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Abstract: We present a new interconnection topology called the Padovan cube. Despite their asym-
metric and relatively sparse interconnections, the Padovan cubes are shown to possess attractive
recurrent structures. Since they can be embedded in a subgraph of the Boolean cube and can have a
Fibonacci cube as a subgraph, and since they are also a supergraph of other structures, it is possible
that the Padovan cubes can be useful in fault-tolerant computing. For a graph with n vertices,
we characterize the Padovan cubes. We also include the number of edges, decompositions, and
embeddings, as well as the diameter of the Padovan cubes.
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1. Introduction

Many researchers are currently studying the Fibonacci cubes in the field of intercon-
nection topology. The Fibonacci cubes were first introduced by Hsu [1], and many scholars
have since studied them, as shown in [2–8]. We will now introduce a new interconnection
topology called the Padovan cube.

The Padovan sequence is named after R. Padovan [9,10], and the Padovan sequence
has been studied by S. Kritsana, A. Shannon [11–13], and G. Lee [14,15].

The Padovan sequence is the sequence of integers Pn defined by the initial values
P1 = P2 = P3 = 1 and the recurrence relation

Pn+2 = Pn + Pn−1, for all n ≥ 2.

The first few numbers of the Padovan sequence are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37 · · ·

Let {zn} be a sequence of positive integers arranged in nondecreasing order. We define
{zn} to be complete if every positive integer N is the sum of some subsequence of {zn};
that is,

N =
∞

∑
i=1

αizi where αi ∈ {0, 1}. (1)

In [16], we can obtain the following about the completeness of a sequence: If z1 = 1
and all n ≥ 1, zn+1 ≤ 2zn, then the sequence {zn} is complete.

In [17], the author studied the completeness of a generalized Fibonacci sequence, while
we can easily prove that the Padovan sequence is complete, some integers cannot be ex-
pressed in only one way by using the Padovan sequence {Pn}. For example, for the integer 8
and Padovan numbers 1, 2, 2, 3, 4, 5, and 7, we can obtain
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8 = 1 + 7 = 2 + 2 + 4 = 1 + 3 + 4 = 3 + 5. Thus, to achieve uniqueness, we will deal
with this problem with the subsequence of the Padovan sequence. We will also use this
subsequence to define new Padovan codes and cubes that have never existed before, and
then find some of their properties.

We represent an interconnection topology using a graph G = (V, E), where V denotes
the set of vertices and E denotes the set of edges, which are the communication links
between vertices. The following terminology and notations will be used:

A subgraph of a graph G = (V, E) is any graph H = (V′, E′), such that V′ ⊆ V and
E′ ⊆ E, and we write H ⊆ G.

We write G1
∼= G2 if the two graphs are isomorphic.

A graph G1 is said to be directly embedded in G2, as denoted by G1 v G2, if and only if
there is a subgraph G3 of G2, such that G1

∼= G3.
We write G1 ∪ G2 to denote the graph (V1 ∪V2, E1 ∪ E2) and G1 ∩ G2 to denote (V1 ∩

V2, E1 ∩ E2), and ∪m
i=1Gi = G1 ∪ G2 ∪ · · · ∪ Gm.

If G2 ∩ G3 = (∅, ∅), i.e., if they are disjoint, then we write G1 = G2 ] G3 instead of
writing G2 ∪ G3 to emphasize that G1 consists of two disjointed subgraphs. Furthermore,
for convenience, we write ]m

i=1Gi = m · G if the graphs are all isomorphic, i.e., Gi
∼= G for

all 1 ≤ i ≤ m.
The rest of this paper is organized as follows. In Section 2, we define the Padovan codes

based on a subsequence of the Padovan sequence. In Section 3, we define the Padovan
cubes based on the Padovan codes. In Section 4, we provide some of the topological
properties of the Padovan cubes.

2. The Padovan Codes

In this section, we define the Padovan codes by using a subsequence {an} of the
Padovan sequence {Pn}. The odd-Padovan sequence {an} is the sequence of integers
defined by an = P2n+1 for all n ≥ 1. The first few numbers of the odd-Padovan sequence
are:

1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, 616 · · ·

The following lemma shows that {an} has a recurrence relation.

