − vk−1

i
τ

= d41
hvk

i +
vK

i − d4h ϕi

ϕi
vk

i , i = I − 1, I − 2, . . . , 1,

vk
i − vk−1

i
τ

= d42
hvk

i +
vK

i − d4h ϕi

ϕi
vk

i , i = 1, 2, . . . , I − 1,

vk
0 = vl(tk), vk

I = vr(tk),

v0
i = d4h(u0)i +

vK
i − d4h ϕi

ϕi
(u0)i, 1 ≤ i ≤ I − 1.

(17)

In general, implicit methods require more computational efforts, but they are uncondi-
tionally stable. Moreover, the fully implicit scheme is first-order accurate in time, while
the Crank–Nicolson scheme is second-order accurate both in space and time. However,
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it is known that in some cases, the Crank–Nicolson method may produce oscillations in
the numerical solution [42]. On the other hand, Saulyev’s first- and second-kind formulas
are unconditionally stable, can be computed in an explicit manner, but they are first-order
accurate. To enhance the order of convergence, we need to construct the Barakat and Clark
scheme, which couples these two approximations.

There are many other methods that can be used; for example, the unconditionally
stable Dufort–Frankel scheme, which is a three-level, second- or fourth-order accurate in
space for appropriate choice of the mesh parameters [43]; explicit and unconditionally stable
odd–even hopscotch scheme; leapfrog hopscotch scheme and hybrid schemes, combining
the above methods. New results in this direction are obtained in [44–47].

Now, we state our stability and convergence results. We denote by ‖w‖ = max
0≤i≤I

|wi|.

Theorem 2. We let {vk
i } be the solution of the backward Euler or Crank–Nicolson scheme; then,

there exists a constant C > 0, independent of τ and h and τ0 > 0, such that for all 0 < τ ≤ τ0, we
have

max
0≤k≤K

‖v(tk)−Vk‖ ≤ C(τ + h2),

max
0≤k≤K

‖Vk‖ ≤ C
K

∑
k=0

τ(|vl(tk)|+ |vr(tk)|),
(18)

where Vk = (Vk
1 , Vk

2 , . . . , Vk
I−1)

T .

4.2. Iterative Procedure

To solve Problem (15) for identifying vk, k = 1, 2, . . . , K, we use Discretizations (15)–
(28) and in order to avoid solving large non-linear systems of algebraic equations, we
initiate an iteration procedure. As an initial guess, we set (v0

i )
(0) = 0, i = 0, 1, . . . , I. Then,

(v0
i )

(l+1), l = 0, 1, . . . , i = 0, 1, . . . , I is determined by

(v0
i )

(l+1) = d4h(u0)i +
(vK

i )
(l) − d4h ϕi

ϕi
(u0)i, i = 1, 2, . . . , I − 1,

where (vk
i )

(l), k = 1, 2, . . . , K is the solution of the following problems, denoting vk
i =

(vk
i )

(l+1) for simplicity, depending on the scheme used:

(IMIS-1D) Iteration method based on the implicit backward Euler scheme (15):

vk
i − vk−1

i
τ

= d4huk
i +

(vK
i )

(l) − d4h ϕi

ϕi
vk

i , i = 1, 2, . . . , I − 1,

vk
0 = vl(tk), vk

I = vr(tk),

v0
i = (v0

i )
(l).

(19)

(IMCNS-1D) Iteration method based on the Crank–Nicolson scheme (16):

vk
i − vk−1

i
τ

= d4h
vk

i + vk−1
i

2
+

(vK
i )

(l) − d4h ϕi

ϕi

vk
i + vk−1

i
2

, i = 1, 2, . . . , I − 1,

vk
0 = vl(tk), vk

I = vr(tk),

v0
i = (v0

i )
(l).

