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Abstract: Research on quantum computers has advanced significantly in recent years. If humanity
ever creates an effective quantum computer, many of the present public key cryptosystems can be
compromised. These cryptosystems are currently found in many commercial products. We have
devised solutions that seem to protect us from quantum attacks, but they are unsafe and inefficient
for use in everyday life. In the paper, hash-based digital signature techniques are analyzed. A
Merkle-tree-based digital signature is assessed. Using a Verkle tree and vector commitments, the
paper explores novel ideas. The authors of this article present a unique technology for developing a
post-quantum digital signature system using state-of-the-art Verkle tree technology. A Verkle tree,
vector commitments, and vector commitments based on lattices for post-quantum features are used
for this purpose. The concepts of post-quantum signature design utilizing a Verkle tree are also
provided in the paper.

Keywords: quantum cryptography; vector commitments; lattice-based vector commitments; Verkle
tree; cryptographical application

1. Introduction

In the future, quantum computing will become more common. Quantum encryption, a
technique for regular computers, can protect against attacks from quantum computers. It is
also called post-quantum cryptography. Quantum computers can do complex calculations
much faster than current computers by using the special properties of quantum physics.
For example, a quantum computer could complete tasks that take a regular computer
several years in just a short time [1].

Quantum computers will probably break most, if not all, of the standard cryptosystems
currently used in practice. RSA-based systems are widely used today and they are at risk
of being hacked by quantum computers. Many commercial products and applications rely
on the RSA encryption system because it is one of the most commonly used public key
cryptosystems, especially in advancing encryption technologies [2].

There have been a number of suggested alternatives to RSA systems, but none of
them can be utilized in practice because of security or performance difficulties. Hash-based
signature schemes are one of several that have been suggested. Since random numbers are
employed as the starting random sequence of systems, their security depends on the hash
function’s ability to resist collisions [3]. Designing and putting into practice secure and
effective post-quantum cryptosystems takes a lot of work.

There have been numerous suggestions for RSA system substitutes, but none of them
can be implemented in real life because of performance or security issues. The hash-based
signature approach is one of the many that have been suggested. Since random numbers are
used to create systems’ initial random sequences, the hash function’s ability to withstand
collisions is crucial to their security. Developing and implementing safe and effective
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post-quantum cryptosystems is a time-consuming process. When quantum computing
takes over, RSA and other asymmetric algorithms will no longer be able to secure our
private data. Because of this, we are aiming to create post-quantum systems [4,5].

In reality, attacks from quantum computers can compromise conventional digital
signature technologies. Our objective is to create RSA substitutes that can withstand attacks
from quantum computers. Hash-based digital signature schemes represent one of the
choices. The cryptographic hash function is used by these schemes. These digital signature
methods are secure because the hash algorithms they employ have low collision rates. The
safety of these systems is determined by the security of their cryptographic hash functions.

We reviewed hash-based one-time signature schemes that make use of Merkle trees.
These schemes are post-quantum and can resist quantum attacks. The problem of these
schemes is a very large size of the signature. NIST has accepted hash-based digital signature
SPHINC+, but it still has the efficiency problems. SPHINCS+ is a bit larger and slower
compared to the other two NIST standards, but it serves as a valuable backup for a key
reason: it relies on a different mathematical approach than the three selections made
by NIST.

Nevertheless, there are Verkle trees, which are powerful upgrades to Merkle trees,
which are more effective and offer more efficient verification procedures by retaining
only essential information. This cuts down essential space required for storage purposes.
Therefore, replacing Merkle can greatly reduce the size of the signature. In the paper, we
discus Verkle tree and vector commitments, which are implicit for Verkle trees.

We present a model of the novel post-quantum digital signature using Verkle trees
based on the research. Additionally, lattice-based vector commitments are taken into
consideration with regard to post-quantum properties.

2. Literature Review

Current encryption methods are easily broken by quantum computers. As a result,
attacks enabled by quantum computers can now be carried out successfully. Digital
signature methods that can withstand attacks from quantum computers are presented
in article [1]. Paper [2] also covers approaches for one-time signatures and one-way
functions. Work [3] provides an in-depth analysis of the state of cryptanalyses as well as
the implementation of the McEliece public-key encryption system with algorithmic and
parameter options.