Lemma 1. Let {an} be the odd-Padovan sequence. For a1 = 1, a2 = 2, a3 = 4, a4 = 7, and n ≥ 5,
we have an = an−1 + an−2 + an−4.

Proof. Since an = P2n+1 = P2n−1 + P2n−2, an−1 = P2n−1, and P2n−2 = P2n−4 + P2n−5,
we have

an = P2n−1 + P2n−2

= an−1 + (P2n−4 + P2n−5)

= an−1 + (P2n−6 + P2n−7) + P2n−5

= an−1 + (P2n−5 + P2n−6) + P2n−7

= an−1 + P2n−3 + P2n−7

= an−1 + an−2 + an−4.

In [18], we can obtain a recurrence relation of {an}: an = 2an−1 − an−2 + an−3. To con-
struct the Padovan codes and the Padovan cubes using the odd-Padovan sequence {an},
we must first know if the odd-Padovan sequence {an} is complete.

Lemma 2. The odd-Padovan sequence {an} is complete.

Proof. Since an+1 = 2an − an−1 + an−2,
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2an − an+1 = an−1 − an−2 ≥ 0.

From the completeness of this sequence, we can see that the odd-Padovan sequence is
complete.

From Lemma 2, we know that every positive integer can be represented as the sum of
one or more distinct odd-Padovan numbers. We will now use the odd-Padovan sequence
{an} to represent any positive integer and introduce Padovan coding from these repre-
sentations. However, there are several ways that an integer can be represented using the
odd-Padovan sequence. For example, the odd-Padovan representation of an integer 13 can
be obtained as 13 = 12 + 1 or 13 = 7 + 4 + 2. However, when we later construct the Padovan
codes and cubes, we try to use the binary digit 1 in a Padovan code as few times as possible.
In other words, when expressing a positive integer as the odd-Padovan representation, it is
convenient to reduce the number of terms that have been added, if possible. We must have
the following Padovan Coding Algorithm to construct the Padovan codes and cubes.

For example, from Algorithm 1, we must choose only 13 = 12 + 1, not 13 = 7 + 4 + 2,
as the odd-Padovan representation of 13. The odd-Padovan representation of a number N
can be obtained by using the following approach. First, we find the greatest odd-Padovan
number ak that is less than or equal to N, assign a ‘1’ to the bit that corresponds to ak, then
proceed recursively for N − ak. The unassigned bits are 0s. For example, the odd-Padovan
representation of an integer 13 can be obtained as 13 = 12 + 1 or 13 = 7 + 4 + 2. However,
by the Padovan coding algorithm, the greatest odd-Padovan number available to obtain 13
is a5 = 12; hence, 13 = 12 + 1 = 1 · a5 + 0 · a4 + 0 · a3 + 0 · a2 + 1 · a1. In particular, the three
numbers 7 = a4, 4 = a3, 2 = a2 are three consecutive terms of the odd-Padovan sequence.
Thus, we have the following lemma.

Algorithm 1 Padovan Coding Algorithm.
An arbitrary positive integer N is represented in the following way using an odd-Padovan
sequence.
(1) Select ak1 , the largest odd-Padovan number that does not exceed N (i.e., 1 ≤ ak1 ≤ N).
(2) Select ak2 , the largest odd-Padovan number that does not exceed N − ak1 (i.e., 1 ≤

ak2 ≤ N − ak1 ).
(3) Select ak3 , the largest odd-Padovan number that does not exceed N − ∑2

j=1 akj
(i.e.,

1 ≤ ak3 ≤ N −∑2
j=1 akj

).
(4) Obtain akl

(4 ≤ l ≤ m), the odd-Padovan number by repeating the above process (i.e.,
1 ≤ akl

≤ N −∑l−1
j=1 akj

).
(5) The iterative process is stopped, N being ∑m

j=1 akj
(i.e., N = ∑m

j=1 akj
).