(20)

(IMBCS-1D) Iteration method based on the Barakat and Clark scheme obtained by aver-
aging the solution of the first- and second-kind Saulyev’s scheme (17). We suppose that
vK in (17) is known. Then, the first-kind approximation is explicit if the computations are
performed from the left boundary to the right. Analogically, in a symmetric way, the same
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is performed for the second-kind approximation. The discretization is realized in an explicit
manner if we compute the solution from the right to the left boundary. Therefore, taking
vK to be known from previous iteration, we obtain the following iteration process based on
the explicit schemes:

(v1)
k
i = Q−1

i

(
vk−1

i
τ

+ d
vk−1

i+1 − vk−1
i + (v1)

k
i−1

h2

)
, i = I − 1, I − 2, . . . , 1,

(v2)
k
i = Q−1

i

(
vk−1

i
τ

+ d
(v2)

k
i+1 − vk−1

i + vk−1
i−1

h2

)
, i = 1, 2, . . . , I − 1,

Qi =
1
τ
+

d
h2 +

(vK
i )

(l) − d4h ϕi

ϕi
,

(v1)
k
0 = vl(tk), (v2)

k
I = vr(tk), v0

i = (v0
i )

(l),

vk
i =

(v1)
k
i + (v2)

k
i

2
, 1 ≤ i ≤ I − 1, vk

0 = vl(tk), vk
I = vr(tk).

(21)

The iteration process continues up to reaching the desired accuracy ε,

‖v(l+1) − v(l)‖ ≤ ε,

or ‖v(l+1) − v(l)‖ ≥ ‖v(l) − v(l−1)‖.
Solution uk+1 is obtained, integrating (8) at each time layer. Applying trapezoidal rule

in the right-hand side, we obtain

uk+1 = uk +
τ

2

(
vk+1 + vk

)
, k = 1, 2, . . . , K. (22)

Thus, the approximation of solution u is obtained by (22).

5. Iterative Method for Solving a 2D Inverse Problem

In this section, we construct the iteration procedure for solving Problems (11) and (12).
First, we discretize domain Ω× [0, T], Ω = [0, X]× [0, Y]. The mesh in time is the same
as in Section 4. As before, symmetrically in the x- and y-directions, we consider uniform
partition of the corresponding intervals [0, X] and [0, Y]. We let h1 > 0 and h2 > 0 be
small numbers. Then, xi = ih1, i = 0, 1, . . . , I and yj = jh2, j = 0, 1, . . . , J, where I = X/h1,
J = Y/h2. The numerical solution and the values of the mesh functions at grid nodes are
denoted by wk

i,j = w(tk, xi, yj).
We construct the same discretizations of Problems (11) and (12) as for the 1D case.

5.1. Discrete Schemes

• The implicit backward Euler scheme: we find {vk
i,j}, k = 1, 2, . . . , K, such that

vk
i,j − vk−1

i,j

τ
= d4hvk

i,j +
vK

i,j − d4h ϕi

ϕi,j
vk

i,j, i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1,

vk
0,j = vl(tk, yj), vk

I,j = vr(tk, yj), j = 1, 2, . . . , J,

vk
i,0 = vd(tk, xi), vk

i,J = vu(tk, xi), i = 1, 2, . . . , I,

v0
i,j = d4h(u0)i,j +

vK
i,j − d4h ϕi,j

ϕi,j
(u0)i,j, i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1,

(23)

where4hwk
i,j = (wk

i+1,j − 2wk
i,j + wk

i−1,j)/h2
1 + (wk

i,j+1 − 2wk
i,j + wk

i,j−1)/h2
2.

• The Crank–Nicolson scheme. We find {vk
i,j}, k = 1, 2, . . . , K, solving the system
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vk
i,j − vk−1

i,j

τ
= d4h

vk
i,j + vk−1

i,j

2
+

vK
i,j − d4h ϕi,j

ϕi,j

vk
i,j + vk−1

i,j

2
, (24)

i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1, with the same initial and boundary discrete conditions
as in (23).

• The ADE approximation, using the averaging of Saulyev’s first- and second-kind
formulae. In discrete scheme (23), we replace4hvk

i,j by41
hvk

i,j and42
hvk

i,j, where

41
hvk

i,j =
vk−1

i+1,j − vk−1
i,j − vk

i,j + vk
i−1

h2
1

+
vk−1

i,j+1 − vk−1
i,j − vk

i,j + vk
i,j−1

h2
2

,

42
hvk

i,j =
vk

i+1,j − vk−1
i,j − vk

i,j + vk−1
i−1,j

h2
1

+
vk

i,j+1 − vk−1
i,j − vk

i,j + vk−1
i,j−1

h2
2

.