According to article [4], scientists are interested in quantum computers. Cryptosystems
that rely on the integer factoring problem are susceptible to breach by quantum computing.
It implies that the RSA system, one of the most well-known public-key cryptosystems,
is vulnerable to attack by quantum computers. Numerous Quantum Random Number
Generation integration methods are provided in [5]. Different quantum number generator-
based hash-based digital signature schemes are discussed by the authors of papers [6–9]. In
article [10], the Merkle plan is described in full. In papers [11–13], the application of vector
commitment is described. Additionally, studies [11,14] describe Verkle trees. In paper [15],
we have a Merkle-tree-like construction based on the SIS lattice problem, which gives us a
stateless updatable VC scheme.

3. Hash-Based One-Time Signature Schemes

Hash-based signature schemes are a type of cryptographic signature scheme that
creates digital signatures using the properties of cryptographic hash functions. The basic
idea behind hash-based signatures is to hash a message and then use some transformation
of the hash value as the signature. Unlike traditional digital signature schemes based on
public-key cryptography (such as RSA or ECDSA), hash-based signatures do not rely on the
mathematical difficulty of certain problems like factoring large numbers or solving elliptic
curve discrete logarithms. Therefore, these schemes can be used in a post-quantum epoch.

In the realm of digital signatures, crucial for identity verification in digital transactions
and remote document signing, NIST has chosen three algorithms: CRYSTALS-Dilithium,
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FALCON, and SPHINCS+. SPHINCS+ is the representative of the hash-based digital
signature family.

The following is how hash-based one-time signature methods operate. The creation of
keys must come first. Next comes signature creation, and lastly comes signature verification.
The private key for the signature scheme is created by randomly generating a secret key.
The secret key must be kept private. The message is subjected to repeated application of
the secret key and hash function to generate a signature for that specific communication.
The signature is the result of the hash function after every iteration. Using the same hash
function and the message they received, the receiver of the signature confirms its legitimacy.
The message is concatenated with the public key (obtained from the secret key), and then
the hash function is applied repeatedly. If the outcome corresponds with what was sent,
the signature is considered legitimate.

Hash-based one-time signature methods show great potential for the post-quantum era.
We focus on signature schemes that rely entirely on the collision resistance of cryptographic
hash functions for their security. An example of such a scheme is the Lamport–Diffie
one-time signature (LDOTS) system [6]. Assuming computers have access to a constant
supply of truly random bits—basically, a series of impartial and independent coin flips—is
necessary when creating randomized algorithms and protocols. In real-world applications,
a sample that produces this sequence is obtained from a “source of randomness” [7].

We consider the Lamport–Diffie one-time signature’s security parameter n to be an inte-
ger. LDOTS generates an LDOTS key pair using a one-way function, f : {0, 1}n → {0, 1}n ,
and a cryptographic hash function, g : {0, 1}n → {0, 1}n , to generate a Lamport–Diffie
one-time signature key pair. Expression (1) states that the string of 2n bits of length n,
which makes up the LDOTS signature key X, is selected at random.

X = (xn−1[0], xn−1[1], . . . , x1[0], x1[1], x0[0], x0[1])εR{0, 1}(n,2n) (1)

The Lamport–Diffie one-time signature verification key is Y, which is calculated
according to expression (2):

Y = (yn−1[0], yn−1[1], . . . , y1[0], y1[1], y0[0], y0[1])ε{0, 1}(n,2n) (2)

The calculation of the key is conducted using the one-way function f, as represented
by function (3):

yi[j] = f ( xi[j]), 0 ≤ i ≤ n− 1, j = 0, 1. (3)

The Lamport–Diffie one-time signature key generation therefore requires 2n eval-
uations of f. 2n-bit strings of n length make up the signature and verification keys. If
an LDOTS signature is generated, document M ε {0, 1}∗ is signed using LDOTS with
signature key X. The message digest of M is g(M) = d = (dn−1, . . . , d0). The LDOTS
signature is sign = (x n−1[dn−1], . . . , x1[d1], x0[d0]

)
ε {0, 1}(n, n).

A length of n bit strings is used to construct this signature. They are selected as
function d for the message digest. A common way to measure how many cryptographic
operations a CPU can execute at once is to look at hashes per second [8]. The i-th bit string
of this signature is xi[0], but if the i-th bit in d is 0, the i-th bit string of this signature is xi[1].
The signature can be obtained without the evaluation of f. The signature is n2 in length.

