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Abstract: The purpose of the present paper is to introduce and investigate new subclasses of analytic 

function class of bi-univalent functions defined in open unit disks connected with a linear q-convo-

lution operator, which are associated with quasi-subordination. We find coefficient estimates of 

|ℎ2|, |ℎ3| for functions in these subclasses. Several known and new consequences of these results are 

also pointed out. There is symmetry between the results of the subclass  𝒻 𝑞,∑  
𝜇

(휁, 𝑛, 𝜌, 𝜎, 𝜗, 𝛾, 𝛿, 𝜑) 

and the results of the subclass  ℵ∑
𝑞,𝛿 (𝜆, 휁, 𝑛, 𝜌, 𝜎, 𝜗, 𝜑). 
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coefficient estimate 

MSC: 30C45; 30C50 

 

1. Introduction 

The theory of q-calculus plays an important role in many areas of mathematical phys-

ical and engineering sciences. Jackson (see [1,2]) was the first to perform some applications 

of the q-calculus and introduced the q-analogue of the classical derivative and integral 

operators (see also [3]). 

Let 𝒜 be the class of analytic functions 𝒯 in an open unit disk 𝔘 = {휀 ∈ ℂ: |휀| < 1} 

of the form: 

𝒯(휀) = 휀 + ∑  𝑎𝑗휀𝑗,    (

+∞

𝑗=2

 휀 ∈  𝔘). (1) 

and satisfying the normalization conditions (see [4]): 𝒯(0) = 𝒯′(0) − 1 = 0. 

Assume that ∑𝔘  denotes the class of all functions in 𝒜  defined by Equation (1), 

which are univalent in 𝔘. 

The well-known Koebe One-Quarter Theorem [5] states that the range of every func-

tion of class ∑𝔘 contains the disk {w:│w│ < 
1

4
}. Thus, every univalent function 𝒯 has an 

inverse  𝒯 −1, such that 
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µ
q,∑ (ζ, n, ρ, σ, ϑ, γ, δ, φ)

and the results of the subclass ℵq,δ
∑ (λ, ζ, n, ρ, σ, ϑ, φ).

Keywords: analytic function; univalent function; convolution (q-derivatives); quasi-subordination;
coefficient estimate

MSC: 30C45; 30C50

1. Introduction

The theory of q-calculus plays an important role in many areas of mathematical physi-
cal and engineering sciences. Jackson (see [1,2]) was the first to perform some applications
of the q-calculus and introduced the q-analogue of the classical derivative and integral
operators (see also [3]).

Let A be the class of analytic functions T in an open unit disk U = {ε ∈ C : |ε|< 1} of
the form:

T (ε) = ε +
+∞

∑
j=2

ajε
j, (ε ∈ U). (1)

and satisfying the normalization conditions (see [4]): T (0) = T ′(0)− 1 = 0.
Assume that ∑U denotes the class of all functions in A defined by Equation (1), which

are univalent in U.
The well-known Koebe One-Quarter Theorem [5] states that the range of every func-

tion of class ∑U contains the disk {w:|w| < 1
4}. Thus, every univalent function T has an

inverse T −1, such that
T −1(T (ε)) = ε, (ε ∈ U),

and
T (T −1(ς)) = ς (|ς| < r0(T ); r0(T ) ≥ 1

4
), (r0 is radius).
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In fact, the inverse function ξ = T −1 is given by

ξ(ς) = ς − a2ς2 + (2a2
2 − a3)ς

3 − (5a2
2 − 5a2a3 + a4)ς

4 + . . .
= ς + ∑∞

n=2 Anςn.
(2)

The function T ∈ A is said to be bi-univalent in U if both T and its inverse T −1 are
univalent functions in U given by Equation (1).

The class of bi-univalent functions was introduced by Lewin [6] and proved that
|a2| ≤ 1.51 for the function of the form Equation (1). Subsequently, Brannan and Clunie [7]
conjectured that |a2| ≤

√
2. Later, Netanyahu [8] proved that max

T ∈∑
|a2| = 4

3 . Also, several

authors studied classes of bi-univalent analytic functions and found estimates of the
coefficients |a2| and |a3| for functions in these classes [For two analytic functions T and
ξ, T is quasi-subordinate to ξ, written as follows:

T (ε) ≺q ξ(ε) (ε ∈ U) (3)

if there exist analytic functions h(ε) and ∥(ε), with |h(z)| ≤ 1, ∥(0) = 0 and |∥(ε)| < 1,
(ε ∈ U), such that

T (ε) = h(ε)ξ(∥(ε)), (ε ∈ U).

Note that if ( h(ε) = 1), then T (ε) = ξ(∥(ε)); hence, T (ε) ≺ ξ(ε) (z ∈ U). If ξ is
univalent in U, then T ≺ ξ if and only if T (0) = ξ(0) and T (U) ⊂ ξ(U)].

For the functions T , ρ ∈ ∑U defined by T (ε) = ∑+∞
j=1 ajε

j and ρ(ε) = ∑+∞
j=1 hjε

j( ε ∈ U),
the convolution of T and ρ denoted by T ∗ ρ is

(T ∗ ρ)(ε) =
+∞

∑
j=1

ajhjε
j = (ρ ∗ T )(ε) ( ε ∈ U).

To start with, we recall the following differential and integral operators. For 0 < q < 1,
El-Deeb et al. [9,10], and others [11] defined the q-convolution operator (see also [1]) for
T ∗ ρ by

Qq(T ∗ ρ)(ε) = Qq

(
ε +

+∞

∑
j=2

ajhjε
j

)

(T ∗ ρ)(ε)− (T ∗ ρ)(qε)

ε(1 − q)
= 1 +

+∞

∑
j=2

[j]q ajhjε
j−1, ε ∈ U,

where

[j]q =
1 − qj

1 − q
= 1 +

j−1

∑
j=1

qj,[0]q = 0. (4)

We used the linear operator
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where 𝕀𝑞
+1

 is given by 

𝕀𝑞
+1(휀) = 휀 + ∑

[휁 + 1]𝑞, −1

[휀 − 1]𝑞!
 휀𝑗 , 휀 ∈  𝔘,

+∞

𝑗=2

  

then, 

𝒴𝜌
,𝑞

𝒯(휀) = 휀 + ∑
[𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗ℎ𝑗 휀𝑗( 휁 > −1,0 < 𝑞 <  1, 휀 ∈  𝔘)

+∞

𝑗=2

. (5) 

Using the operator  𝒴𝜌
,𝑞

, we define a new operator as follows: 

𝒬𝜌,𝜎,𝜗
,𝑞,0

𝒯(휀) = 𝒴𝜌
,𝑞

𝒯(휀) 

𝒬𝜌,𝜎,𝜗
,𝑞,1

𝒯(휀) = (𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞

𝒯(휀))
′
 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 

(𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′
 

 =  휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜀−1
𝑎𝑗ℎ𝑗  휀𝑗∞

𝑗=2   

(6) 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) =  휀 + ∑ 𝜓𝑗ℎ𝑗 휀𝑗

∞

𝑗=2

(
 휁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,

𝑛 ∈ ℕ0 = ℕ ∪ {0} and 휀 ∈ 𝔘
), (7) 

where 

𝜓𝑗 = 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q
ρ : A → A according to El-Deeb [9] (see also [12]) for

and ζ > −1, 0 < q < 1. If
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defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
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4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q
ρ T (ε) ∗ Iζ+1

q (ε) = εQq(T ∗ ρ)(ε), ε ∈ U,

where Iζ+1
q is given by

Iζ+1
q (ε) = ε +

+∞

∑
j=2

[ζ + 1]q,ε−1

[ε − 1]q!
εj, ε ∈ U,

then,
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𝑎𝑗ℎ𝑗 휀𝑗( 휁 > −1,0 < 𝑞 <  1, 휀 ∈  𝔘)

+∞

𝑗=2

. (5) 

Using the operator  𝒴𝜌
,𝑞

, we define a new operator as follows: 

𝒬𝜌,𝜎,𝜗
,𝑞,0

𝒯(휀) = 𝒴𝜌
,𝑞

𝒯(휀) 

𝒬𝜌,𝜎,𝜗
,𝑞,1

𝒯(휀) = (𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞

𝒯(휀))
′
 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 

(𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′
 

 =  휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜀−1
𝑎𝑗ℎ𝑗  휀𝑗∞

𝑗=2   

(6) 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) =  휀 + ∑ 𝜓𝑗ℎ𝑗 휀𝑗

∞

𝑗=2

(
 휁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,

𝑛 ∈ ℕ0 = ℕ ∪ {0} and 휀 ∈ 𝔘
), (7) 

where 

𝜓𝑗 = 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q
ρ T (ε) = ε +

+∞

∑
j=2

[j]q!