Lemma 3. Every positive integer N can be represented uniquely as the sum of one or more distinct
odd-Padovan numbers such that the sum does not include any three consecutive odd-Padovan
numbers. That is, if N is any positive integer, then there exists the following unique representation
of N:

N =
∞

∑
i=1

αiai,

where each αi is a binary digit and, for i ≥ 1, αiαi+1αi+2 = 0.

Proof. From Lemma 2, we know that N can be represented as the sum of one or more
distinct odd-Padovan numbers. We can then immediately obtain the uniqueness for the
odd-Padovan representation of any integer from the Padovan coding algorithm.

Thus, we will prove that the sum does not include any consecutive three odd-Padovan
numbers by induction. For n = 1, 2, 4, 7, 12, since the numbers are odd-Padovan numbers,



Symmetry 2023, 15, 266 4 of 14

it is clearly true. For n = 3, 5, 6, 8, 9, 10, 11, we have 3 = 2 + 1, 5 = 4 + 1, 6 = 4 + 2, 8 = 7 + 1,
9 = 7 + 2, 10 = 7 + 2 + 1, and 11 = 7 + 4.

Now, we consider n ≥ 13. If n is an odd-Padovan number then we are finished.
Otherwise there exists a j such that aj < n < aj+1. By induction, suppose that each
k < n has an odd-Padovan representation and consider k = n− aj. Since k < n, k has
an odd-Padovan representation. Meanwhile, since aj+1 = aj + aj−1 + aj−3 and n < aj+1,
k = n− aj < aj+1 − aj = aj−1 + aj−3 < aj−1 + aj−2. Thus, the odd-Padovan representation
of k does not contain aj−1 + aj−2. As a result, n can be represented as the sum of aj and the
odd-Padovan representation of k.

Therefore, we have αiαi+1αi+2 = 0 for all i ≥ 1.

Now, we define the order n Padovan code by using the odd-Padovan sequence {an}.

Definition 1 (Padovan Codes). Assume that N is an integer and 0 ≤ N ≤ an − 1, where n ≥ 1.
We let (bn−1, · · · , b2, b1)P denote the order n Padovan code of N, where bi is either 0 or 1 for
1 ≤ i ≤ (n− 1) and

N =
n−1

∑
i=1

bi · ai.

Let Cn denote the set of all order n Padovan codes. From now on, if n is implicit, we
simply represent the Padovan code (bn−1, · · · , b2, b1)P as bn−1bn−2 · · · b2b1.

Example 1. Here, we present some Padovan coding sets.
Since a1 = 1 and 0 ≤ N ≤ 1− 1 = 0, C1 = {λ}, where λ denotes the null string.
Since a2 = 2 and 0 ≤ N ≤ 2− 1 = 1, C2 = {0, 1}.
Since a3 = 4 and 0 ≤ N ≤ 4− 1 = 3, C3 = {00, 01, 10, 11}.
Since a4 = 7 and 0 ≤ N ≤ 7− 1 = 6, C4 = {000, 001, 010, 011, 100, 101, 110}.
Since a5 = 12 and 0 ≤ N ≤ 12− 1 = 11,

C5 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 1000, 1001, 1010, 1011, 1100}.

Since a6 = 21 and 0 ≤ N ≤ 21− 1 = 20,

C6 = {00000, 00001, 00010, 00011, 00100, 00101, 00110, 01000, 01001, 01010, 01011, 01100, 10000, 10001, 10010,

10011, 10100, 10101, 10110, 11000, 11001}.

Since a7 = 37 and 0 ≤ N ≤ 37− 1 = 36,

C7 = {000000, 000001, 000010, 000011, 000100, 000101, 000110, 001000, 001001, 001010, 001011, 001100, 010000,

010001, 010010, 010011, 010100, 010101, 010110, 011000, 011001, 100000, 100001, 100010, 100011, 100100,

100101, 100110, 101000, 101001, 101010, 101011, 101100, 110000, 110001, 110010, 110011}.

From Lemma 1, the Padovan coding algorithm, and Lemma 3, we can find that a
(n− 1) binary string α is an order-n Padovan code of some positive integer N if and only if
α contains neither 111 nor 1101 as its substring.