Considering the instance of LDOTS verification, if we want to verify M’s signature,
sign =

(
signn−1, . . . , sign0

)
, the verifier produces the message digest d = (dn−1, . . . , d0).

Consequently, it is decided whether it is or it is not:(
f
(
signn−1

)
, . . . , f (sign0)

)
= (yn−1[dn−1], . . . , y0[d0]). (4)

The LDOTS generates keys and signatures fairly quickly, even with the large size of
the signature. It is advised to use the Winternitz one-time signature scheme (WOTS) to
lower the quantity of signatures. The idea is to sign several bits in a message digest with a
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single string, or to use a single string in a one-time signature key. Similar to LDOTS, WOTS
employs a cryptographic hash function and a one-way function.

A crucial characteristic of hash-based one-time signature structures is that the secret
key is only ever utilized to produce a single signature. This makes sure that an attacker
cannot produce additional signatures, if the secret key is compromised. There is a major
security benefit to using the secret key in this particular way. We use a hash-based method
only once to ensure the accuracy and legitimacy of digital signatures.

In most real-world scenarios, one-time signature approaches are ineffective since a
key pair can only be used once to create a signature. Ralph Merkle offered a solution to
this issue. He recommends employing a complete binary hash tree. Using a full binary
hash tree, the goal is to limit the authenticity of an arbitrary, but fixed, number of one-time
verification keys to one public key, which serves as the hash tree’s root.

4. Merkle Tree Authentication Scheme

It is difficult to use one-time signature schemes because each message requires a
different key pair. The problem is that this requires storing numerous digests (n), which is
impractical for everyday use. Ideally, we want a method where we can save a consistent-
sized digest regardless of the number of files. An idea to deal with this problem was the
Merkle tree. It substitutes a single public key for numerous verification keys using a binary
tree structure. Using a one-time Lamport or Winternitz signature scheme, this system
integrates a cryptographic hashing function. Any of these functions, and any one-time
signature scheme, can be utilized with the flexible Merkle signature scheme (MSS). Because
of this adaptability, users can select the hash function and signature scheme that best
meet their requirements and assurance levels. In this case, we imagine the existence of a
cryptographic hash function, abbreviated as g : {0, 1}∗ → {0, 1}n , that converts binary
strings of any length to binary strings of a fixed length n. The Merkle system uses the hash
function g as a fundamental building block to produce safe and trustworthy signatures.
Additionally, by providing the essential mechanisms for generating one-time signatures
that offer the necessary security features, the already selected one-time signature scheme
accomplishes the Merkle scheme.

When the person signing selects H ∈ N, where H ≥ 2, this creates the MSS key pair.
Consequently, a key pair is generated. This will make it feasible to sign and validate 2H

documents. It should be noted that this differs significantly from signature protocols like
RSA and ECDSA, where a single key pair may be used to sign/verify a large number of
documents. Nevertheless, in practice, this figure is also limited by the instruments utilized
to create the signature or by particular laws [9].

For every 0 ≤ j < 2H , the one who signed will produce 2H unique key pairs(
Xj, Yj

)
, 0 ≤ j < 2H , where Xj is the signature key and Yj is the verification key. The

Merkle tree’s leaves are g
(
Yj
)
, where 0 ≤ j < 2H . The following formula determines a

Merkle tree’s internal nodes: a parent node’s hash value is equal to the sum of its left and
right children. The Merkle tree’s base is the MSS public key. A series of 2H signature keys
make up the MSS secret key [10].

One-time signing keys are successfully used by MSS to generate signatures. The n-bit
d = g(M) must first be computed in order to sign a message on M. Next, using the s-th one-
time signature key Xs, s ∈

{
0, . . . , 2H − 1

}
, the signer creates a one-time signature, signOTS.

This one-time signature and the matching one-time verification key Ys are contained in a
Merkle signature.

In order to validate Ys, the signer additionally appends the authentication path and
index s to the verification key Ys. There are two steps in the verification of Merkle’s
signature. First, the verifier employs the matching one-time signature scheme verification
algorithm to verify d’s signature signOTS using the one-time verification key Ys. The verifier
assesses the one-time verification key Ys trustworthiness in the second step.

Merkle trees are quick to compute; in O(n) time, a Merkle tree with n nodes can
be created. Merkle proofs of a Merkle tree with a large number of nodes may then be
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unreasonably large. The tree’s height needs to be n in order to sign 2n messages. Our local
storage may be severely and expensively taxed by the Merkle proof itself.