[ζ]q,ε−1
ajhj εj( ζ > −1, 0 < q < 1, ε ∈ U). (5)
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 휁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,

𝑛 ∈ ℕ0 = ℕ ∪ {0} and 휀 ∈ 𝔘
), (7) 

where 

𝜓𝑗 = 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q
ρ , we define a new operator as follows:

Qζ,q,0
ρ,σ,ϑT (ε) =
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𝑛 [𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q
ρ T (ε)

Qζ,q,1
ρ,σ,ϑT (ε) = (σ − ϑ)ε3

(
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𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q
ρ T (ε)

)′′′
+ (1 + 2(σ − ϑ))ε2

(
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where 𝕀𝑞
+1

 is given by 

𝕀𝑞
+1(휀) = 휀 + ∑

[휁 + 1]𝑞, −1

[휀 − 1]𝑞!
 휀𝑗 , 휀 ∈  𝔘,

+∞

𝑗=2

  

then, 

𝒴𝜌
,𝑞

𝒯(휀) = 휀 + ∑
[𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗ℎ𝑗 휀𝑗( 휁 > −1,0 < 𝑞 <  1, 휀 ∈  𝔘)

+∞

𝑗=2

. (5) 

Using the operator  𝒴𝜌
,𝑞

, we define a new operator as follows: 

𝒬𝜌,𝜎,𝜗
,𝑞,0

𝒯(휀) = 𝒴𝜌
,𝑞

𝒯(휀) 

𝒬𝜌,𝜎,𝜗
,𝑞,1

𝒯(휀) = (𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞

𝒯(휀))
′
 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 

(𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′
 

 =  휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜀−1
𝑎𝑗ℎ𝑗  휀𝑗∞

𝑗=2   

(6) 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) =  휀 + ∑ 𝜓𝑗ℎ𝑗 휀𝑗

∞

𝑗=2

(
 휁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,

𝑛 ∈ ℕ0 = ℕ ∪ {0} and 휀 ∈ 𝔘
), (7) 

where 

𝜓𝑗 = 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q
ρ T (ε)

)′′
+ ε
(
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where 𝕀𝑞
+1

 is given by 

𝕀𝑞
+1(휀) = 휀 + ∑

[휁 + 1]𝑞, −1

[휀 − 1]𝑞!
 휀𝑗 , 휀 ∈  𝔘,

+∞

𝑗=2

  

then, 

𝒴𝜌
,𝑞

𝒯(휀) = 휀 + ∑
[𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗ℎ𝑗 휀𝑗( 휁 > −1,0 < 𝑞 <  1, 휀 ∈  𝔘)

+∞

𝑗=2

. (5) 

Using the operator  𝒴𝜌
,𝑞

, we define a new operator as follows: 

𝒬𝜌,𝜎,𝜗
,𝑞,0

𝒯(휀) = 𝒴𝜌
,𝑞

𝒯(휀) 

𝒬𝜌,𝜎,𝜗
,𝑞,1

𝒯(휀) = (𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞

𝒯(휀))
′
 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 

(𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′
 

 =  휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜀−1
𝑎𝑗ℎ𝑗  휀𝑗∞

𝑗=2   

(6) 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) =  휀 + ∑ 𝜓𝑗ℎ𝑗 휀𝑗

∞

𝑗=2

(
 휁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,

𝑛 ∈ ℕ0 = ℕ ∪ {0} and 휀 ∈ 𝔘
), (7) 

where 

𝜓𝑗 = 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q
ρ T (ε)

)′
Qζ,q,n

ρ,σ,ϑT (ε) =

(σ − ϑ)ε3
(

Symmetry 2023, 15, 2208 3 of 12 
 

 

where 𝕀𝑞
+1

 is given by 

𝕀𝑞
+1(휀) = 휀 + ∑

[휁 + 1]𝑞, −1

[휀 − 1]𝑞!
 휀𝑗 , 휀 ∈  𝔘,

+∞

𝑗=2

  

then, 

𝒴𝜌
,𝑞

𝒯(휀) = 휀 + ∑
[𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗ℎ𝑗 휀𝑗( 휁 > −1,0 < 𝑞 <  1, 휀 ∈  𝔘)

+∞

𝑗=2

. (5) 

Using the operator  𝒴𝜌
,𝑞

, we define a new operator as follows: 

𝒬𝜌,𝜎,𝜗
,𝑞,0

𝒯(휀) = 𝒴𝜌
,𝑞

𝒯(휀) 

𝒬𝜌,𝜎,𝜗
,𝑞,1

𝒯(휀) = (𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞

𝒯(휀))
′
 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 

(𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′
 

 =  휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜀−1
𝑎𝑗ℎ𝑗  휀𝑗∞

𝑗=2   

(6) 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) =  휀 + ∑ 𝜓𝑗ℎ𝑗 휀𝑗

∞

𝑗=2

(
 휁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,

𝑛 ∈ ℕ0 = ℕ ∪ {0} and 휀 ∈ 𝔘
), (7) 

where 

𝜓𝑗 = 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q,n−1
ρ T (ε)

)′′′
+ (1 + 2(σ − ϑ))ε2

(

Symmetry 2023, 15, 2208 3 of 12 
 

 

where 𝕀𝑞
+1
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𝕀𝑞
+1(휀) = 휀 + ∑

[휁 + 1]𝑞, −1

[휀 − 1]𝑞!
 휀𝑗 , 휀 ∈  𝔘,

+∞

𝑗=2

  

then, 
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,𝑞

𝒯(휀) = 휀 + ∑
[𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗ℎ𝑗 휀𝑗( 휁 > −1,0 < 𝑞 <  1, 휀 ∈  𝔘)

+∞

𝑗=2

. (5) 

Using the operator  𝒴𝜌
,𝑞

, we define a new operator as follows: 

𝒬𝜌,𝜎,𝜗
,𝑞,0

𝒯(휀) = 𝒴𝜌
,𝑞

𝒯(휀) 

𝒬𝜌,𝜎,𝜗
,𝑞,1

𝒯(휀) = (𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞

𝒯(휀))
′
 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 

(𝜎 − 𝜗)휀3 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′′

+ (1 + 2(𝜎 − 𝜗))휀2 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′′

+ 휀 (𝒴𝜌
,𝑞,𝑛−1

𝒯(휀))
′
 

 =  휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜀−1
𝑎𝑗ℎ𝑗  휀𝑗∞

𝑗=2   

(6) 

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) =  휀 + ∑ 𝜓𝑗ℎ𝑗 휀𝑗

∞

𝑗=2

(
 휁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,

𝑛 ∈ ℕ0 = ℕ ∪ {0} and 휀 ∈ 𝔘
), (7) 

where 

𝜓𝑗 = 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[휁]𝑞, −1
𝑎𝑗 ,  

and by [1], let 0 < q < 1 and [𝑗]𝑞 be defined by [𝑗]𝑞 =
1−𝑞𝑗

1−𝑞
= 1 + ∑  𝑞𝑗  ,

𝑗−1
𝑗=1

[0]𝑞 = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 

[𝑗]𝑞! = {
[𝑗]𝑞 [𝑗 − 1]𝑞 … [2]𝑞 [1]𝑞, if  𝑗 = 1,2,3, … ,

1,                                       if 𝑗 = 0 .
  

From the definition relation Equation (5), we obtain 

(𝑖)[휁 + 1]𝑞  𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = [휁]𝑞  𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀) + 𝑞 휀 𝔔𝑞 (𝒬𝜌,𝜎,𝜗
+1,𝑞,𝑛

𝒯(휀)) , 휀 ∈ 𝔘; (8) 

(𝑖𝑖)ℛ𝜌,𝜎,𝜗
,𝑛

𝒯(휀) = lim
𝑞→1−

𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

𝒯(휀) = 휀 + ∑ 𝑗2𝑛((𝜎 − 𝜗)(𝑗 − 1) + 1)
𝑛 [𝑗]𝑞!

[ ]𝑞,𝜖−1
𝑎𝑗 ℎ𝑗  휀𝑗+∞

𝑗=2 .  (9) 

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by [휁]𝑞,𝜖−1   
⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
. 

Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q,n−1
ρ T (ε)

)′′
+ ε
(
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𝑞→1−
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⎾𝑞( +𝜖−1)

⎾𝑞( )
 , 𝜖 −

1 ∈ ℕ, 휁 ∈ ℕ. 

