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Abstract: The symmetry and asymmetry of chaotic motion in the planar mechanism is investigated
for a crank arm and connecting rod due to the motion of a flat-faced follower. The level of chaos is
investigated using the conception of the Lyapunov exponent parameter and phase-plane diagram
at different cam speeds with and without the use of coefficients of restitution. Moreover, the fast
Fourier transform (FFT) of power spectrum analysis technique is used based on SNR factor values
at different cam speeds and different coefficients of restitution. The wave forms and histograms
of nonlinear responses are analyzed using the SolidWorks program for the crank arm, connecting
rod, and flat-faced follower. There is a clearance between the flat-faced follower and its guides
while the oscillation motion of the crank arm and connecting rod is described as the motion of a
double pendulum. The level of chaos is increased with increases in the cam speeds and coefficients
of restitution.

Keywords: coefficient of restitution; Lyapunov exponent; phase-plane diagram; power spectrum;
chaos level

1. Introduction

The asymmetric of chaotic motion is a major problem in a planar mechanism which
is solved by enlarging the return force based on the rate of the spring stiffness and spring
preload. The application of this research can be found in metalworking machines, since the
symmetric rhythm in the translation motion is used to chop the workpiece. The motivation
behind this paper is to help the bionic quadruped robot to avoid jerk and to minimize the
side thrust due to the movement of the follower inside the guides in which the chaotic
phenomenon in the crank arm and connecting rod has been detected. The novelty will
start from calculating the time delay and the local and global embedding dimensions of
the point linear displacement in which these parameters have been used in the calculation
of the Lyapunov exponent, and Fast Fourier Transform with and without the use of a
coefficient of restitution. In the Section 1, the author provides (13) references in which the
symmetry and non-symmetry in the value of the time delay, point linear displacement,
general, and local embedding dimensions have been discussed. The symmetric and non-
symmetric values of these mentioned parameters are employed to calculate the exponent of
the Lyapunov parameter with and without the use of a coefficient of restitution. Sometimes
but not always, this kind of mechanism should be connected to the robotics to absorb
the strain energy of the chaotic motion that might happen in robotics and to keep the
robotics walking on horizontal straight territory. The term with and without a coefficient
of restitution has been applied to the flat-faced follower, since the main reason of chaotic
motion in this paper is the contact and impact between the follower and its guides and
between the cam and the follower while there is no impact and contact on either the crank
arm or the connecting rod. Moreover, the clearance between the follower stem and its
guides is also the main cause of the chaotic motion. The chaotic motion of the crank arm
and connecting rod might be happening because of asymmetric motion at high speeds
of the cam without the use of a coefficient of restitution. Yan and Tsai proposed a new
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approach of the variable cam rotational speed trajectory by using the Bezier function. The
critical time of follower separation is analyzed by developing a mathematical model with
the use of two different cam motion programs [1]. Osorio et al. presented the analysis
of corner-impact bifurcation when the cam profile is characterized by a discontinuous
acceleration under the variation in cam speeds. A sudden transition from periodic attractor
to chaos happens due to the detachment between the cam and the follower and complex
nonlinear dynamics phenomenon which occurs [2]. Bifurcation diagrams with a changing
clearance value, friction coefficient, and driving speed are drawn. Hongbin et al. derived
the nonlinear dynamic model using fourth order Runge–Kutta method with regards to
the cam profile machining error at different speeds. They conclude that the operating
dobby speed should not exceed 900 r/min and a small follower vibration response has
been observed at 400 r/min [3]. Nguyen et al. solved the nonlinear system of equations
of the nodal positions from a given displacement of the follower using the finite element
method to design the cam profile [4]. In the experiment setup, a photo-elastic apparatus
is used to check and verify the value of the contact stress at different contact locations of
the follower with the cam. Lagrange equations of motion are used to obtain the nonlinear
equations of motion with friction for the collision period. Due to the impact, the kinetic
energy is compared with the pre-impact kinetic energy [5]. De Groote et al. estimated
the set of critical systems parameters that leads to a hazardous jump in the cam follower
system by presenting an ordinary differential equation of motion. They assured that
the continuous contact between the cam and follower cannot lead to harmful periodic
impacts [6]. Moreover, De Groote et al. used the experimental data of the slider crank
setup for which the state dependent load interactions are unknown. They discovered an
accurate representation of the unknown spring force interaction and friction phenomena
acting on the slider mechanism [7]. Cheng et al. designed and optimized a composite
cam-follower mechanism which controls their spatial temporal motions to exactly follow
trajectories and timings. They proposed that the follower can perform spatial motion on a
planar, cylindrical, or spherical surface controlled by the 3D cam’s profile [8]. Chang et al.
developed a new fault diagnosis method of the variational box dimension kernel fuzzy
mean clustering algorithm to analyze a positive stress and friction force change at high
speeds of the roller group. The clearance between the main roller and the cylinder cam
and the massive friction force between the main roller and the cam curve slot are the main
wear factors in theoretical analysis and test experiments [9]. The geometric nonlinearity of
the dynamic model is studied for a planar five-links hinge lever mechanism in which the
link deformation is assumed to be finite. Khajiveva et al. obtained the equation of motion
of the planar mechanism using Novozhilov’s nonlinear theory of elasticity by taking into
account the longitudinal and lateral vibration [10]. Jiang and Chen built a dynamical model
of a planar rigid (2-DOFs) with (nine bars) rigid-flexible mechanism in which the revolute
clearance and translational clearance are included. The nonlinear dynamic response is used
in the phase-plane diagram, Poincaré map, and bifurcation diagram at different clearance
sizes and different speeds [11]. Alzate et al. showed that the chattering motion in the cam
follower mechanism leads to transition routes to chaos by infinite multi impact and it is
originated by a grazing bifurcation diagram [12]. The effect of the interface roughness of
the surface morphology on the dynamic characteristic of oblique impact in the cam follower
system is studied by Wangqun et al., in which the normal contact stiffness with a fractal
dimension is considered [13]. They showed that the dynamic response changes between
the quasi-period and chaos based on the length of the contact line and the stability of the
dynamic response based on the increment in the interphase roughness. The aim of this
paper is to discuss the symmetric and asymmetric rhythms of chaotic motion for the crank
arm and connecting rod due to the movement of the follower at different cam speeds and
at different coefficients of restitution.
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2. Chaotic Phenomenon Detection Using Linear Displacement