Let α · β denote the string obtained by concatenating strings α and β. Define λ · α =
α · λ = α, where λ denotes the null string. If S is a set of strings, then α · S = {α · β | β ∈ S}.
For example, 0 · C2 = {00, 01} and 10 · C3 = {1000, 1001, 1010, 1011}. Furthermore, for the
null string λ, since 1100 · λ = 1100, we have 1100 · C1 = {1100}.

From Example 1, we know that C6 = 0 · C5 ∪ 10 · C4 ∪ 1100 · C2 and C7 = 0 · C6 ∪ 10 ·
C5 ∪ 1100 · C3. This can be generalized in the following theorem.

Theorem 1. Let Cn denote the set of order-n Padovan codes. For all n ≥ 5, we have
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Cn = 0 · Cn−1 ∪ 10 · Cn−2 ∪ 1100 · Cn−4,

and |Cn| = an for all n ≥ 1.

Proof. For a non-negative integer N and the nth odd-Padovan number an, 0 ≤ N =

∑n−1
i=1 αi · ai ≤ an − 1. If α ∈ 0 · Cn−1 ∪ 10 · Cn−2 ∪ 1100 · Cn−4, then, clearly, α ∈ Cn.

Suppose that α ∈ Cn. Then, a Padovan code α has (n − 1) binary digits. Thus,
without a loss of generality, we may assume that α = 0 · β or α = 1 · β, where β is a Padovan
code with (n− 2) binary digits. If α = 0 · β, then β ∈ Cn−1 because α has (n− 1) binary
digits and Cn−1 is the set of order (n− 1) Padovan codes with (n− 2) binary digits. That
is, α ∈ 0 · Cn−1. Now, we assume that α = 1 · β, where β is a Padovan code with (n− 2)
binary digits. If β = 0 · β1 where β1 is a Padovan code with (n− 3) binary digits, then
α = 10 · β1 ∈ 10 ·Cn−2. Thus, we assume that β = 1 · β1, i.e., α = 11 · β1. If β1 = 1 · β2, where
β2 is a Padovan code with (n− 4) binary digits, then α = 111 · β2. From Lemma 3, this is
impossible. Thus, β1 = 0 · β2. Again, if β2 = 1 · β3, where β3 is a Padovan code with (n− 5)
binary digits, then α = 1101 · β3. From Lemma 1, since an = an−1 + an−2 + an−4, the integer
N, which is made of the string of binary digits α, satisfies N > an − 1. However, this is
impossible. Thus, we have β2 = 0 · β3, where β3 ∈ Cn−4., i.e., α = 1100 · β3 ∈ 1100 · Cn−4.
Thus, we have α ∈ 0 · Cn−1 ∪ 10 · Cn−2 ∪ 1100 · Cn−4.

Therefore,

Cn = 0 · Cn−1 ∪ 10 · Cn−2 ∪ 1100 · Cn−4

Moreover, by induction, we have

|Cn| = |0 · Cn−1 ∪ 10 · Cn−2 ∪ 1100 · Cn−4|
= an−1 + an−2 + an−4 = an.

Let I = (bn−1, · · · , b2, b1) and J = (cn−1, · · · , c2, c1) be two binary numbers. The Ham-
ming distance between I and J, denoted by H(I, J), is the number of bits where the two
binary numbers differ. For example, if I = (1, 1, 0, 1) and J = (1, 0, 1, 1), then H(I, J) = 2.

Corollary 1. Let A(n− 1, n− 2) be the number of codes for which the Hamming distance is 1
when comparing the codes in 0 · Cn−1 with those in 10 · Cn−2. Let A(n− 1, n− 4) be the number
of codes for which the Hamming distance is 1 when comparing the codes in 0 · Cn−1 with those in
1100 ·Cn−4. Let A(n− 2, n− 4) be the number of codes for which the Hamming distance is 1 when
comparing the codes in 10 · Cn−2 with those in 1100 · Cn−4. Then, we have

A(n− 1, n− 2) = an−2, A(n− 1, n− 4) = an−4, A(n− 2, n− 4) = an−4.