We combine these approximations in order to construct the Barakat and Clark scheme.
Namely, we find {vk

i,j}, k = 1, 2, . . . , K, averaging the solution of the numerical schemes at
each time level

vk
i,j − vk−1

i,j

τ
= d41

hvk
i,j +

vK
i,j − d4h ϕi

ϕi,j
vk

i,j, i = I − 1, I − 2, . . . , 1, j = J − 1, J − 2, . . . , 1,

vk
i,j − vk−1

i,j

τ
= d42

hvk
i,j +

vK
i,j − d4h ϕi,j

ϕi,j
vk

i,j, i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1,

vk
0,j = vl(tk, yj), vk

I,j = vr(tk, yj), j = 1, 2, . . . , J,

vk
i,0 = vd(tk, xi), vk

i,J = vu(tk, xi), i = 1, 2, . . . , I,

v0
i,j = d4h(u0)i,j +

vK
i,j − d4h ϕi,j

ϕi,j
(u0)i,j, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.

(25)

5.2. Iterative Method

Problems (11) and (12) for finding vk, k = 1, 2, . . . , K are solved by the iterative method,
based on Discretizations (23)–(25). The initial guess is (v0

i,j)
(0) = 0, i = 0, 1, . . . , I, j =

0, 1, . . . , J. Then, (v0
i,j)

(l+1), l = 0, 1, . . . , i = 0, 1, . . . , I, j = 0, 1, . . . , J is determined from

(v0
i,j)

(l+1) = d4h(u0)i,j +
(vK

i,j)
(l) − d4h ϕi,j

ϕi,j
(u0)i,j, i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1,

where (vk
i,j)

(l), k = 1, 2, . . . , K is the solution of discrete Problems (23)–(25), where, for

simplicity, we denote vk
i,j = (vk

i,j)
(l+1).

(IMIS-2D) The iteration method based on the implicit backward Euler scheme (23):

vk
i,j − vk−1

i,j

τ
= d4huk

i,j +
(vK

i,j)
(l) − d4h ϕi

ϕi,j
vk

i,j, i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J,

vk
0,j = vl(tk, yj), vk

I,j = vr(tk, yj), j = 1, 2, . . . , J,

vk
i,0 = vd(tk, xi), vk

i,J = vu(tk, xi), i = 1, 2, . . . , I,

v0
i,j = (v0

i,j)
(l).

(26)
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(IMCNS-2D) The iteration method based on the Crank–Nicolson scheme (24):

vk
i,j − vk−1

i,j

τ
= d4h

vk
i,j + vk−1

i,j

2

+
(vK

i,j)
(l) − d4h ϕi,j

ϕi,j

vk
i,j + vk−1

i,j

2
, i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J,

vk
0,j = vl(tk, yj), vk

I,j = vr(tk, yj), j = 1, 2, . . . , J,

vk
i,0 = vd(tk, xi), vk

i,J = vu(tk, xi), i = 1, 2, . . . , I,

v0
i,j = (v0

i,j)
(l).

(27)

(IMBCS-2D) The iteration method obtained by averaging the solution of the first- and the
second-kind Saulyev’s scheme (25). Taking vK to be known from previous iteration, the
first approximation is explicit if the computations are performed passing the nodes from
the bottom boundary to the top and from the left boundary to the right. Similarly, the
second-kind approximation is performed in an explicit manner if we compute the solution
from the upper to the bottom boundary and from the right to the left boundary. Thus, we
obtain the following iteration process based on the explicit schemes:

(v1)
k
i,j = Q−1

i,j

vk−1
i,j

τ
+ d

vk−1
i+1,j − vk−1

i,j + (v1)
k
i−1,j

h2
1

+ d
vk−1

i,j+1 − vk−1
i,j + (v1)

k
i,j−1

h2
1

,

i = I − 1, I − 2, . . . , 1, j = J − 1, J − 2, . . . , 1,

(v2)
k
i,j = Q−1

i,j

vk−1
i,j

τ
+ d

(v2)
k
i+1,j − vk−1

i,j + vk−1
i−1,j

h2
1

+ d
(v2)

k
i,j+1 − vk−1

i,j + vk−1
i,j−1

h2
2

,

i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1,

Qi,j =
1
τ
+

2d
h2 +

(vK
i,j)

(l) − d4h ϕi,j

ϕi
,

(v1)
k
0,j = vl(tk, yj), (v2)

k
I,j = vr(tk, yj), j = 1, 2, . . . , J,

(v1)
k
i,0 = vd(tk, xi), (v2)

k
i,J = vu(tk, xi), i = 1, 2, . . . , I,

v0
i,j = (v0

i,j)
(l),

vk
i,j =

(v1)
k
i,j + (v2)

k
i,j

2
, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1,

vk
0,j = vl(tk, yj), vk

I,j = vr(tk, yj), j = 1, 2, . . . , J,

vk
i,0 = vd(tk, xi), vk

i,J = vu(tk, xi), i = 1, 2, . . . , I.