The SolidWorks program is used to find the solution of the dynamic motion [14] of the
flat-faced follower, crank arm, and connecting rod. Follower displacement is used in the
simulation by taking into consideration the effect of impact and friction. The guide distance
(G.D.) 17 mm is selected at various speeds (n) of the cam (100 rpm, 300 rpm, 500 rpm, and
700 rpm). When the cam is spinning anticlockwise, it will force the flat-faced follower
to move with three degrees of freedom (up–down, right–left, and rotation about z-axis)
inside its guides; because of the clearance between the follower and the guides, chaotic
motion will happen. There is a joint between the follower and the connecting rod and
between the connecting rod and the crank arm. The motion of the follower will force the
connecting rod and the crank arm to oscillate as a double pendulum. Both the cam and the
crank arm are spinning about a fixed pivot. Figure 1 shows a planar mechanism with three
moving links. All the dimensions are measured in mm. The SolidWorks program has three
integrator solvers including GSTIFF, SI2-GSTIFF, and WSTIFF, which GSTIFF is used in the
simulation. The maximum iteration is 25, while the initial integrator step size is 0.0001. The
minimum integrator step size is 0.0000001, while maximum integrator step size is 0.001.
The simulation parameters are the sliding contact velocity, kinetic coefficient of friction,
contact body stiffness, exponent, maximum damping, and penetration. The symmetry
and asymmetry of the chaotic phenomenon is investigated in which this phenomenon has
been produced by the simulation artifacts based on the point linear displacement of the
crank arm and connecting rod due to the movement of the follower. The points with the
coordinates (X, Y, Z) in millimeters (−447.54, 9.47, −5), (−394.23, 13.73, −5), and (−40.38,
−0.2, 0) which have been chosen on the crank arm, connecting rod, and flat-faced follower,
respectively, are assigned in the SolidWorks program. Figure 2 shows the statistical diagram
for the peak of point linear displacement for the follower. The systems with cam speeds
(n) of 100 rpm, 300 rpm, 700 rpm, and 900 rpm and a guide distance (G.D.) 17 mm are
selected in the simulation. The statistical diagram of the follower movement shows how
many times that the follower detaches from the cam at different heights of detachment.
The detachment starts at a follower movement of 105 mm for a cam speed of 100 rpm
and it occurs couple times, while the separation occurs a hundred times for cam speeds of
300 rpm, 700 rpm, and 900 rpm at the same follower movement of the follower. The
separation between the cam and the follower happens 1800 times at a follower movement
of 106 mm for whole cam speeds. The separation between the cam and the follower
decreases with the increment in follower movement for whole cam speeds, while the
detachment completely disappears at a cam speed of 300 rpm after a follower movement of
114 mm.
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the cam.