5. Verkle Tree

Strongly superior to Merkle trees, Verkle trees enable much smaller verifications and
are more effective [11]. The ability of Verkle trees to reduce compute and storage costs
while preserving high security makes them indispensable for post-quantum cryptography.
Compared to standard Merkle trees, Verkle trees are more effective. As the amount of
cryptographic data grows, Merkle trees require more processing and storage. Verkle trees
provide a solution to this problem by reducing redundant data and the amount of storage
space required by intermediate nodes, considering scenarios when speed and efficiency are
essential relative to applications with limited resources. Verkle trees retain only the data
that are required, resulting in verification procedures that are more efficient.

Comparatively speaking, Verkle trees offer greater flexibility than Merkle trees. Merkle
trees need more hash computations as the dataset gets larger in order to confirm the integrity
of particular data blocks. Conversely, Verkle trees lessen the need for pointless intermediary
nodes, which lowers the amount of hash computations required for verification. Verkle
trees have the advantage of scalability, which makes them more appropriate for handling
massive databases effectively.

The primary assertion of the Verkle tree is that vector commitments, rather than
cryptographic hashing functions, can be used to create a Merkle tree. We first choose how
many pieces to divide our tree into (k pieces). After that, let us compute a Verkle tree using
the files f 0, f 1,. . ., fn. After splitting our files into k sub-groups, we also compute a vector
commitment over each of the portions of files. Additionally, for each file fi in the subset, we
determine whether each membership of the vector commitment proves PRi with relation
to VC. Then, along the tree, until we calculate the root commitment, we compute vector
commitments across previously computed commitments [12].

There are nine files and a branching factor of three in Figure 1. Specific sets of size k = 3
are created from the files, and membership proofs and a vector commitment are calculated
for each group. We are now left with the obligations VC1, VC2, and VC3. In addition to
computing the membership proofs PR9, PR10, and PR11 for the commitments VC1, VC2,
and VC3 with respect to the commitment VC4, we also compute the vector commitment
VC4 over these three commitments. The root commitment, in this case, is VC4.
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Each of them has specific characteristics when offering Merkle and Verkle proofs, and
the Verkle tree is an improved form of the Merkle tree. You must consider all of the sister
nodes in the tree, whose parent has a relationship with the node you want to check if you
want to prove a value in a Merkle tree. This indicates that the proof must contain all nodes,
which can take a lot of time. When it comes to providing proof, the Verkle tree requires
a different approach. It relies on “batching nodes” to verify multiple pathways at once,
significantly reducing the amount of evidence needed to establish a value. As a result,
while proving values, the Verkle tree is quicker and more effective than the Merkle tree.
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Verkle trees do not even need sibling nodes, unlike Merkle trees, which only need the
path and a small amount of extra information as proof. Consequently, a wider width is
advantageous to Verkle trees but not to Merkle Patricia trees. Both scenarios yield shorter
routes with a wider tree; however, in a Merkle Patricia tree, this advantage is lessened by
the additional expense of proving each width −1 sister node at each level. This cost is
absent in a Verkle tree.

A Verkle tree computes an inner node from its descendant using a hash algorithm
different from a conventional hash. A vector commitment is used instead. This small
parameter will help us demonstrate our point. The primary statement of the Verkle tree
is that a Merkle tree can be produced by replacing the cryptographic hash functions with
vector commitments. The same objective is achieved with a Verkle tree as with a Merkle
tree. The main difference is that they are much more efficient in terms of size in bytes.

6. Vector Commitments

Commitment schemes are cryptographic fundamentals that enable a value to be
hidden and later exposed. Two essential features of commitment systems are hiding, which
reveals only the most essential aspects of the value, and binding, which limits access to
other values.

Commitments are expanded to incorporate ordered value sequences in the vector
commitment (VC) schemes. Enabling commitment to a vector and then opening at any
preferred indices’ binding is one of the goals of VC schemes, along with potential attribute
hiding. This makes it challenging to open relative to different values simultaneously.

With vector commitment, users can commit to a vector—an ordered list of q values—
instead of to individual messages (VC). This is carried out in order to enable the commit-
ment to be opened in the future with regard to particular locations (e.g., to prove that mi
is the i-th committed message). More specifically, vector commitments are required for
position bounds. An adversary should not be able to openly commit to two different values
at the same time, according to the idea of position binding. The length of the commitment
string and the size of each opening must be independent of the vector length in order to
meet our conciseness criteria [13].