For 𝑞 → 1−, [휁]𝑞,𝜖−1 reduces to (휁)𝜖−1  
⎾( +𝜖−1)

⎾( )
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Remark 1. We find the following special cases for the operator 𝒬𝜌,𝜎,𝜗
,𝑞,𝑛

 by considering several par-

ticular cases for the coefficients 𝑎𝑗 and n: 

1. Putting 𝑎𝑗 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵𝑞
𝛼   

defined by Srivastava et al. [13]; 

2. Putting 𝑎𝑗 =
(−1)𝑗 𝛤(𝜌 + 1)

4𝑗−1(𝑗−1)!𝛤(𝑟 + 𝜌)
 (𝜌 >  0) , 𝜗 = 0  and n   0 in this operator, we obtain the 

operator 𝒩𝑝,𝑞
𝜎  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

ζ,q,n−1
ρ T (ε)

)′
= ε + ∑∞

j=2 j2n((σ − ϑ)(j − 1) + 1)n [j]q!
[ζ]q,ε−1

ajhj εj

(6)

Qζ,q,n
ρ,σ,ϑT (ε) = ε +

∞

∑
j=2

ψjhj εj
(

ζ > −1, 0 < q < 1, ϑ ≥ 0 , σ > 0 , σ ̸= ϑ ,
n ∈ N0 = N ∪ {0} and ε ∈ U

)
, (7)

where

ψj = j2n((σ − ϑ)(j − 1) + 1)n [j]q!

[ζ]q,ε−1
aj,

and by [1], let 0 < q < 1 and [j]q be defined by [j]q = 1−qj

1−q = 1 + ∑
j−1
j=1 qj,[0]q = 0.

The q − number shift factorial is given by

[j]q! =

{
[j]q [j − 1]q . . . [2]q [1]q, if j = 1, 2, 3, . . . ,

1, if j = 0 .

From the definition relation Equation (5), we obtain

(i)[ζ + 1]q Qζ,q,n
ρ,σ,ϑT (ε) = [ζ]q Qζ+1,q,n

ρ,σ,ϑ T (ε) + qζεQq

(
Qζ+1,q,n

ρ,σ,ϑ T (ε)
)

, ε ∈ U; (8)

(ii)Rζ,n
ρ,σ,ϑT (ε) = lim

q→1−
Qζ,q,n

ρ,σ,ϑT (ε) = ε +
+∞

∑
j=2

j2n((σ − ϑ)(j − 1) + 1)n [j]q!

[ζ]q,ϵ−1
ajhjε

j. (9)

The q − generalized Pochhammer symbol is defined by [ζ]q,ϵ−1=
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where 𝕀  is given by 

𝕀 (𝜀) = 𝜀 + 𝜁 + 1] ,𝜀 − 1] !  𝜀 , 𝜀 ∈  𝔘, 
then, 

𝒴 , 𝒯(𝜀) = 𝜀 + 𝑗] !𝜁] , 𝑎 ℎ  𝜀 ( 𝜁 > −1,0 < 𝑞 <  1, 𝜀 ∈  𝔘). (5)

Using the operator  𝒴 , , we define a new operator as follows: 𝒬 , ,, , 𝒯(𝜀) = 𝒴 , 𝒯(𝜀) 𝒬 , ,, , 𝒯(𝜀) = (𝜎 − 𝜗)𝜀 𝒴 , 𝒯(𝜀) + 1 + 2(𝜎 − 𝜗) 𝜀 𝒴 , 𝒯(𝜀) + 𝜀 𝒴 , 𝒯(𝜀)  𝒬 , ,, , 𝒯(𝜀) = (𝜎 − 𝜗)𝜀 𝒴 , , 𝒯(𝜀) + 1 + 2(𝜎 − 𝜗) 𝜀 𝒴 , , 𝒯(𝜀) + 𝜀 𝒴 , , 𝒯(𝜀)   =  𝜀 + ∑ 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 ] !] , 𝑎 ℎ  𝜀   

(6)

𝒬 , ,, , 𝒯(𝜀) =  𝜀 + 𝜓 ℎ  𝜀  𝜁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,𝑛 ∈ ℕ = ℕ ∪ {0} and 𝜀 ∈ 𝔘 , (7)

where 𝜓 = 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁] , 𝑎 , 
and by [1], let 0 < q < 1 and 𝑗]  be defined by 𝑗] = = 1 + ∑  𝑞  , 0] = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 𝑗] ! = 𝑗]  𝑗 − 1] … 2]  1] , if  𝑗 = 1,2,3, … ,1,                                       if 𝑗 = 0 .  

From the definition relation Equation (5), we obtain (𝑖) 𝜁 + 1]   𝒬 , ,, , 𝒯(𝜀) = 𝜁]   𝒬 , , , , 𝒯(𝜀) + 𝑞 𝜀 𝔔 𝒬 , , , , 𝒯(𝜀) , 𝜀 ∈ 𝔘; (8)

(𝑖𝑖)ℛ , ,, 𝒯(𝜀) = lim→ 𝒬 , ,, , 𝒯(𝜀) = 𝜀 + ∑ 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 ] !] , 𝑎  ℎ  𝜀 .  (9)

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by 𝜁] ,  = ⎾ ( )⎾ ( )  , 𝜖 −1 ∈ ℕ, 𝜁 ∈ ℕ. 
For 𝑞 → 1 , 𝜁] ,  reduces to (𝜁) = ⎾( )⎾( ) . 

Remark 1. We find the following special cases for the operator 𝒬 , ,, ,  by considering several par-
ticular cases for the coefficients 𝑎  and n: 
1. Putting 𝑎 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵   

defined by Srivastava et al. [13]; 
2. Putting 𝑎 = ( )  (   )( )! (   ) (𝜌 >  0) , 𝜗 = 0  and n = 0 in this operator, we obtain the 

operator 𝒩 ,  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

q(ζ+ϵ−1)
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and by [1], let 0 < q < 1 and 𝑗]  be defined by 𝑗] = = 1 + ∑  𝑞  , 0] = 0. 
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From the definition relation Equation (5), we obtain (𝑖) 𝜁 + 1]   𝒬 , ,, , 𝒯(𝜀) = 𝜁]   𝒬 , , , , 𝒯(𝜀) + 𝑞 𝜀 𝔔 𝒬 , , , , 𝒯(𝜀) , 𝜀 ∈ 𝔘; (8)

(𝑖𝑖)ℛ , ,, 𝒯(𝜀) = lim→ 𝒬 , ,, , 𝒯(𝜀) = 𝜀 + ∑ 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 ] !] , 𝑎  ℎ  𝜀 .  (9)

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by 𝜁] ,  = ⎾ ( )⎾ ( )  , 𝜖 −1 ∈ ℕ, 𝜁 ∈ ℕ. 
For 𝑞 → 1 , 𝜁] ,  reduces to (𝜁) = ⎾( )⎾( ) . 

Remark 1. We find the following special cases for the operator 𝒬 , ,, ,  by considering several par-
ticular cases for the coefficients 𝑎  and n: 
1. Putting 𝑎 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵   

defined by Srivastava et al. [13]; 
2. Putting 𝑎 = ( )  (   )( )! (   ) (𝜌 >  0) , 𝜗 = 0  and n = 0 in this operator, we obtain the 

operator 𝒩 ,  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

q(ζ)
, ϵ − 1 ∈

N, ζ ∈ N.
For q → 1− , [ζ]q,ϵ−1 reduces to (ζ)ϵ−1 =
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where 𝕀  is given by 

𝕀 (𝜀) = 𝜀 + 𝜁 + 1] ,𝜀 − 1] !  𝜀 , 𝜀 ∈  𝔘, 
then, 

𝒴 , 𝒯(𝜀) = 𝜀 + 𝑗] !𝜁] , 𝑎 ℎ  𝜀 ( 𝜁 > −1,0 < 𝑞 <  1, 𝜀 ∈  𝔘). (5)

Using the operator  𝒴 , , we define a new operator as follows: 𝒬 , ,, , 𝒯(𝜀) = 𝒴 , 𝒯(𝜀) 𝒬 , ,, , 𝒯(𝜀) = (𝜎 − 𝜗)𝜀 𝒴 , 𝒯(𝜀) + 1 + 2(𝜎 − 𝜗) 𝜀 𝒴 , 𝒯(𝜀) + 𝜀 𝒴 , 𝒯(𝜀)  𝒬 , ,, , 𝒯(𝜀) = (𝜎 − 𝜗)𝜀 𝒴 , , 𝒯(𝜀) + 1 + 2(𝜎 − 𝜗) 𝜀 𝒴 , , 𝒯(𝜀) + 𝜀 𝒴 , , 𝒯(𝜀)   =  𝜀 + ∑ 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 ] !] , 𝑎 ℎ  𝜀   

(6)

𝒬 , ,, , 𝒯(𝜀) =  𝜀 + 𝜓 ℎ  𝜀  𝜁 > −1,0 < 𝑞 <  1, 𝜗 ≥ 0 , 𝜎 > 0 , 𝜎 ≠ 𝜗 ,𝑛 ∈ ℕ = ℕ ∪ {0} and 𝜀 ∈ 𝔘 , (7)

where 𝜓 = 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁] , 𝑎 , 
and by [1], let 0 < q < 1 and 𝑗]  be defined by 𝑗] = = 1 + ∑  𝑞  , 0] = 0. 

The  𝑞 − 𝑛𝑢𝑚𝑏𝑒𝑟 shift factorial is given by 𝑗] ! = 𝑗]  𝑗 − 1] … 2]  1] , if  𝑗 = 1,2,3, … ,1,                                       if 𝑗 = 0 .  