3. Global Dimensions of Chaotic Level

Global dimensions represent an algorithm which determines the global number of
coordinates (dE) of a space data factor of point linear displacement with the component
[s(n), s(n + T), . . ., s(n + (dE − 1)T)] while the method of false nearest neighbors is used.
s(n) represents a format of a single column of the data set of the point linear displacement.
The general dimension (dE) is projected on the x-axis in which it is necessary for unfolding
the data of the linear displacement against time. The exponential function of the global
false nearest neighbor trend is decreased with the increase in the embedding dimensions
at different cam speeds. A higher value of the time delay produces a trend of the global
false nearest neighbors moving further away from the intersection with the x-axis of the
embedding dimensions, while a smaller value of the time delay produces a trend of the
global false neighbors intersecting with the x-axis of the embedding dimensions. Figure 3
shows the global embedding dimensions of a cam speed of n = 100 rpm at a coefficient
of restitution of 0.2, and a cam speed of n = 400 rpm without the use of a coefficient of
restitution. The value of the time delay is three for a cam speed of 400 rpm and one
for a cam speed of 100 rpm. Fewer samples of point linear displacement are processed,
while there are a number of samples to skip at the beginning of the data of the point
linear displacement before evaluating the global false nearest neighbors. The minimum
dimension is the smallest dimension in which the algorithm will test the unfolding of the
original (ASCII) data of the point linear displacement using time delay coordinates. The
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default is one. The maximum dimension is the largest dimension in which the algorithm
will investigate the false neighbor in the data of point linear displacement. The default is
15. The value of the time delay is too small when the global embedding dimension (dE) is
underestimated, while dE is overestimated when the value of the time delay is too large.
The decorrelation time is set at 10 times the value of the time delay from the average mutual
information (AMI) as a default. The maximum neighbors, Tolerance 1, group factor, and
Tolerance 2 are 400, 17.1, 20, and 1.81, respectively.
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4. Local Dimensions of Chaotic Level