Vector commitments may also need to have security properties, such as, hiding prop-
erty, which stipulates that it should be hard to identify whether a commitment was made
to the vectors

(
m1, . . . , mq

)
, or to

(
m′1, . . . , m′q

)
. That is, the commitment should not di-

vulge any information about the members of the vector, such as their values or order. The
implementation of vector commitments, on the other hand, is not heavily reliant on the
hiding attribute.

Furthermore, the ability to update vector commitments is required. Thus, two algo-
rithms are provided to update the commitment and the associated openings. Considering
the amendment of a commitment, Com, the committer can obtain a Com’, a modified
commitment, containing the revised message by changing the i-th message from mi to m′i.
Holders of a message opening at position j with respect to Com may amend their evidence
using the second approach to make it legitimate with respect to the new Com’.

Considering our vector commitment system, multiple techniques are used for commit-
ting to and verifying vector messages. Depending on the configuration options, the scheme
uses the message space M, commitment space Com, and proof space Pr.

The following algorithms are provided with special interfaces by the scheme:

• Setup
(

1γ, 1d
)

—This algorithm takes security parameter γ, and a value d as input, and
generates public committer parameters (cp), and verifier parameters (vp).

• Commit
(

cp, m ∈ Md
)

—Given the committer parameters (cp) and a message m from

the message space Md, this algorithm outputs a commitment c ∈ Com, and a commit-
ter state (st).
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• Open(cp, st, i ∈ [d])—Given the committer parameters (cp), committer state (st), and
an index i from the range d, this algorithm produces a proof pri for the i-th entry of
the committed message associated with st.

• Verify(vp, c ∈ Com, i ∈ [d], m ∈ M, pr ∈ Pr)—This algorithm takes the verifier param-
eters (vp), commitment (c), index (i), message (m), and proof (pr) as input, and deter-
mines whether the proof is valid or not.

The correctness condition of the scheme ensures that for any polynomial value d and
message m ∈ Md, and for a given setup (cp, vp), commitment (c, st) obtained from Commit,
and proof pri obtained from Open, the Verify algorithm accepts with high probability,
indicating that the commitment and proof are valid.

Furthermore, if the scheme offers a collection of algorithms with the following inter-
faces, it can be categorized as updatable:

• PrepareUpdates
(

cp, st, j ∈ [d], m′j ∈ M
)

—This algorithm takes the committer param-

eters (cp), committer state (st), index (j), and a new message entry (m′j), and produces a
commitment update (σc), proof update (σpr), and state update (σs) required to modify
the i-th entry point of the committed message vector.

• UpdateC (vp, c ∈ Com,σc)—Given the verifier parameters (vp), commitment (c), and
commitment update (σc), this algorithm deterministically produces an updated com-
mitment (c′).

• UpdateP
(
vp, i ∈ [d], pri ∈ Pr,σpr

)
—Given the verifier parameters (vp), index (i),

proof (pri), and proof update (σpr), this algorithm deterministically generates an
updated proof (pr′i).

• UpdateS (cp, st,σs)—Given the committer parameters (cp), committer state (st), and
state update (σs), this algorithm deterministically produces an updated committer
state (st’).

If the scheme satisfies the above interfaces, it allows for the implementation of modifi-
cations to the committed message vector by generating appropriate commitment, proof,
and state updates. The scheme can further be classified as stateless updatable if PrepareUp-
dates can be implemented without requiring the committer state st as an input. In this case,
PrepareUpdatesnost is used, which takes the committer parameters cp, index j, and old and
new message entries mj and m′j as inputs.

Furthermore, the scheme can be considered differentially updatable if PrepareUpdatesnost

(and thus PrepareUpdates) can be used to implement PrepareUpdatesdiff. This alternative
algorithm takes the committer parameters cp, index j, and a “difference” σ = m′j −mj as
inputs, where the operation denotes an abstract operation on the message space M. This
allows for more compact representations of the updates.

The updatable scheme’s correctness condition guarantees that the outputs of two
experiments are statistically identical for any polynomial value d, committer and verifier
parameters (cp, vp) supplied from Setup, and messages m and m′ that differ in at most the
j-th coordinate. While the second experiment creates a new commitment and proof on the
revised message vector, the first experiment focuses on committing, opening, and updating
the commitment, proof, and state.