(28)

The iteration process continues up to reaching the desired accuracy ε:

‖v(l+1) − v(l)‖ ≤ ε, where ‖wi,j‖ = max
0≤i≤I

max
0≤j≤J

|wi,j|, (29)

or ‖v(l+1) − v(l)‖ ≥ ‖v(l) − v(l−1)‖.
Solution u is obtained from (22).

6. Numerical Tests

In this section, we illustrate the accuracy and efficiency of the proposed iterative
procedure for solving 1D and 2D inverse Problems (11)–(13).

Example 1 (1D problem: convergence test). In this test example, we verify the order of conver-
gence of iteration methods IMIS-1D, IMCNS-1D, IMBCS-1D for solving 1D Problem (13) for given
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functions u0(x) and ϕ(x). The accuracy of these approaches is computed for modified Problem (13),
T = 1, X = 1 with exact solution v(t, x) = −e−t sin(πx). To this aim, we add residual functions
in the right-hand side of the equation in (13) and set ϕ(x) = e−T sin(πx), u0(x) = sin(πx).

We offer the absolute errors and orders of convergence in maximal and L2 norms at a
final time, as well as the relative errors in the maximal discrete norm and the corresponding
orders of convergence

E∞ = E I
∞ = ‖vK − v(x, T)‖, CR∞ = log2

E I

E2I ,

E2 = E I
2 = ‖vK − v(x, T)‖2, CR2 = log2

E I
2
E2I

2
, ‖w‖2 =

√√√√ I

∑
i=0

hw2
i ,

ER = E I
R =

∥∥∥ vK−v(x,T)
v(x,T)

∥∥∥, CRR = log2
E I

R
E2I

R
.

Since the expected order of convergence of IMIS-1D and IMBCS-1D is O(τ + h2), the
computations are performed for τ ≈ h2. Similarly, since the expected order of convergence
of IMCNS-1D is O(τ2 + h2), for all runs, we take τ ≈ h. The accuracy is ε = 1× 10−7. The
results from computations are given in Tables 1–3. The number of iterations is denoted by
iter. We observe that only a few iterations are needed to reach the desired accuracy, and
because of the fixed ratio between mesh step sizes, the order of convergence is as expected.

Table 1. Errors and convergence rate of the solution of IMIS-1D, τ = h2, Example 1.

I τ E∞ CR∞ E2 CR2 ER CRR iter

20 2.500000 × 10−3 6.8620 × 10−4 4.8594 × 10−4 1.9222 × 10−3 4
40 6.250000 × 10−4 1.7141 × 10−4 2.0012 1.2139 × 10−4 2.0012 4.8026 × 10−4 2.0009 4
80 1.562500 × 10−4 4.2850 × 10−5 2.0001 3.0340 × 10−5 2.0002 1.2006 × 10−4 2.0002 4
160 3.906250 × 10−5 1.0713 × 10−5 1.9999 7.5846 × 10−6 2.0001 3.0010 × 10−5 2.0001 4
320 9.765625 × 10−6 2.6782 × 10−6 2.0001 1.8961 × 10−6 2.0001 7.5030 × 10−6 2.0000 4

Table 2. Errors and convergence rate of the solution of IMCNS-1D, τ = h, Example 1.

I E∞ CR∞ E2 CR2 ER CRR iter

20 5.4756 × 10−4 3.8788 × 10−4 1.5432 × 10−3 6
40 1.3681 × 10−4 2.0009 9.6909 × 10−5 2.0009 3.8567 × 10−4 2.0005 5
80 3.4207 × 10−5 1.9997 2.4223 × 10−5 2.0002 9.6408 × 10−5 2.0001 5
160 8.5516 × 10−6 2.0000 6.0555 × 10−6 2.0001 2.4100 × 10−5 2.0001 4
320 2.1378 × 10−6 2.0000 1.5138 × 10−6 2.0001 6.0229 × 10−6 2.0005 4

Table 3. Errors and convergence rate of the solution of IMBCS-1D, τ = h2, Example 1.