The local dimensions algorithm determines the number of active dynamical degrees
of freedom (dL) in the data set of point linear displacement based on the integer values
of the time delay and embedding dimensions. The value of the time delay is an integer
which represents the number of time units between the two samples of the point linear
displacement. The method of average mutual information is used to find the value of the
time delay. The value of the local embedding dimension (dL) should be smaller than or
equal to the value of the general dimension (dE) and both are integers because globally
the orbits of the system are twisted in the coordinate system constructed by the data of
point linear displacement and its time delay. This dynamics tool converts the American
Standard code for information and interchange (ASCII) file of point linear displacement
to a simplified computational singular perturbation (CSP) format. The local and global
dimensions are used to distinguish the difference between a low and high dimension of the
chaos. The dynamic system has a low dimensional chaos when the embedding dimension is
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smaller than or equal to three [15], while the dynamic system has a high dimensional chaos
when the embedding dimension is greater than three [16]. There is no formal definition
between low dimensional chaos and high dimensional chaos. High dimensional chaos has
been known as hyperchaos and it is characterized by more than one positive Lyapunov
exponent parameter value, while low dimensional chaos is characterized by one positive
Lyapunov exponent parameter value. The vertical axis is the percentage of bad predictions
averaged over the number of starting locations selected by the user. The horizontal axis
is the dimension of the model built in the algorithm. Figure 4 shows the local dimension
histograms when the percentage of bad predictions for the date of point linear displacement
becomes independent of the dimension and of the number of neighbors at (dL = 2, and 2) to
be the correct local in the dynamical dimension of the planar mechanism at a bad prediction
of 49.5%, and 44%. Four evaluations of predictive capability in each of the dimensions
for a default choice of 20, 40, 60, and 80 neighbors are used in the model building. The
size criterion (beta = 0.15) with the number of neighborhoods as 3000 is selected. Fewer
samples of point linear displacement are processed, while there are a number of samples
to skip at the beginning of the data of the point linear displacement before evaluating the
global false nearest neighbors. The value of the global dimension is reduced to be greater
than or equal to dE but the default is 15, while the decorrelation time is set at 10 times
the value of the time delay from average mutual information (AMI) as a default. Time
lag is the value inherited from the AMI. Bad time predicts a time default to the time lag
from the AMI and this sets the time at which the quality of the predictions are evaluated
by the algorithm. A large value of the number of neighborhoods is reasonable, which
examines the quality of the predictions and will be an average over this quantity. The
smaller the quantity, the faster the computation and the larger the root mean square (RMS)
fluctuation about a reported mean. The group factor is a technical parameter used in the
multidimensional search routine within the algorithm. The size criterion (beta) calculates
how far apart as a fraction of the linear displacement attractor size points need to move
to declare a bad prediction capability. The default is 0.1 but this value can be increased
as far as 0.35 within the limits of accuracy for this algorithm. The exponential trend of
local embedding dimensions measures the level of chaos, since the value of bad prediction
decreases with the increase in the local embedding dimensions until the level of chaos
settles down at a constant value. This constant value of the chaos level gives an indication
of a low and high level of chaos.
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5. Chaotic Detection Using Local Lyapunov Exponent

The local Lyapunov exponent with and without a coefficient of restitution is used to
detect the periodic and non-periodic motion of the point linear displacement attractor for
the follower, connecting rod, and crank arm. The higher the value of Lyapunov exponent
parameter, the more non-periodic the motion and chaos. When the value of the Lyapunov
exponent parameter is positive, this means that there is an asymmetric rhythm in the
attractor of follower displacement. A negative Lyapunov exponent parameter indicates a
symmetric rhythm of the periodic motion. The Lyapunov exponent is quantified using the
MATLAB code of the Wolf algorithm [17]. Equations (1) and (2) are used to build the Wolf
algorithm code of the dynamic tool [18,19].

d(t) = Deλt (1)

y(i) =
1

∆t
[lndj(i)] (2)