Updating a commitment and proof should effectively provide results that are com-
parable to creating a new commitment and proof on the altered message vector. The
incorporation of state information into the results enables composability, allowing for
numerous updates within exponential bounds.

Compact and efficient solutions that significantly outperform earlier research in terms
of the “quality” of the fundamental assumption, the effectiveness of the generated solutions,
or both are made possible by vector commitment [14].

However, it is crucial that the approaches that emerge protect us from quantum
computer challenges. Unfortunately, quantum computers can currently break vector com-
mitments based on RSA and other popular asymmetrical systems. We are enhancing the
framework to make it more effective and safer in this part. While we employ lattices to
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construct vector commitments, we are working on developing signature systems that will
utilize Verkle trees. We build our schemes on post-quantum assumptions.

7. Lattice-Based Vector Commitment

It is possible to commit to an ordered series of values succinctly using vector com-
mitment (VC) methods, so that the values at needed points can then be demonstrated
succinctly. Additionally, a vector can be stateless updatable, meaning that commitments
and proofs can be updated to reflect changes to individual entries while only being aware
of those changes and not the vector as a whole.

Numerous cryptographic uses have been discovered for vector commitments. VCs
have discovered significant uses for cryptocurrencies, cryptographic accumulators, and
verified external databases. They are helpful for databases that are efficiently updated and
are publicly verifiable.

On the other hand, very little research has been performed on post-quantum vector
commitment schemes—that is, ones that are conceivably safe from quantum attacks. Merkle
trees built with a post-quantum hash function can be employed, but they are impacted by
updates that are required and relatively inefficient. We present a stateless, updatable VC
scheme directly from a Merkle tree-like construction based on the SIS lattice problem [15].

We give constructions of post-quantum vector commitments based on the traditional
Short Integer Solution lattice problem, suitably defined in this work. Compared to the only
prior post-quantum stateless updatable construction, we present new stateless updatable
VCs that are more efficient and have substantially shorter proofs. With our private-key
configuration, public parameters are generated by a central authority prior to its downtime.

Based on the post-quantum SIS lattice problem, we constructed new vector com-
mitments. The protocol enables vector message verification and secure commitment. A
stateless, updatable “base” VC structure is the first of these. Because of the public parame-
ters’ quadratic dependence on d, it is especially suitable for only a moderately big d.

The construction of the scheme uses a vector space, M, where messages are vectors
of length l, and belong to an interval I of contiguous integers. The maximum magnitude
of integers in I is denoted as MI . We have gadget matrix G and an invertible-difference
encoding scheme. The encoding maps each index i in the range [d + 1] to a matrix,
Hi ∈ Zn×n

q , such that the difference Hi′ −Hi is reversible for any i, i′ in [d + 1].
Setup—This algorithm generates the committer parameters (cp), and verifier pa-

rameters (vp). It involves choosing a random matrix (A← Zn×m
q ), and performing the

TrapGen algorithm to obtain matrices A and T. The algorithm constructs Ai matrices and
a random matrix (U), where each Uj is in Zn×l

q . Ri,j matrices are derived using the Sam-
plePre algorithm, ensuring that Hd −Hi is invertible. The output of the Setup algorithm is
cp =

(
U, R =

(
Ri,j

)
i,j∈[d]

)
, vp = (A, U).

Commit—Given the committer parameters (cp) and a message (m) from the message
space (Md), this algorithm computes the commitment (c) as the sum of element-wise
products of U and m. The state (st) is set to the message (m).

Open—This algorithm takes the committer parameters (cp), the committer state (st),
and an index (i), and computes the proof (pri) as the element-wise product of Ri,j and mj,
where Ri,j is the j-th row of the matrix (Ri) associated with the i-th entry of the commit-
ted message.

Verify—The verifier algorithm takes the verifier parameters (vp), the commitment
(c), the index (i), the message (mi), and the proof (pri) as input. It verifies the proof by
checking the conditions ‖ pi ‖ ≤ γ and c = Aipi + Uimi. Here, γ is a security parameter. If
the conditions are met, the algorithm accepts the proof; otherwise, it rejects it.

We also have updated algorithms to modify the commitment, proof, and state.