I E∞ CR∞ E2 CR2 ER CRR iter

20 1.5768 × 10−3 1.0677 × 10−3 4.2919 × 10−3 4
40 4.3687 × 10−4 1.8517 3.0230 × 10−4 1.8204 1.1912 × 10−3 1.8493 4
80 1.1413 × 10−4 1.9366 7.98838 × 10−5 1.9200 3.1212 × 10−4 1.9322 4
160 2.9114 × 10−5 1.9708 2.0494 × 10−5 1.9627 7.9964 × 10−5 1.9647 4
320 7.3485 × 10−6 1.9862 5.1876 × 10−6 1.9821 2.0279 × 10−5 1.9794 4

Example 2 (2D problem: convergence test). Now, we verify the order of convergence of the
iteration methods for solving the 2D inverse problem for identifying u(t, x, y) and µ(x, y) in
Equation (3) associated with zero Dirichlet boundary conditions and given observations (7). To this
aim, we consider the corresponding modified problem, setting µ(x, y) = 2x2 + y + 1 and adding
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residual function f (t, x, y) in the right-hand side of Equation (3), such that the exact solution is
u = e−t sin(πx) sin(πy) and ϕ(x, y) = e−T sin(πx) sin(πy).

We solve the inverse problem by iterative methods IMIS-2D, IMCNS-2D, IMBCS-2D
for I = J, i.e., h1 = h2 = h. As in Example 1, the mesh step sizes are fixed according to
the expected order of convergence of the corresponding iteration method, namely τ ≈ h2

for IMIS-2D and IMBCS-2D, and τ ≈ h for IMCNS-2D. For the stopping criteria, we take
ε = 1× 10−7.

Errors and order of convergence of the restored solution u and µ, in maximal and L2
norms at the final time are defined as follows:

E∞ = E I
∞ = ‖uK − u(x, y, T)‖, CR∞ = log2

E I

E2I ,

E2 = E I
2 = ‖uK − u(x, y, T)‖2, CR2 = log2

E I
2
E2I

2
, ‖w‖2 =

√√√√ I

∑
i=0

J

∑
j=0

h1h2w2
i,j,

Eµ
∞ = (Eµ)I

∞ = ‖µ− µ(x, y)‖, CR∞ = log2
(Eµ)I

(Eµ)2I ,

Eµ
2 = (Eµ)I

2 = ‖µ− µ(x, y)‖2, CR2 = log2
(Eµ)I

2
(Eµ)2I

2
.

Since the modified problem for Equation (3) has a right-hand side f (t, x, y), we also
modify Equation (11) in the corresponding to (11) and (12) problems as follows:

∂v
∂t

= d4v +
v(T, x, y)− d4ϕ(x, y)− f (t, x, y)

ϕ(x, y)
v +

∂ f (t, x, y)
∂t

,

v(0, x, y) = d4u0(x, y) +
v(T, x, y)− d4ϕ(x, y)− f (t, x, y)

ϕ(x, y)
u0(x, y),

(30)

and µ(x, t) = [−v(T, x, y) + d4ϕ(x, y) + f (t, x, y)]/ϕ(x, y). Similarly, iterative methods
IMIS-2D, IMCNS-2D, IMBCS-2D are modified according to (30).

Computational results presented in Tables 4–6 confirm that the iteration process for
recovering both reaction coefficient µ and solution u has the same order of convergence as
the underlying numerical scheme.

Table 4. Errors and convergence rate of the solution of IMIS-2D, τ = h2, Example 2.

I E∞ CR∞ E2 CR2 Eµ
∞ CRµ

∞ Eµ
2 CRµ

2 iter

20 5.9575 × 10−4 2.9777 × 10−4 9.9173 × 10−4 9.3245 × 10−4 5
40 1.4881 × 10−4 2.0012 7.4380 × 10−5 2.0012 2.4773 × 10−4 2.0011 2.3904 × 10−4 1.9638 5
80 3.7195 × 10−5 2.0003 1.8591 × 10−5 2.0003 6.1904 × 10−5 2.0007 6.0498 × 10−5 1.9823 5
160 9.2975 × 10−6 2.0002 4.6404 × 10−6 2.0002 1.5472 × 10−5 2.0004 1.5192 × 10−5 1.9936 5
320 2.3242 × 10−6 2.0001 1.1601 × 10−6 2.0000 3.8674 × 10−6 2.0002 3.8038 × 10−6 1.9978 5

Table 5. Errors and convergence rate of the solution of IMCNS-2D, τ = h, Example 2.