From the definition relation Equation (5), we obtain (𝑖) 𝜁 + 1]   𝒬 , ,, , 𝒯(𝜀) = 𝜁]   𝒬 , , , , 𝒯(𝜀) + 𝑞 𝜀 𝔔 𝒬 , , , , 𝒯(𝜀) , 𝜀 ∈ 𝔘; (8)

(𝑖𝑖)ℛ , ,, 𝒯(𝜀) = lim→ 𝒬 , ,, , 𝒯(𝜀) = 𝜀 + ∑ 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 ] !] , 𝑎  ℎ  𝜀 .  (9)

The  𝑞 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  Pochhammer symbol is defined by 𝜁] ,  = ⎾ ( )⎾ ( )  , 𝜖 −1 ∈ ℕ, 𝜁 ∈ ℕ. 
For 𝑞 → 1 , 𝜁] ,  reduces to (𝜁) = ⎾( )⎾( ) . 

Remark 1. We find the following special cases for the operator 𝒬 , ,, ,  by considering several par-
ticular cases for the coefficients 𝑎  and n: 
1. Putting 𝑎 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵   

defined by Srivastava et al. [13]; 
2. Putting 𝑎 = ( )  (   )( )! (   ) (𝜌 >  0) , 𝜗 = 0  and n = 0 in this operator, we obtain the 

operator 𝒩 ,  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

(ζ+ϵ−1)
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and by [1], let 0 < q < 1 and 𝑗]  be defined by 𝑗] = = 1 + ∑  𝑞  , 0] = 0. 
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Remark 1. We find the following special cases for the operator 𝒬 , ,, ,  by considering several par-
ticular cases for the coefficients 𝑎  and n: 
1. Putting 𝑎 =  1, 𝜗 = 0  and 𝑛 = 0  into this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵   

defined by Srivastava et al. [13]; 
2. Putting 𝑎 = ( )  (   )( )! (   ) (𝜌 >  0) , 𝜗 = 0  and n = 0 in this operator, we obtain the 

operator 𝒩 ,  defined by El-Deeb and Bulboacấ [10] and El-Deeb [9]; 

(ζ)
.

Remark 1. We find the following special cases for the operator Qζ,q,n
ρ,σ,ϑ by considering several

particular cases for the coefficients aj and n:

1. Putting aj = 1, ϑ = 0 and n = 0 into this operator, we obtain the operator QTRcalBα
q

defined by Srivastava et al. [13];

2. Putting aj =
(−1)jΓ(ρ+1)

4j−1(j−1)!Γ(r+ρ)
(ρ > 0), ϑ = 0 and n = 0 in this operator, we obtain the

operator N σ
p,q defined by El-Deeb and Bulboacấ [10] and El-Deeb [9];

3. Putting aj =
(

τ+1
τ+j

)r
(r > 0, τ ≥ 0), ϑ = 0 and n = 0 in this operator, we obtain the

operator Mσ,r
τ,q defined by El-Deeb and Bulboacấ [14] and Srivastava and El-Deeb [12];

4. Putting aj =
ςj−1

(j−1)! ϱ
−ς (ς > 0) and n = 0 in this operator, we obtain the q-analogue of

Poisson operator Iϑ,ς
q defined by El-Deeb et al. [15];

5. Putting aj = 1, ϑ = 0 in this operator, we obtain the operator QTRcalBδ,q,n
ϑ,σ defined as

follows:

Bδ,q,n
ϑ,σ
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3. Putting 𝑎 = (𝑟 >  0, 𝜏 ≥  0), 𝜗 = 0  and n = 0 in this operator, we obtain the 
operator ℳ , ,  defined by El-Deeb and Bulboacấ [14] and Srivastava and El-Deeb 
[12]; 

4. Putting  𝑎 = ( )! 𝜚  (𝜍 > 0) and n = 0 in this operator, we obtain the q-analogue of 

Poisson operator  𝛪 ,  defined by El-Deeb et al. [15]; 
5. Putting 𝑎 =  1, 𝜗 = 0   in this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵 ,, ,    de-

fined as follows: 

𝐵 ,, , Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁] , ℎ  𝜀 ; (10)

6. Putting 𝑎 = ( )  (   )( )! (   ) (𝜌 >  0)  in this operator, we obtain the operator  𝒩 , ,,  de-
fined as follows: 

𝒩 , ,, Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁 + 1] , (−1)  Γ(ρ +  1)4 (𝑗 − 1)! Γ(r +  ρ) ℎ  𝜀                
= 𝜀 + ∑ 𝜑 ℎ  𝜀 ,                                                                                                       

(11)

where 𝜑 = 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁] , (−1)  Γ(ρ +  1)4 (𝑗 − 1)! Γ(r +  ρ), (12)

7. Putting  𝑎 = (𝑟 >  0, 𝜏 ≥  0) in this operator, we obtain the operator ℳ , ,, ,  defin𝑒d 
as follows: 

 ℳ , ,, , Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝜏 + 1𝜏 + 𝑗 𝑗] !𝜁 + 1] , ℎ  𝜀 .    
Ma and Minda in [ 16] have given a unified treatment of various subclasses consisting 

of starlike and convex functions for either one of the quantities 𝒯 ( )𝒯( )  or 1 + 𝒯 ( )𝒯( )  subor-
dinate to a more general superordinate function. The  𝑆∗(𝜙)   introduced by Ma and 
Minda [16] consists of function 𝒯 ∈  𝒜 satisfying  𝒯 ( )𝒯( )  ≺ 𝜙(𝑧), 𝑧 ∈ 𝔘 and correspond-

ing to class 𝑘(𝜙) of convex functions 𝒯 ∈  𝒜 satisfying 1 + 𝒯 ( )𝒯( ) ≺ 𝜙(𝑧), 𝑧 ∈ 𝔘, Ma and 
Minda [16] , where 𝜙 is an analytic and univalent function with a positive real part in the 
unit disc 𝔘, satisfying 𝜙(0) = 1, 𝜙 (0) > 0, and 𝜙(𝔘) is a starlike region with the respect 
to 1 and symmetric with the respect to the real axis. The functions in the classes  𝑆∗(𝜙) 
and 𝐾(𝜙), are called starlike functions of the Ma-Minda type or convex functions of the 
Ma-Minda type, respectively. By 𝑆∑𝔘∗ (𝜙) and 𝐾∑𝔘(𝜙 ), we denote bi-starlike functions of 
Ma-Minda type and bi-convex functions of Ma-Minda type, respectively [ 16]. In this in-
vestigation, we assume that  𝜙(𝜀) = 1 + 𝐵 𝜀 + 𝐵 𝜀 +𝐵 𝜀 + ⋯ , 𝐵 > 0. (13)

and ℎ(𝜀) = ℎ + ℎ𝜀 + ℎ 𝜀 +ℎ 𝜀 + ⋯. (14)

The aim of this paper is to introduce new subclasses of the class ∑𝔘 and determine 
estimates of bounds on the coefficient |ℎ | and |ℎ | and for the functions in the above 
subclasses. 

(ε) = ε +
+∞

∑
j=2

j2n((σ − ϑ)(j − 1) + 1)n [j]q!

[ζ]q,ε−1
hj εj; (10)
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6. Putting aj =
(−1)j Γ(ρ+1)

4j−1(j−1)!Γ(r+ρ)
(ρ > 0) in this operator, we obtain the operator N σ,n

ς,p,q defined
as follows:

N σ,n
ς,p,q
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3. Putting 𝑎 = (𝑟 >  0, 𝜏 ≥  0), 𝜗 = 0  and n = 0 in this operator, we obtain the 
operator ℳ , ,  defined by El-Deeb and Bulboacấ [14] and Srivastava and El-Deeb 
[12]; 

4. Putting  𝑎 = ( )! 𝜚  (𝜍 > 0) and n = 0 in this operator, we obtain the q-analogue of 

Poisson operator  𝛪 ,  defined by El-Deeb et al. [15]; 
5. Putting 𝑎 =  1, 𝜗 = 0   in this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵 ,, ,    de-

fined as follows: 

𝐵 ,, , Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁] , ℎ  𝜀 ; (10)

6. Putting 𝑎 = ( )  (   )( )! (   ) (𝜌 >  0)  in this operator, we obtain the operator  𝒩 , ,,  de-
fined as follows: 

𝒩 , ,, Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁 + 1] , (−1)  Γ(ρ +  1)4 (𝑗 − 1)! Γ(r +  ρ) ℎ  𝜀                
= 𝜀 + ∑ 𝜑 ℎ  𝜀 ,                                                                                                       

(11)

where 𝜑 = 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁] , (−1)  Γ(ρ +  1)4 (𝑗 − 1)! Γ(r +  ρ), (12)