• PrepareUpdatesdi f f ¯This algorithm takes the committer parameters (cp), an index (j),
and a difference (σ ∈ Zl) as input. It generates the commitment update (σc), the proof
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update (σpr), and the state update (σs) required to change the j-th admission of the
committed message vector.

• UpdateC—Given the verifier parameters (vp), the commitment (c), and the commit-
ment update (σc), this algorithm deterministically computes the updated commit-
ment (c′).

• UpdateP—Given the verifier parameters (vp), the index (i), the proof (pri), and the
proof update (σpr), this algorithm deterministically generates the updated proof (pr′i).

• UpdateS—Given the committer parameters (cp), the committer state (st), and the
state update (σs), this algorithm deterministically produces the updated committer
state (st′).

The algorithms guarantee the accuracy and security of the scheme, which enables
secure commitment, opening of proofs, verification, and modifications to committed mes-
sage vectors.

8. Novel Scheme Using Verkle Tree

Since an individual key pair must be used to sign each message, one-time signature
algorithms are especially challenging to implement. These systems’ drawback is that they
require the saving of n digests, which makes them prohibitively expensive for frequent
use. Therefore, we would require an approach that allows us to save a digest of the same
size regardless of the number of files we have. That problem was suggested to be solved
with the Merkle tree. With that approach, multiple verification keys can be replaced with a
single public key by using a binary tree as the root.

Merkle trees are quick to compute; it takes O(n) time to build a tree with n nodes. A
multi-node Merkle tree can be used to generate large Merkle proofs. To sign two messages,
the tree’s height needs to be 2n. The Merkle proof alone may put a significant and expensive
load on our local storage.

Verkle trees, which allow for substantially smaller proof sizes, can greatly enhance
Merkle proofs. The verifier only needs to submit a single proof that demonstrates all
parent–child relationships between all commitments along the paths from each leaf node to
the root, as opposed to having to submit all “brother nodes” at every level. In comparison
to ideal Merkle trees, proof sizes can be reduced by a factor of 6–8, and in comparison to
Merkle Patricia trees, by a factor of 20–30 or more.

We employ the Verkle tree in place of the Merkle tree. The person signing chooses
H ∈ N, H ≥ 2 during key pair formation. The key pair is then generated after that. They
will make it feasible to sign and validate 2H documents. The signer will generate 2H unique
key pairs

(
Xj, Yj

)
, 0 ≤ j < 2H . In this instance, the signature key is Xj, and the verification

key is Yj. They are both bit strings. The Verkle tree’s leaves are g
(
Yj
)
, 0 ≤ j < 2H . As the

leaves of the tree, they are computed and used, and every node is a hash value formed by
joining the hashes of its descendants. The root commitment in the Verkle cryptography
scheme is the public key. A computation of 2H pairs of keys is required to produce a
public key.

We can create signatures using one-time signature key generation. Before we can sign
a message on M, we have to compute the n-bit digest d = g(M) . A message of size n
is first created by converting a random size message of size m using the hash function.
The document’s signature will be created by combining the root commitment, one-time
signature, one-time verification key, and finally, the proof’s index s.

Verkle’s signature verification works as follows: the one-time signature of sign should
be validated with Ys. If this is true, the VCi commitments are validated. The signature is
confirmed if the root of the tree equals the root commitment. Considering a Verkle tree, the
root commitment is d.

9. Experiments

Merkle trees are very fast and have an O(n) computational time. Regretfully, their
proof size of O(log2n) is relatively large and can incur significant width costs. The size
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of their proofs O(wlogwn) is actually larger than Merkle trees when using greater width
trees (w-ary trees). Utilizing a vector commitment scheme reduces the proof size to a
fixed value, O(1); however, the vector commitment construction is very costly and labor-
intensive, requiring an O

(
n2) calculation.

The w-width Verkle tree requires only O(wn) time for construction. Additionally,
compared to the Merkle tree membership proofs, its proof size is only O(logwn), which
is significantly less than O(log2w). This is a good trade-off. Thus, Table 1 provides the
relevant algorithmic schemes comparison.

Table 1. Scheme comparison.