I E∞ CR∞ E2 CR2 Eµ
∞ CRµ

∞ Eµ
2 CRµ

2 iter

20 5.6981 × 10−4 2.8480 × 10−4 9.4954 × 10−4 8.9176 × 10−4 5
40 1.4234 × 10−4 2.0012 7.1144 × 10−5 2.0012 2.3712 × 10−4 2.0016 2.2863 × 10−4 1.9636 5
80 3.5577 × 10−5 2.0003 1.7782 × 10−5 2.0003 5.9261 × 10−5 2.0005 5.7880 × 10−5 1.9819 5
160 8.8939 × 10−6 2.0001 4.4454 × 10−6 2.0001 1.4814 × 10−5 2.0002 1.4561 × 10−5 1.9910 5
320 2.2236 × 10−6 2.0000 1.1114 × 10−6 2.0000 3.7034 × 10−6 2.0000 3.6511 × 10−6 1.9957 5
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Table 6. Errors and convergence rate of the solution of IMBCS-2D, τ = h2, Example 2.

I E∞ CR∞ E2 CR2 Eµ
∞ CRµ

∞ Eµ
2 CRµ

2 iter

20 1.1899 × 10−3 5.7278 × 10−4 2.6630 × 10−3 1.6889 × 10−3 5
40 3.1606 × 10−4 1.9126 1.5524 × 10−4 1.8835 8.9879 × 10−4 1.5670 4.8498 × 10−4 1.8001 5
80 8.0990 × 10−5 1.9644 4.0237 × 10−5 1.9479 2.8785 × 10−4 1.6426 1.3132 × 10−4 1.8849 5
160 2.0468 × 10−5 1.9844 1.0228 × 10−5 1.9760 7.9171 × 10−5 1.8623 3.4373 × 10−5 1.9337 5
320 5.1263 × 10−6 1.9974 2.5777 × 10−6 1.9884 2.0558 × 10−5 1.9453 8.6548 × 10−6 1.9897 5

Example 3 (2D problem: noisy data). The test problem is as in Example 2, but with perturbed
measurements (7) defined as in [48]:

ϕρ(x, y) = ϕ(x, y) + ρ0
(
$(x, y)− 0.5

)
, (31)

where $(x, y) is a random function, uniformly distributed in domain [0, 2] × [0, 2] and ρ0 is the
level of noise.

We compare the precision of the three methods for solving the inverse problem for
one and the same temporal mesh. In Table 7, we present computational results for different
noise levels and time step sizes. For all runs, we set N1 = 40 and ε = 1× 10−5. The results
show that the better precision is obtained b IMIS-2D. Moreover, the bigger the noise level,
the finer the time mesh should be.

Table 7. Errors and convergence rate of the solution of inverse methods, N1 = 40, Example 3.

ρ0 τ Method E∞ E2 iter Reach Accuracy
ε = 1× 10−5

0.002 0.01 IMIS-2D 6.3931 × 10−4 2.9009 × 10−4 4 yes
IMCNS-2D fails fails no
IMBCS-2D 3.0327 × 10−1 1.5163 × 10−1 2 no

0.002 0.005 IMIS-2D 6.3919 × 10−4 2.9014 × 10−4 4 yes
IMCNS-2D 2.6857 × 10−2 9.7986 × 10−3 4 yes
IMBCS-2D 3.0327 × 10−1 1.5473 × 10−1 2 no

0.002 0.001 IMIS-2D 6.3909 × 10−4 2.9020 × 10−4 4 yes
IMCNS-2D 6.3907 × 10−4 2.9022 × 10−4 4 yes
IMBCS-2D 8.7514 × 10−4 3.4776 × 10−4 4 yes

0.01 0.001 IMIS-2D 3.8821 × 10−3 1.4497 × 10−3 4 yes
IMCNS-2D fails fails no
IMBCS-2D fails fails no

Example 4 (2D problem: real data). For the simulations, we take the data from [13], in which
the authors collected the results from investigations and observations reported in many other papers.
Just as in [13], we assume that

- Approximately 25% of the bees in the colony are forager;
- The colony’s bee population ranges from 20,000 to 60,000 individuals;
- The foraging domain with rectangular symmetry measures 2 km by 2 km and is represented as