7. Putting  𝑎 = (𝑟 >  0, 𝜏 ≥  0) in this operator, we obtain the operator ℳ , ,, ,  defin𝑒d 
as follows: 

 ℳ , ,, , Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝜏 + 1𝜏 + 𝑗 𝑗] !𝜁 + 1] , ℎ  𝜀 .    
Ma and Minda in [ 16] have given a unified treatment of various subclasses consisting 

of starlike and convex functions for either one of the quantities 𝒯 ( )𝒯( )  or 1 + 𝒯 ( )𝒯( )  subor-
dinate to a more general superordinate function. The  𝑆∗(𝜙)   introduced by Ma and 
Minda [16] consists of function 𝒯 ∈  𝒜 satisfying  𝒯 ( )𝒯( )  ≺ 𝜙(𝑧), 𝑧 ∈ 𝔘 and correspond-

ing to class 𝑘(𝜙) of convex functions 𝒯 ∈  𝒜 satisfying 1 + 𝒯 ( )𝒯( ) ≺ 𝜙(𝑧), 𝑧 ∈ 𝔘, Ma and 
Minda [16] , where 𝜙 is an analytic and univalent function with a positive real part in the 
unit disc 𝔘, satisfying 𝜙(0) = 1, 𝜙 (0) > 0, and 𝜙(𝔘) is a starlike region with the respect 
to 1 and symmetric with the respect to the real axis. The functions in the classes  𝑆∗(𝜙) 
and 𝐾(𝜙), are called starlike functions of the Ma-Minda type or convex functions of the 
Ma-Minda type, respectively. By 𝑆∑𝔘∗ (𝜙) and 𝐾∑𝔘(𝜙 ), we denote bi-starlike functions of 
Ma-Minda type and bi-convex functions of Ma-Minda type, respectively [ 16]. In this in-
vestigation, we assume that  𝜙(𝜀) = 1 + 𝐵 𝜀 + 𝐵 𝜀 +𝐵 𝜀 + ⋯ , 𝐵 > 0. (13)

and ℎ(𝜀) = ℎ + ℎ𝜀 + ℎ 𝜀 +ℎ 𝜀 + ⋯. (14)

The aim of this paper is to introduce new subclasses of the class ∑𝔘 and determine 
estimates of bounds on the coefficient |ℎ | and |ℎ | and for the functions in the above 
subclasses. 

(ε) = ε +
+∞
∑

j=2
j2n((σ − ϑ)(j − 1) + 1)n [j]q!

[ζ+1]q,ε−1

(−1)j Γ(ρ+1)
4j−1(j−1)!Γ(r+ρ)

hj εj

= ε + ∑+∞
j=2 φjhj εj,

(11)

where

φj = j2n((σ − ϑ)(j − 1) + 1)n [j]q!

[ζ]q,ε−1

(−1)j Γ(ρ+ 1)
4j−1(j − 1)!Γ(r + ρ)

, (12)

7. Putting aj =
(

τ+1
τ+j

)r
(r > 0, τ ≥ 0) in this operator, we obtain the operator Mσ,n,r

τ,θ,q defined
as follows:

Mσ,n,r
τ,θ,q
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3. Putting 𝑎 = (𝑟 >  0, 𝜏 ≥  0), 𝜗 = 0  and n = 0 in this operator, we obtain the 
operator ℳ , ,  defined by El-Deeb and Bulboacấ [14] and Srivastava and El-Deeb 
[12]; 

4. Putting  𝑎 = ( )! 𝜚  (𝜍 > 0) and n = 0 in this operator, we obtain the q-analogue of 

Poisson operator  𝛪 ,  defined by El-Deeb et al. [15]; 
5. Putting 𝑎 =  1, 𝜗 = 0   in this operator, we obtain the operator 𝑄𝑇𝑅𝑐𝑎𝑙𝐵 ,, ,    de-

fined as follows: 

𝐵 ,, , Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁] , ℎ  𝜀 ; (10)

6. Putting 𝑎 = ( )  (   )( )! (   ) (𝜌 >  0)  in this operator, we obtain the operator  𝒩 , ,,  de-
fined as follows: 

𝒩 , ,, Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁 + 1] , (−1)  Γ(ρ +  1)4 (𝑗 − 1)! Γ(r +  ρ) ℎ  𝜀                
= 𝜀 + ∑ 𝜑 ℎ  𝜀 ,                                                                                                       

(11)

where 𝜑 = 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝑗] !𝜁] , (−1)  Γ(ρ +  1)4 (𝑗 − 1)! Γ(r +  ρ), (12)

7. Putting  𝑎 = (𝑟 >  0, 𝜏 ≥  0) in this operator, we obtain the operator ℳ , ,, ,  defin𝑒d 
as follows: 

 ℳ , ,, , Ϝ(ℇ) = 𝜀 + 𝑗 (𝜎 − 𝜗)(𝑗 − 1) + 1 𝜏 + 1𝜏 + 𝑗 𝑗] !𝜁 + 1] , ℎ  𝜀 .    
Ma and Minda in [ 16] have given a unified treatment of various subclasses consisting 

of starlike and convex functions for either one of the quantities 𝒯 ( )𝒯( )  or 1 + 𝒯 ( )𝒯( )  subor-
dinate to a more general superordinate function. The  𝑆∗(𝜙)   introduced by Ma and 
Minda [16] consists of function 𝒯 ∈  𝒜 satisfying  𝒯 ( )𝒯( )  ≺ 𝜙(𝑧), 𝑧 ∈ 𝔘 and correspond-

ing to class 𝑘(𝜙) of convex functions 𝒯 ∈  𝒜 satisfying 1 + 𝒯 ( )𝒯( ) ≺ 𝜙(𝑧), 𝑧 ∈ 𝔘, Ma and 
Minda [16] , where 𝜙 is an analytic and univalent function with a positive real part in the 
unit disc 𝔘, satisfying 𝜙(0) = 1, 𝜙 (0) > 0, and 𝜙(𝔘) is a starlike region with the respect 
to 1 and symmetric with the respect to the real axis. The functions in the classes  𝑆∗(𝜙) 
and 𝐾(𝜙), are called starlike functions of the Ma-Minda type or convex functions of the 
Ma-Minda type, respectively. By 𝑆∑𝔘∗ (𝜙) and 𝐾∑𝔘(𝜙 ), we denote bi-starlike functions of 
Ma-Minda type and bi-convex functions of Ma-Minda type, respectively [ 16]. In this in-
vestigation, we assume that  𝜙(𝜀) = 1 + 𝐵 𝜀 + 𝐵 𝜀 +𝐵 𝜀 + ⋯ , 𝐵 > 0. (13)

and ℎ(𝜀) = ℎ + ℎ𝜀 + ℎ 𝜀 +ℎ 𝜀 + ⋯. (14)

The aim of this paper is to introduce new subclasses of the class ∑𝔘 and determine 
estimates of bounds on the coefficient |ℎ | and |ℎ | and for the functions in the above 
subclasses. 

(ε) = ε +
+∞

∑
j=2

j2n((σ − ϑ)(j − 1) + 1)n
(

τ + 1
τ + j

)r [j]q!

[ζ + 1]q,ε−1
hj εj.

Ma and Minda in [16] have given a unified treatment of various subclasses consisting of
starlike and convex functions for either one of the quantities εT ′(ε)

T (ε)
or 1+ εT ′′ (ε)

T (ε)
subordinate

to a more general superordinate function. The S∗(ϕ) introduced by Ma and Minda [16]
consists of function T ∈ A satisfying εT ′(ε)

T (ε)
≺ ϕ(z), z ∈ U and corresponding to class k(ϕ)

of convex functions T ∈ A satisfying 1 + εT ′′ (ε)
T (ε)

≺ ϕ(z), z ∈ U, Ma and Minda [16], where
ϕ is an analytic and univalent function with a positive real part in the unit disc U, satisfying
ϕ(0) = 1, ϕ′(0) > 0, and ϕ(U) is a starlike region with the respect to 1 and symmetric with
the respect to the real axis. The functions in the classes S∗(ϕ) and K(ϕ), are called starlike
functions of the Ma-Minda type or convex functions of the Ma-Minda type, respectively.
By S∗

∑U
(ϕ) and K∑U

(ϕ ), we denote bi-starlike functions of Ma-Minda type and bi-convex
functions of Ma-Minda type, respectively [16]. In this investigation, we assume that

ϕ(ε) = 1 + B1ε + B2ε2+B3ε3 + . . . , B1 > 0. (13)

and
h(ε) = h0 + hε + h2ε2+h3ε3 + . . . . (14)

The aim of this paper is to introduce new subclasses of the class ∑U and determine esti-
mates of bounds on the coefficient |h2| and |h3| and for the functions in the above subclasses.

In [7] (see also [4,6,9,13,15–33]), certain subclasses of the bi-univalent analytic functions
class B were introduced and non-sharp estimates on the first two coefficients |h2| and |h3|
were found. The object of the present paper is to introduce two new subclasses as in
Definitions 1 and 2 of the function class B using the linear q-convolution operator and
determine estimates of the coefficients |h2| and |h3| for the functions in these new subclasses
of the function class.