Scheme Construction Update Proof Size

Merkle Tree O(n) O(log2n) O(log2n)

Merkle Tree (w-ary) O(n) O(wlogwn) O(wlogwn)

Vector Commitment O
(
n2) O(n) O(1)

Verkle Tree O(wn) O(wlogwn) O(logwn)

There has not been a lot of research performed on post-quantum vector commitment
schemes, or ones that might be secure against quantum attacks. You can use Merkle trees
that were constructed with a post-quantum hash function, but their updates are relatively
costly and inherently stateful. Based on the SIS lattice problem, we only have Merkle
tree-like construction that directly produces a stateless updatable VC scheme.

For us, it is important that resulting methods protect us from quantum computer
attacks. Quantum computers could break our earlier vector commitments based on RSA.
Our signature techniques employ Verkle trees, but we construct vector commitments using
lattices. There are other Merkle algorithms, which are post-quantum, such as the Fractal
Merkle algorithm [16].

In this case, the classical algorithm results are the following:
Key generation time—0.049351, Signature time—0.0002425, Verification time—0.0038651.
Thread-based algorithm:
Key generation time—0.013841, Signature time—0.0002425, Verification time—0.0038651.
Based on the post-quantum Short Integer Solution lattice problem, we developed a

new construction of vector commitment. The protocol enables vector message verification
and secure commitment. They start with a stateless updatable “base” VC construction. It
is especially suitable for a relatively large d because of the quadratic dependence of the
public parameters on d.

We provide a specialized tree transformation (unlike generic Merkle trees) of our SIS-
based VC for larger dimensions dh that preserves stateless updates. The proofs of construc-
tion are d-factor-concise, as the transformation relies on a VC instead of a hash function.

Our method’s primary advantage is its theoretical security against quantum attacks.
This has the drawback that commitment and proof sizes in the vector dimension d are
logarithmic rather than constant. Despite the inherent trade-off of logarithmic commitment
and proof sizes in vector dimension d, our lattice-based construction was rigorously tested
against classical algorithms. The results, although slower, showcase a smaller digital
signature compared to the Merkle tree version, emphasizing the practical advantages of
our proposed scheme.

We tested our algorithm on the same machine, where we tested the digital signature
based on the Merkle tree.

We have the following results:
Key generation time—0.049351, Signature time—0.00001520, Verification time—0.00048250.
Our lattice-based construction is of course slower, but in our case the digital signature

is much better than the Merkle version.
Our novel vector commitment construction, rooted in the post-quantum Short Integer

Solution lattice problem, presents a compelling alternative, especially in scenarios where
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quantum security is paramount. The trade-offs in commitment and proof sizes are carefully
balanced, and empirical results underscore the practical benefits of our approach.

10. Conclusions

This research explored the present tools that are accessible for both classical and
quantum scenarios. Systems for post-quantum cryptography were covered. We covered
hash-based one-way functions, their integration into Merkle, and their incorporation into
Verkle. Vector commitment and lattice-based commitments were explored. We discussed
the computation and integration of the powerful Merkle tree—Verkle tree improvement.
The effectiveness of novel shames led to the creation of a new model, and its integration
into Verkle. They do require more complicated cryptography to accomplish, but there is a
chance for significant scalability advantages.

It is crucial for us that the resulting schemes defend against attacks from traditional
and quantum computers. We received the systems that are integrated into Merkle after
analyzing the work completed. Although the verification size is too large, Merkle trees,
which are built with cryptographic hash functions, provide a strong defense against quan-
tum attacks. Each child in a Merkle tree is represented by the hash of a parent node. A
parent node in a Verkle tree is defined as the vector commitment of its children in our
improved Verkle tree model. In order to implement the new technology, we discussed
vector commitment and commitments based on hard lattice problems.

As a substantial improvement in the Merkle scheme, the Verkle scheme enables much
smaller verifications. Rather than presenting all nodes at every level, verification only
needs one proof to validate all parent–descendant relationships: all commits from each
leaf node to the root. This allows the verification size to be reduced by about 6–8 times
when compared to the conventional Merkle approach. Thus, a Verkle tree was considered
in place of the Merkle tree in our improved approach. Vector commitment is all that is
required in this situation to serve as the proof. To construct the Verkle tree, we relied on
vector commitments based on the lattice’s assumption.

It is vital for us that the resulting methods protect us from quantum computer attacks.
Quantum computers could break our earlier vector commitments based on CDH and RSA.
We have now enhanced the plan to make it more secure and efficient. We use lattices
to build vector commitments, but our signature methods use Verkle trees. Our systems
operate under post-quantum suppositions.
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