As stated earlier, a local embedding dimension smaller than or equal to three means
that the dynamic system has a low level of chaos, while a dynamic system has a high level
of chaos when the local embedding dimension is greater than three. In this paper, the
local embedding dimension is smaller than three, which means that the mentioned planar
mechanism has a low level of chaos. The Wolf algorithm is used since our mentioned
dynamical system has a low level of chaos. The embedding dimension should be greater or
equal to dE as determined from the global false neighbors code algorithm, while the local
dimension should be dL as determined from the local false neighbors code algorithm. Fewer
numbers of samples of point linear displacement are processed, while there are a number
of samples to skip at the beginning of the data of the point linear displacement before
evaluating the global false nearest neighbors. Time lag is the value inherited from the AMI.
The correlation time is set to the time delay from the AMI. The number of starts of places on
the point linear displacement attractor during the evaluation of the Lyapunov exponent in
which all of these starts is documented for each number of steps beyond the starting point.
It is recommended to accept the default of 1750. The polynomial order to fit in state space
coordinates is used by making a local fit to neighborhood-to-neighborhood predictors.
The linear term is used to determine the local Jacobian matrix in the quantification of the
Lyapunov exponent. The default is cubic three. Moreover, the index factor is taken into
account as a technical aspect of the search for neighbors in multidimensional space. The
multi sampling time is evaluated in setting units for the computation of the Lyapunov
exponent. It is recommended to accept the default of one. The power of length two is
selected to be the total length from each point on the linear displacement attractor in which
the algorithm evaluate the products of Jacobian matrices and the Lyapunov exponent. It is
recommended to accept the maximum of 1024. True exponents have the same magnitude
forward and backward in time simply by changing the sign. The default direction is
forward. Figure 5 shows the local Lyapunov exponent of the follower movement against
the global embedding dimensions at a cam speed 1800 rpm and a guide distance of
17 mm. The number of samples (16,235) of point linear displacement is selected to increase
the precision of the value of the Lyapunov exponent at their respective equilibrium point.
When the simulation time is increased, this leads to a settling down in the value of the
Lyapunov exponent. The value of the Lyapunov exponent is positive, which means that
the planar mechanism is in chaotic motion.
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6. Fast Fourier Transform (FFT)

Fast Fourier transform of the power spectrum analysis technique is used to check the
chaos level based on the signal-to-noise ratio factor (SNR) and the peak of the dominant fre-
quency in the FFT diagram. The FFT diagram has been made based on the peak amplitude
of the FFT function the time frequency value until the function of FFT settles down. The
x-axis represents the time frequency (in mHz), while the y-axis reflects the peak amplitude
of the FFT function (in mm). The value of the SNR factor decreased from a positive to a
negative sign, which gives an indication of the chaos motion. Figure 6 shows how the peak
amplitude of the FFT function is started appearing with the increasing of cam speeds at
a guide distance of 17 mm until the function of FFT settles down at 700 samples of point
linear displacement of the follower at the point of contact with the cam. Moreover, the SNR
factor value decreased with the increase in cam speeds. The level of chaos is low as shown
in Figure 6a, while the chaos is at a high level as indicated in Figure 6d.
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7. Results and Discussion

Figures 7 and 8 show the mapping of point linear displacement at various speeds of
the cam at G.D. = 17 mm for the crank arm and connecting rod. The dynamic motion of the
crank arm and connecting rod is similar to the dynamic motion of the double pendulum.
The crank arm represents the first segment of the pendulum, while the connecting rod
reflects the second segment of the pendulum. The track of the oscillation motion of the
crank arm and connecting rod is irregular, which gives an indication of the non-periodic
motion and chaos. The chaos of the oscillation motion of the crank arm is incremented with
the increment in cam speeds. The track path of the oscillation motion of the connecting rod
is smaller than the track path of the oscillation motion of the crank arm. The track path
of the oscillation motion of the crank arm and connecting rod is non-periodic as shown in
Figures 7a,b and 8a,b, while the chaos motion of the oscillation motion of the crank arm and
connecting rod is indicated in Figures 7c,d and 8c,d. The time frequency of the oscillation
motion of the connecting rod is smaller than the time frequency of the crank arm. The
time frequency is irregular with the increment in cam speeds and its irregularity becomes
more chaotic at a high speed of the cam. The motion of the crank arm and connecting rod
is asymmetric based on the irregular track of the oscillation motion without the use of a
coefficient of restitution, since there is no contact and impact does not happen on either
the crank arm or the connecting rod. Figures 9 and 10 show the histogram mapping of
the connecting rod and crank arm at different cam speeds, respectively. The oscillation
motion of the connecting rod is regular and it does not repeat itself frequently until the
displacement reaches 234 mm as shown in Figure 9a,b, while it repeats a small amount
as shown in Figure 9c. The oscillation motion of the connecting rod does not repeat itself
at all at the displacement of 230 mm as shown in Figure 9d. The oscillation motion of the
crank arm does not repeat itself until the displacement reaches 289 mm as indicated in
Figure 10b,d, while the oscillation motion also does not repeat itself at the displacement of
287 mm, as shown in Figure 10d. The maximum counts of the oscillation motion are 950,
2000, 2500, and 2300 at the displacement of 301 mm as illustrated in Figure 10a–d.
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Figure 8. Mapping of point linear displacement for connecting rod at different cam speeds.