Lemma 1 ([9]). Let p(ε) ∈ P , then |pi|≤ 2 for each i ∈ N, where P is the family of all functions
p, analytic in U, for which Re(p(ε)) > 0, (ε ∈ U), where

p(z) = 1 + p1ε + p2ε2+p3ε3 + . . . .

2. Coefficient Estimates for the Class
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1. Introduction 

The theory of q-calculus plays an important role in many areas of mathematical phys-

ical and engineering sciences. Jackson (see [1,2]) was the first to perform some applications 

of the q-calculus and introduced the q-analogue of the classical derivative and integral 

operators (see also [3]). 

Let 𝒜 be the class of analytic functions 𝒯 in an open unit disk 𝔘 = {휀 ∈ ℂ: |휀| < 1} 

of the form: 

𝒯(휀) = 휀 + ∑  𝑎𝑗휀𝑗,    (

+∞

𝑗=2

 휀 ∈  𝔘). (1) 

and satisfying the normalization conditions (see [4]): 𝒯(0) = 𝒯′(0) − 1 = 0. 

Assume that ∑𝔘  denotes the class of all functions in 𝒜  defined by Equation (1), 

which are univalent in 𝔘. 

The well-known Koebe One-Quarter Theorem [5] states that the range of every func-

tion of class ∑𝔘 contains the disk {w:│w│ < 
1

4
}. Thus, every univalent function 𝒯 has an 

inverse  𝒯 −1, such that 
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q,∑ (ζ, n, ρ, σ, ϑ, γ, δ, φ)

if the following quasi-subordination conditions are satisfied:
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 ε

[(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

+ γε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′]µ

γε

((
Qζ,q,n

ρ,σ,ϑT (ε)
)′

+ δ
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′)

+ (1 − γ)

(
(1 − δ)Qζ,q,n

ρ,σ,ϑT (ε) + δε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′
− 1 ≺q(φ(ε)− 1), (15)

and

 ς

[(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ γς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′]µ

γς

((
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ δ
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′)

+ (1 − γ)

(
(1 − δ) Qζ,q,n

ρ,σ,ϑξ(ς) + δς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′
− 1 ≺q (φ(ς)− 1), (16)

where γ, δ, µ ∈ [0, 1] and Qζ,q,n
ρ,σ,ϑT (ε) is defined in Equation (7) and (ε, ς ∈ U).

For special values to parameters µ, δ, γ, ζ, n, ρ, σ, ϑ and φ(ε), leads to get known and
new classes.

Remark 2. For δ = 0, a function T ∈ ∑U defined by Equation (7) is said to be in the class
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µ
q,∑ (ζ, n, ρ, σ, ϑ, γ, δ, φ) if the following quasi-subordination conditions are satisfied:

 ε

[(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

+ γε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′]µ

γ
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

++(1 − γ)Qζ,q,n
ρ,σ,ϑT (ε)

− 1 ≺q(φ(ε)− 1),

and  ς

[(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ γς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′]µ

γς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ (1 − γ)Qζ,q,n
ρ,σ,ϑξ(ς)

− 1 ≺q(φ(ς)− 1),

where ξ is the inverse function of T and (ε, ς ∈ U).

Remark 3. For δ = 1, a function T ∈ ∑U defined by Equation (7) is said to be in the class
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µ
q,∑ (ζ, n, ρ, σ, ϑ, γ, δ, φ) if the following quasi-subordination conditions are satisfied:

 ε

[(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

+ γε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′]µ

γε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′

+ (1 − γ)ε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′
− 1 ≺q(φ(ε)− 1),

and  ς
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Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ γς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′]µ

γς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′

+ (1 − γ)ς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
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− 1 ≺q(φ(ς)− 1),

where ξ is the inverse function of T and ε, ς ∈ U,
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Assume that ∑𝔘  denotes the class of all functions in 𝒜  defined by Equation (1), 

which are univalent in 𝔘. 

The well-known Koebe One-Quarter Theorem [5] states that the range of every func-

tion of class ∑𝔘 contains the disk {w:│w│ < 
1

4
}. Thus, every univalent function 𝒯 has an 

inverse  𝒯 −1, such that 
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µ
q,∑ (ζ, n, ρ, σ, ϑ, γ, δ, φ), then we have

|h2| ≤
|A0| B1

√
B1√

(1 + 2γ)(3µ − 2δ − 1)A0B2
1ψ3 − (1 + γ)2

[
(2µ − δ − 1)2(B2 − B1)− [2µ(µ − 1)− (2µ − δ − 1)(1 + δ)]ψ2

2 A0B2
1

] , (17)
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and

|h3| ≤
B1(|A0|+ |A1|)

(1 + 2γ)(3µ − 2δ − 1)ψ3
+

A2
0B2

1

4(1 + γ)2(2µ − δ − 1)
2
ψ2

2

, B1 > 1, (18)

Proof. Let T ∈
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Let 𝒜 be the class of analytic functions 𝒯 in an open unit disk 𝔘 = {휀 ∈ ℂ: |휀| < 1} 
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 휀 ∈  𝔘). (1) 

and satisfying the normalization conditions (see [4]): 𝒯(0) = 𝒯′(0) − 1 = 0. 

Assume that ∑𝔘  denotes the class of all functions in 𝒜  defined by Equation (1), 

which are univalent in 𝔘. 

The well-known Koebe One-Quarter Theorem [5] states that the range of every func-
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µ
q,∑(ζ, n, ρ,σ, ϑ,γ, δ,φ). There exist two analytic functions u, v and

u, v : U −→ U with u(0) = v(0) = 0, |u(ε)| < 1 and |v(ς)| ≤ 1 for all ε, ς ∈ U, satis-
fying the following conditions.

 ε

[(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

+ γε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′]µ

γε

((
Qζ,q,n

ρ,σ,ϑT (ε)
)′

+ δ
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′)

+ (1 − γ)

(
(1 − δ)Qζ,q,n

ρ,σ,ϑT (ε) + δε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′
− 1 ≺qh(ε)(φ(u(ε )− 1)), ε ∈ U (19)

and

 ς

[(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ γς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′]µ

γς

((
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ δ
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′)

+ (1 − γ)

(
(1 − δ) Qζ,q,n

ρ,σ,ϑξ(ς) + δς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′
− 1 ≺qh(ς)(φ(v(ς )− 1)), ς ∈ U, (20)

where ξ is the inverse function of T and (ε, ς ∈ U). Determine the definition of the functions
p(ε) and q(ς) by

p(ε) =
1 + u(ε)
1 − u(ε)

= 1 + c1ε2 + c2ε2 + · · · (21)

and

q(ς) =
1 + v(ς)
1 − v(ς)

= 1 + d1ς2 + d2ς2 + · · · . (22)

Equivalently,

u(ε) :=
p(ε)− 1
p(ε) + 1

=
1
2

{
c1ε +

(
c2 −

c2
1

2

)
ε2 + · · ·

}
, (23)

and

v(ς) :=
q(ς)− 1
q(ς) + 1

=
1
2

{
b1ς +

(
b2 −

b2
1

2

)
ς2 + · · ·

}
. (24)

Applying Equations (23) and (24) in Equations (19) and (20), respectively, we have ε

[(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

+ γε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′]µ

γε

((
Qζ,q,n

ρ,σ,ϑT (ε)
)′

+ δ
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′)

+ (1 − γ)

(
(1 − δ)Qζ,q,n

ρ,σ,ϑT (ε) + δε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′
− 1 = h(ε )

(
φ

(
p(ε)− 1
p(ε) + 1

)
− 1
)

, (25)

and ς

[(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ γς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′]µ

γς

((
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

+ δ
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′)

+ (1 − γ)

(
(1 − δ)Qζ,q,n

ρ,σ,ϑξ(ς) + δς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′
− 1 = h(ς)

(
φ

(
q(ς)− 1
q(ς) + 1

)
− 1
)

. (26)

Utilizing Equations (22) and (23) in the right-hands (RH) of the relations
Equations (25) and (26), we obtain

h(ε)
(

φ

(
p(ε)− 1
p(ε) + 1

)
− 1
)
=

1
2

A0B1c1ε +

{
1
2

A1B1c1 +
1
2

A0B1

(
c2 −

c2
1

2

)
+

A0B2

4
c2

1

}
ε2 + · · · . (27)
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and

h(ς)
(

φ

(
q(ς)− 1
q(ς) + 1

)
− 1
)
=

1
2

A0B1d1ς +

{
1
2

A1B1d1 +
1
2

A0B1

(
d2 −

d2
1

2

)
+

A0B2

4
d2

1

}
ς2 + · · · . (28)

By equalizing Equations (25)–(28), respectively, we obtain

(1 + γ)(2µ − δ − 1)h2ψ2 =
1
2

A0B1c1, (29)

[
(1 + 2γ)(3µ − 2δ − 1)h3ψ3 + (1 + γ)2[2µ(µ − 1)− (1 + δ)(2µ − δ − 1)]h2

2ψ2
2

]
= 1

2 A1B1c1 +
1
2 A0B1

(
c2 −

c2
1
2

)
+ A0B2

4 c2
1.