[0, 2] × [0, 2];
- The beehive is positioned in the center (1.0 km, 1.0 km) of the terrain;
- The diffusion rate is 0.1 km2/day;
- Forager bees tend to stay away from the boundaries of this area;
- The initial state at the beehive is u0(x, y) = N0G(x, y), where N0 = 10,000 and G(x, y) rep-

resents a symmetric Gaussian density function (1), centered at (1, 1) with standard deviation
1.5812 × 10−4;
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- Mortality rate µ = 1/6.5 day−1, maximal production parameter β = 2421.13, sigmoidal
Hill production parameter χ = 7173.56, stable and unstable uncontaminated equilibrium
population size U+ = 10,000, U− = 7000, respectively;

- In the case q = 0, µ = const, at the sunrise of the days n = 1,2,. . . , the density and the total
number of the forager bees are represented by [13]

u(n + 1, x, y) = G(x, y)U(n + 1), (32)

U(n + 1) =
βU(n)2

χ̃2 + U(n)2 + e−µU(n), n = 0, 1, . . . ., (33)

χ̃2 =
(U+ + U−)2 − (U+ −U−)2

4
= χ2e2µ.

For the simulations, we take I = J = 100, τ = 0.005 and ε = 1.e−3. The computations
are performed day by day, starting with initial Condition (32), namely u0 := u(n + 1, x, y).
In order to avoid an extremely large initial condition for the inverse problem, for this
practical example, we obtain v0, integrating (8) from t0 := tn to T, depending on which day
the simulations are performed. Thus, applying the exact and rectangle method integration,
we derive v0 = (uK − u0)/(T − t0). Moreover, we rescale both the inverse and direct
problems, setting u = pu, p = 2πσ2. As a result, we obtain the same direct and inverse
problems (2), (3), (11) and (12), with initial condition u0 := pu0. To generate measurements
ϕ, we solve the direct problem.

We compute the solution of the inverse problem by IMIS-2D in the first two days, since
in that period the bees may remain uncontaminated [13], even in regions with pesticide.

In Figure 1, we depict the recovered mortality rate µ = max(0, µ) in the first day after
6 h and on the second day after 8 h. Although the recovered rate is not a constant, we
observe that the values of µ are close to the exact one, namely µ = 0.1538/1 day−1.

The center-symmetric pictures in Figures 2–4 show the spatial density of uncontami-
nated bees obtained by the inverse problem. Over the first two days, uncontaminated bees
are progressively moving away from the hive. This behavior and location pattern matches
the one presented in [13]. The regions with different density are smoother, since we study
only the contamination-free phenomenon, and as a result we consider a simpler model in
comparison with [13].

In Figure 5, the decreasing value of the norm (29) at each iteration is illustrated.
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Figure 1. Recovered µ at Day 1, after 6 h (left), and at Day 2 after 8 h (right), Example 4.
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Figure 2. Recovered bee density at Day 1 after 2 h (left), Day 2 after 2 h (right), Example 4.
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Figure 3. Recovered bee density at Day 1 after 6 h (left), Day 2 after 6 h (right), Example 4.
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Figure 4. Recovered bee density at Day 1 after 8 h (left), Day 2 after 8 h (right), Example 4.
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7. Conclusions

In this paper, we presented a numerical analysis of forager bee looses in a spatial
environment without contamination. The approach was based on the inverse problem
for recovering the mortality rate in a honeybee difference equation model that describes
forages leaving and entering the hive each day. The mathematical formulation of this
process lead to the study of the reaction coefficient identification on the base of final time
measurements of the forage bee concentration. After introducing a new solution variable,
we reduced the inverse problem to a forward one with a non-local difference operator
and a non-local initial condition. For the numerical solution of the problem, different
time-stepping techniques were applied to the ODEs system, resulting from second-order
difference approximation.

We illustrated, by numerical tests, that for exact measurements, the order of conver-
gence of the solution of the inverse problem for all three methods is the same as in the
underlying methods. In the case of perturbed measurements, the most efficient was the
iterative approach based on implicit time-stepping. We also observed that in order to
achieve good accuracy of the recovered solution, the larger the deviation, the smaller the
time step size should be.

The simulations with real data illustrate that the solution of the inverse problem
successfully recovers the bee density and the mortality rate of the forage bees and produces
relevant results.

In our forthcoming work, we plan to propose a numerical method for solving the
inverse problem for a spatial model describing the collapse of honey bee colonies caused
by the contamination of foraging bees with pesticides.
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