Table 1 shows the local Lyapunov exponent against cam speeds at different guide
distances for the follower. The value of the local Lyapunov exponent is varied sinusoidal
with the increasing of cam speeds while the value of the Lyapunov exponent is incremented
with the increment in guide distances. The system with a cam speed of 1500 rpm and a
guide distance of 17 mm is at a high level of chaotic motion, while the system with a cam
speed of 1500 rpm and a guide distance of 19 mm is at a low level of chaotic motion. The
chaotic level is the same for the systems with cam speeds (700 rpm) and guide distances
(17 mm and 19 mm).

Table 1. Local Lyapunov exponent against cam speeds for different guide distances.

Cam
Speeds 700 rpm 900 rpm 1200 rpm 1500 rpm 1800

rpm
2000
rpm

Guide
Distance =

17 mm
1.701 1.386 1.392 1.912 1.337 1.432

Guide
Distance =

19 mm
1.710 1.661 1.513 1.308 1.368 1.652
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Figures 11 and 12 show the trend of point linear displacement for the follower against 
time at different cam speeds and different coefficients of restitution. There is no effect of 
the coefficient of restitution on the point linear displacement for the follower. The fre-
quency response of the dwell period is decreased with the increment in time and with the 
increment in cam speeds. The point linear displacement of the follower is symmetric 
against time at different values of the coefficients of restitution. There is no symmetry in 
the dwell period of time at different cam speeds. 

Figure 10. Histogram mapping of the crank arm at various speeds of the cam.
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Figures 11 and 12 show the trend of point linear displacement for the follower against
time at different cam speeds and different coefficients of restitution. There is no effect of the
coefficient of restitution on the point linear displacement for the follower. The frequency
response of the dwell period is decreased with the increment in time and with the increment
in cam speeds. The point linear displacement of the follower is symmetric against time at
different values of the coefficients of restitution. There is no symmetry in the dwell period
of time at different cam speeds.
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Figure 11. Follower linear displacement against time at a cam speed of n = 100 rpm and different
coefficients of restitution.

Figure 13 shows the trend of global false nearest neighbors and when this trend
approaches zero, which extracts the value of the embedding dimension for the crank arm at
a cam speed of n = 100 rpm and a G.D. = 17 mm. Figure 14 shows the trend of the average
mutual information, in which the minimum value in this trend gives an indication of the
time delay for the crank arm at a cam speed of n = 100 rpm and a G.D. = 17 mm.
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Figure 15 shows the Poincaré map of the follower displacement at different cam 
speeds and different coefficients of restitution. The Poincaré map is performed between 
the current point linear displacement and the next point linear displacement of the fol-
lower to catch the next periodicity of the follower movement. The chaos is at a low level 
as shown in Figure 15a, while the chaos is at a high level as illustrated in Figure 15d. The 
quasi-periodic motion of the follower movement is shown in Figure 15a,b, while the non-
periodic motion is shown in Figure 15c. The chaotic motion of the follower is shown in 
Figure 15d. The Poincaré map gives an indication that the level of chaos is increased with 
the increment in cam speeds and with the increment in the coefficients of restitution. The 
black dots being stationed around the area inside the Poincaré diagram gives an indication 
of non-periodic motion and chaos, while the Poincaré diagram gives an indication of 
quasi-periodic motion when the black dots are separated from each other inside the Poin-
caré map. 

Figure 13. Embedding dimensions for crank arm at (n = 100 rpm).
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Figure 14. Time delay for crank arm at (n = 100 rpm).