(30)

and
−(1 + γ)(2µ − δ − 1)h2ψ2 =

1
2

A0B1b1 (31)[[
(1 + γ)2[2µ(µ − 1)− (2µ − δ − 1)(1 + δ)] + 2(1 + 2γ)(3µ − 2δ − 1)

]
h2

2ψ2
2

−(1 + 2γ)(3µ − 2δ − 1)h3ψ3

]
= 1

2 A1B1d1 +
1
2 A0B1 +

(
d2 −

d2
1

2

)
+ A0B2

4 d2
1.

(32)

From Equations (29) and (31), we have

h2 =
A0B1c1

2(1 + γ)(2µ − δ − 1)ψ2
= − A0B1d1

2(1 + γ)(2µ − δ − 1)ψ2
(33)

It follows that
c1 = −d1 , (34)

and
8(1 + γ)2(2µ − δ − 1)

2
h2

2ψ2
2 = A2

0B2
1(d

2
1 + c2

1

)
. (35)

Now, by summing Equations (33) and (35), in light of Equations (33) and (34), we obtain

8
[
(1 + γ)2[2µ(µ − 1)− (2µ − δ − 1)(1 + δ)]A0B2

1ψ2
2 + (1 + 2γ)(3µ − 2δ − 1)ψ3 A0B2

1

]
h2

2

= 2A2
0B3

1(c2 + d2) +
(

8(1 + γ)2(2µ − δ − 1)
2
(B2 − B1)h

2
2ψ2

2

)
,

(36)

which implies

h2
2 =

2A2
0B3

1(c2 + d2)

8
{
(1 + 2γ)(3µ − 2δ − 1)A0B2

1ψ3 − (1 + γ)2
[
(2µ − δ − 1)2(B2 − B1)− [2µ(µ − 1)− (2µ − δ − 1)(1 + δ)]A0B2

1

]} . (37)

Applying Lemma 1 |ci| ≤ 2, |di| ≤ 2 to Equation (37), we obtain the desired result
Equation (17).

Next, for the bound on |a3|, by subtracting Equation (32) from Equation (30), we obtain

4
{
(1 + 2γ)(3µ − 2δ − 1)ψ3h3 − (1 + 2γ)(3µ − 2δ − 1)ψ3 h2

2

}
= 2A

1
B1c1 + A0B1(c2 − d2) (38)

By substituting Equation (32) from Equation (30), and with further computation using
Equations (34) and (35), we obtain

h3 =
2A1B1c1

4(1 + 2γ)(3µ − 2δ − 1)ψ3
+

A0B1(c2 − d2)

4(1 + 2γ)(3µ − 2δ − 1)ψ3
+

A2
0B2

1(c
2
1+d2

1

)
8(1 + γ)2(2µ − δ − 1)

2
ψ2

2

. (39)

Applying Lemma 1. |ci| ≤ 2, |di| ≤ 2, in Equation (38), we obtain Equation (18). This
completes the proof of Theorem 1. □
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By putting δ = 0 in Theorem 1, we obtain the following Corollary:

Corollary 1. If the function T (ε) given by (1) belongs to the class
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1. Introduction 

The theory of q-calculus plays an important role in many areas of mathematical phys-

ical and engineering sciences. Jackson (see [1,2]) was the first to perform some applications 

of the q-calculus and introduced the q-analogue of the classical derivative and integral 

operators (see also [3]). 

Let 𝒜 be the class of analytic functions 𝒯 in an open unit disk 𝔘 = {휀 ∈ ℂ: |휀| < 1} 

of the form: 

𝒯(휀) = 휀 + ∑  𝑎𝑗휀𝑗,    (

+∞

𝑗=2

 휀 ∈  𝔘). (1) 

and satisfying the normalization conditions (see [4]): 𝒯(0) = 𝒯′(0) − 1 = 0. 

Assume that ∑𝔘  denotes the class of all functions in 𝒜  defined by Equation (1), 

which are univalent in 𝔘. 

The well-known Koebe One-Quarter Theorem [5] states that the range of every func-

tion of class ∑𝔘 contains the disk {w:│w│ < 
1

4
}. Thus, every univalent function 𝒯 has an 

inverse  𝒯 −1, such that 
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µ
q,∑ (ζ, n, ρ, σ, ϑ, γ, 0, φ), then

|h2| ≤
|A0| B1

√
B1√

(1 + 2γ)(3µ − 1)A0B2
1ψ3 − (1 + γ)2

[
(2µ − 1)2(B2 − B1)− [2µ(µ − 1)− (2µ − 1)]ψ2

2 A0B2
1

] ,

and

|h3| ≤
B1(|A0|+ |A1|)

(1 + 2γ)(3µ − 1)ψ3
+

A2
0B2

1

4(1 + γ)2(2µ − 1)
2
ψ2

2

.

By putting δ = 1 in Theorem 1, we obtain the following Corollary:

Corollary 2. Let T (ε) given by (1) belong to the class
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1. Introduction 

The theory of q-calculus plays an important role in many areas of mathematical phys-

ical and engineering sciences. Jackson (see [1,2]) was the first to perform some applications 

of the q-calculus and introduced the q-analogue of the classical derivative and integral 

operators (see also [3]). 

Let 𝒜 be the class of analytic functions 𝒯 in an open unit disk 𝔘 = {휀 ∈ ℂ: |휀| < 1} 

of the form: 

𝒯(휀) = 휀 + ∑  𝑎𝑗휀𝑗,    (

+∞

𝑗=2

 휀 ∈  𝔘). (1) 

and satisfying the normalization conditions (see [4]): 𝒯(0) = 𝒯′(0) − 1 = 0. 

Assume that ∑𝔘  denotes the class of all functions in 𝒜  defined by Equation (1), 

which are univalent in 𝔘. 

The well-known Koebe One-Quarter Theorem [5] states that the range of every func-

tion of class ∑𝔘 contains the disk {w:│w│ < 
1

4
}. Thus, every univalent function 𝒯 has an 

inverse  𝒯 −1, such that 
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µ
q,∑ (ζ, n, ρ, σ, ϑ, γ, 1, φ). Then,

|h2| ≤
|A0| B1

√
B1√

3(1 + 2γ)(µ − 1)A0B2
1ψ3 − (1 + γ)2

[
(2µ − 2)2(B2 − B1)− 2[µ(µ − 1)− (2µ − 2)]ψ2

2 A0B2
1

] ,

and

|h3| ≤
B1(|A0|+ |A1|)

3(1 + 2γ)(µ − 1)ψ3
+

A2
0B2

1

8(1 + γ)2(µ − 1)
2
ψ2

2

.

By putting γ = 1 in Theorem 1, we have the following Corollary:

Corollary 3. Let T (ε) given by (1) belong to the class
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1. Introduction 

The theory of q-calculus plays an important role in many areas of mathematical phys-

ical and engineering sciences. Jackson (see [1,2]) was the first to perform some applications 

of the q-calculus and introduced the q-analogue of the classical derivative and integral 

operators (see also [3]). 

Let 𝒜 be the class of analytic functions 𝒯 in an open unit disk 𝔘 = {휀 ∈ ℂ: |휀| < 1} 

of the form: 

𝒯(휀) = 휀 + ∑  𝑎𝑗휀𝑗,    (

+∞

𝑗=2

 휀 ∈  𝔘). (1) 

and satisfying the normalization conditions (see [4]): 𝒯(0) = 𝒯′(0) − 1 = 0. 

Assume that ∑𝔘  denotes the class of all functions in 𝒜  defined by Equation (1), 

which are univalent in 𝔘. 

The well-known Koebe One-Quarter Theorem [5] states that the range of every func-

tion of class ∑𝔘 contains the disk {w:│w│ < 
1

4
}. Thus, every univalent function 𝒯 has an 
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µ
q,∑ (ζ, n, ρ, σ, ϑ, 1, δ, φ). Then,

|h2| ≤
|A0| B1

√
B1√

3(3µ − 2δ − 1)A0B2
1ψ3 − 4

[
(2µ − δ − 1)2(B2 − B1)− [2µ(µ − 1)− (2µ − δ − 1)(1 + δ)]ψ2

2 A0B2
1

] ,

and

|h3| ≤
B1(|A0|+ |A1|)

3(3µ − 2δ − 1)ψ3
+

A2
0B2

1

16(2µ − δ − 1)2ψ2
2

, B1 > 1.

By putting γ = 0 in Theorem 1, we have the following Corollary:

Corollary 4. Let T (ε) given by (1) belong to the class
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µ
q,∑ (ζ, n, ρ, σ, ϑ, 0, δ, φ).

Then, |h2| ≤ |A0|B1
√

B1√
(3µ−2δ−1)A0B2

1ψ3−[(2µ−δ−1)2(B2−B1)−[2µ(µ−1)−(2µ−δ−1)(1+δ)]ψ2
2 A0B2

1]
,

and

|h3| ≤
B1(|A0|+ |A1|)
(3µ − 2δ − 1)ψ3

+
A2

0B2
1

4(2µ − δ − 1)2ψ2
2

, B1 > 1.

3. Coefficients Estimates for the Subclass ℵq,δ
∑ (λ, ζ, n, ρ, σ, ϑ,φ)

Definition 2. A function T ∈ ∑U defined by (1) is said to be in the class ℵq,δ
∑ (λ, ζ, n, ρ, σ, ϑ, φ) if

the following quasi-subordination conditions are satisfied:

1 +
1
γ

(1 − δ)
ε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

(1 − λ)ε + λQζ,q,n
ρ,σ,ϑT (ε)

+ δ

 ε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′

+
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

λε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′

+
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′
− 1

 ≺q (φ(ε)− 1) (40)

and
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1 +
1
γ

(1 − δ)
ς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

(1 − λ)ς + λQζ,q,n
ρ,σ,ϑξ(ς)

+ δ

 ς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′

+
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

λς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′

+
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′
− 1

 ≺q (φ(ς)− 1), (41)

where (0 ≤ λ < 1, 0 ≤ δ ≤ 1, γ ∈ C \ {0} , ε,∈ U).
For special values of parameters λ and δ, we obtain new and well-known classes.

Remark 4. For λ = 0, a function T ∈ ∑U defined by Equation (1) is said to be in the class
ℵq,δ

∑ (λ, ζ, n, ρ, σ, ϑ, φ) if the following quasi-subordination conditions are satisfied:

1 +
1
γ

(1 − δ)
ε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

ε
+ δ

 ε
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′′

+
(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

(
Qζ,q,n

ρ,σ,ϑT (ε)
)′

− 1

 ≺q (φ(z)− 1)

and

1 +
1
γ

(1 − δ)
ς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

ς
+ δ

 ς
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′′

+
(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

(
Qζ,q,n

ρ,σ,ϑξ(ς)
)′

− 1

 ≺q (φ(w)− 1)

Theorem 2. If the function T belongs to the class ℵq,δ
∑ (λ, ζ, n, ρ, σ, ϑ, φ), then we have

|h2| ≤
γ|A0| B1

√
B1√

2(1 − λ)(1 + 2δ)A0B2
1ψ3 − (1 − λ)2

[
(1 + 3δ)A0B2

1 − (1 + δ)2(B2 − B1)
]
ψ2

2

(42)

and

|h3| ≤
γB1(|A0|+ |A1|)
(1 − λ)(1 + 2δ)ψ3

+
A2

0B2
1γ2

(1 + δ)2(1 − λ)2ψ
2
2

, B1 > 1, (43)

where 0 ≤ δ ≤ 1, 0 ≤ λ ≤ 1, γ ∈ U− {0}.

Proof. Proceeding as in the proof of Theorem 1, we can obtain the relations as follows:

1
γ
(1 + δ)(1 − λ)h2ψ2 =

1
2

A0B1c1, (44)

1
γ

[
2(1 − λ)(1 + 2δ)h3ψ3 − (1 − λ)(1 + λ)((1 + 3δ))h2

2ψ2
2
]

= 1
2 A1B1c1 +

1
2 A0B1

(
c2 −

c2
1
2

)
+ A0B2

4 c2
1

} (45)

and
− 1

γ
(1 + δ)(1 − λ)h2ψ2 =

1
2

A0B1b1, (46)

1
γ

[
[4(1 − λ)(1 + 2δ)ψ3 − (1 − λ)(1 + λ)(1 + 3δ)]h2

2ψ2
2 − 2(1 − λ)(1 + 2δ)ψ3h3

]
= 1

2 A1B1b1 +
1
2 A0B1

(
b2 −

b2
1
2

)
+ A0B2

4 b2
1

}
.

(47)

From Equations (44) and (46), we obtain

c1 = −d1 (48)

and
h2 =

γA0B1c1

2(1 + δ)(1 − λ)ψ2
= − γA0B1b1

2(1 + δ)(1 − λ)ψ2
(49)
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and
8(1 + δ)2(1 − λ)2 h2

2ψ2
2 = A2

0B2
1γ2(d

2
1 + c2

1

)
. (50)

Now, by summing Equations (45) and (47) and using Equation (50), we obtain

8
γ{(2(1 − λ)(1 + 2δ )ψ3 − (1 − λ)(1 + λ)(1 + 3δ)ψ2

2
}

h2
2

= 2A0B1(c2+d2) + A0(B2−B1)(c
2
1+d2

1),
(51)

which implies

h2
2 =

2A2
0B3

1(c2 + d2)

8
{

2(1 − λ)(1 + 2δ)A0B2
1ψ3 − (1 − λ)2

[[
(1 + 3δ)A0B2

1 − (1 + δ)2(B2 − B1)
]
ψ2

2

]} . (52)

Applying Lemma 1. in Equation (52), we obtain the desired result Equation (42).
Next, for the bound on |h3|, by subtracting Equation (45) from (47), we obtain

8
γ

{
(1 − λ)(1 + 2δ)ψ3h3 − (1 − λ)(1 + 2δ)ψ3 h2

2

}
= 2A

1
B1c1 + A0B1(c2 − d2)

By substituting Equation (47) from Equation (45), and with further computation using
Equations (48) and (49), we obtain

h3 =
2γA1B1c1

4(1 − λ)(1 + 2δ)ψ3
+

γA0B1(c2 − d2)

4(1 − λ)(1 + 2δ)
+

A2
0B2

1γ2(c 2
1+d2

1)

8(1 + δ)2(1 − λ)2ψ
2
2

(53)

From Equations (53) and (52), we obtain the desired result Equation (43). The proof
is complete. □

Corollary 5. If T (ε) ∈ ℵq,δ
∑ (1, ζ, n, ρ, σ, ϑ, φ) defined in (1), then we have

|h2| ≤
γ|A0| B1

√
B1√

2(1 + 2δ)A0B2
1ψ3 −

[
(1 + 3δ)A0B2

1 − (1 + δ)2(B2 − B1)
]
ψ2

2

and

|h3| ≤
γB1(|A0|+ |A1|)

(1 + 2δ)ψ3
+

A2
0B2

1γ2

(1 + δ)2ψ
2
2

, B1 > 1.

Corollary 6. If T (ε) ∈ ℵq,1
∑ (λ, ζ, n, ρ, σ, ϑ, φ) defined in (1), then we have

|h2| ≤
γ|A0| B1

√
B1√

6(1 − λ)A0B2
1ψ3 − (1 − λ)2[4A0B2

1 − 4(B2 − B1)
]
ψ2

2

and

|h3| ≤
γB1(|A0|+ |A1|)

3(1 − λ)ψ3
+

A2
0B2

1γ2

4(1 − λ)2ψ
2
2

, B1 > 1.

4. Conclusions

We introduce and investigate new subclasses
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1. Introduction 

The theory of q-calculus plays an important role in many areas of mathematical phys-

ical and engineering sciences. Jackson (see [1,2]) was the first to perform some applications 

of the q-calculus and introduced the q-analogue of the classical derivative and integral 

operators (see also [3]). 

Let 𝒜 be the class of analytic functions 𝒯 in an open unit disk 𝔘 = {휀 ∈ ℂ: |휀| < 1} 

of the form: 

𝒯(휀) = 휀 + ∑  𝑎𝑗휀𝑗,    (

+∞

𝑗=2

 휀 ∈  𝔘). (1) 

and satisfying the normalization conditions (see [4]): 𝒯(0) = 𝒯′(0) − 1 = 0. 

Assume that ∑𝔘  denotes the class of all functions in 𝒜  defined by Equation (1), 

which are univalent in 𝔘. 

The well-known Koebe One-Quarter Theorem [5] states that the range of every func-

tion of class ∑𝔘 contains the disk {w:│w│ < 
1

4
}. Thus, every univalent function 𝒯 has an 

inverse  𝒯 −1, such that 
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µ
q,∑ (ζ, n, ρ, σ, ϑ, γ, δ, φ) and ℵq,δ

∑
(λ, ζ, n, ρ, σ, ϑ, φ) of the analytic function class of bi-univalent functions defined in open
unit disk connected with a linear q-convolution operator, which are associated with quasi-
subordination. We find coefficient estimates |h2|, |h3| for functions in these subclasses.
Several known and new consequences of these results are also pointed out. The results
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contained in the paper could inspire ideas for continuing the study, and we opened some
windows for authors to generalize our new subclasses to obtain some new results in
bi-univalent function theory. There is symmetry between the results of the subclass
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