Figure 15 shows the Poincaré map of the follower displacement at different cam speeds
and different coefficients of restitution. The Poincaré map is performed between the current
point linear displacement and the next point linear displacement of the follower to catch
the next periodicity of the follower movement. The chaos is at a low level as shown in
Figure 15a, while the chaos is at a high level as illustrated in Figure 15d. The quasi-periodic
motion of the follower movement is shown in Figure 15a,b, while the non-periodic motion
is shown in Figure 15c. The chaotic motion of the follower is shown in Figure 15d. The
Poincaré map gives an indication that the level of chaos is increased with the increment in
cam speeds and with the increment in the coefficients of restitution. The black dots being
stationed around the area inside the Poincaré diagram gives an indication of non-periodic
motion and chaos, while the Poincaré diagram gives an indication of quasi-periodic motion
when the black dots are separated from each other inside the Poincaré map.

Figure 16 shows the time history of the point linear displacement of the follower at
different cam speeds and different coefficients of restitution. Figure 16 is related to Figure 15
since there are three sets of the periodicity of the follower displacement as mentioned in
Figure 16a,c,f, while there are two sets of the periodicity of the follower movement as
depicted in Figure 16b,d. There is just one set of the periodicity of the follower movement
as shown in Figure 16e.

Figure 17 shows the phase-plane diagram of the point linear displacement of the
follower at different cam speeds and different coefficients of restitution. The point linear
displacement of the follower is varied (follower velocity) with the increment in cam speeds.
The cross linking of the follower movement attractor is increased with the increment in the
time simulation in which the chaotic motion is shown in Figure 17c,d. The chaotic motion
is in low level and intangible with the increment in the coefficients of restitution as shown
in Figure 17a,b. The simulation time is increased based on the contact between the cam and
the follower and between the follower and its guides without the effect of the coefficient
of restitution. Figure 18 shows the histogram of phase-plane mapping of the follower
displacement at different cam speeds and different coefficients of restitution. The line at
the left hand side represents the follower velocity, while the counts at the right hand side
reflect the follower displacement. The value of the gradient of the follower displacement is
tiny which appears like a line around zero compared with the large scale of the follower
displacement. The follower velocity is increased with the increasing of cam speeds and
with the increase in the coefficients of restitution. The separation between the cam and the
follower happened 1800, 3500, 2000, and 1600 times, as indicated in Figure 18a–d after the
follower displacement became 100 mm; and the counts of the separation occurring between
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the cam and the follower decreased with the increase in cam speeds and with the increase
in the coefficients of restitution until they reached zero before the follower displacement
became 120 mm.
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Figure 18. Histogram of phase-plane mapping for the linear displacement and velocity of the follower
at different cam speeds and different coefficients of restitution.

Figure 19 shows the fast Fourier transform mapping of the flat-faced follower at
different cam speeds and different coefficients of restitution for the guide distance of 17 mm
using the power spectrum analysis technique. The chaotic level of this planar mechanism
is increased with the increase in cam speeds and with the increase in the coefficients of
restitution based on the SNR factor and the appearance of the amplitude of the peak of the
FFT function. Figure 20 shows the mapping of the FFT function at different cam speeds at
the guide distance of 19 mm. As stated above, the SNR factor value and the appearance of
the amplitude of the peak of the FFT function play an important role in the detection of the
level of chaos in the planar mechanism.
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8. Conclusions

The finding of this paper is to detect the chaotic phenomenon for a crank arm and
connecting rod due to the movement of the follower using fast Fourier transform, the
largest Lyapunov exponent, and local and general embedding dimensions. The value of
the local Lyapunov exponent is decreased with the increment in cam speeds in the presence
of a coefficient of restitution. The value of the local Lyapunov exponent is increased with
the increment in cam speeds without the use of a coefficient of restitution. There is no
effect of the coefficient of restitution on the point linear displacement of the follower. The
frequency response of the dwell period is decreased with the increment in time and with
the increment in cam speeds. The point linear displacement of the follower is symmetric
against time at different values of coefficients of restitution. There is no symmetry in the
dwell period of time at different cam speeds.
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