Proof. From Theorem 1, we know that |Cn| = an. For some α ∈ 0 · Cn−1 and β ∈ 10 · Cn−2,
if H(α, β) = 1, then it can only be α = 00 · α1 and β = 10 · α1 for α1 ∈ Cn−2. Since
|Cn−2| = an−2, we have A(n− 1, n− 2) = an−2.

For some α ∈ 0 ·Cn−1 and γ ∈ 1100 ·Cn−4, if H(α, γ) = 1, then it can only be α = 0100 ·
α2 and γ = 1100 · α2 for α2 ∈ Cn−4. Since |Cn−4| = an−4, we have A(n− 1, n− 4) = an−4.

For some β ∈ 10 · Cn−2 and γ ∈ 1100 · Cn−4, if H(β, γ) = 1, then it can only be
β = 1000 · β1 and γ = 1100 · β1 for β1 ∈ Cn−4. Since |Cn−4| = an−4, we have A(n− 2, n−
4) = an−4.

3. Padovan Cubes

It is straightforward to define the Padovan cubes based on the Padovan codes.
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Definition 2 (Padovan Cubes). Let N denote an integer, where 1 ≤ N ≤ an for some n. Let
IP and JP denote the Padovan codes of i and j, 0 ≤ i, j ≤ N − 1. The Padovan cube of order N
is a graph (V(N), E(N)), where V(N) = {0, 1, 2, · · · , N − 1} and {i, j} ∈ E(N) if and only if
H(IP, JP) = 1.

Definition 3 (Padovan Cube of Order n). The Padovan cube of order n, denoted by Pn, is a
Padovan cube with an nodes. Define P0 = (∅, ∅).

Example 2. Figure 1 shows examples of Padovan cubes of order N, where N = 1, 2, 4, 7, 12, 21,
and 37, respectively. Note that since each bit in the Padovan code corresponds to an odd-Padovan
number, two vertices, i and j, are adjacent only if |i − j| = ak for some k. For example, in the
Padovan cube of size 12, the vertex 0 = (0000)P has a link with each of the following vertices:
1 = (0001)P, 2 = (0010)P, 4 = (0100)P, and 7 = (1000)P, which all have a difference of 0 from
an odd-Padovan number.

Note that, for example, P6, contains three subgraphs that are isomorphic to P5, P4, and P2,
respectively. There are a4 + a2 + a2 = 7 + 2 + 2 = 11 edges connecting the three subgraphs.

Lemma 4. Let Pn = (Vn, En) be the Padovan cube of order n for all n ≥ 5. Let S1(n), S2(n),
and S3(n) denote the subgraphs of Pn induced by the set of vertices in Vn−1 = {0, 1, 2, · · · , an−1−
1}, Vn−2 = {an−1, an−1 + 1, · · · , an−1 + an−2 − 1}, and Vn−4 = {an−1 + an−2, an−1 + an−2 +
1, · · · , an−1 + an−2 + an−4 − 1}, respectively. Then, we have S1(n) ∼= Pn−1, S2(n) ∼= Pn−2,
and S3(n) ∼= Pn−4.

Proof. If n = 5, 6, then, from Figure 1, it is easy to verify the lemma.
Recall that the set of order-n Padovan codes Cn denotes the set of labels of vertices

in Pn. Thus, the interconnections of Pn are based on the Hamming distance of these
codes. From Theorem 1, we know that Cn = 0 · Cn−1 ∪ 10 · Cn−2 ∪ 1100 · Cn−4. Note that
0 ·Cn−1, 10 ·Cn−2, and 1100 ·Cn−4 are exactly the set of labels of the vertices in S1(n), S2(n),
and S3(n), respectively. Moreover, {i, j} ∈ Pn−1 if and only if {i, j} ∈ S1(n) because both i
and j have the same prefix of ‘0’ in the order n codes, which does not affect their Hamming
distance. In other words, S1(n) ∼= Pn−1. Similarly, S2(n) ∼= Pn−2 and S3(n) ∼= Pn−4.

Let Pn = (Vn, En) denote the Padovan cube of order n, n ≥ 5. The edges set Link1(n)
is defined as the edge {i, j} ∈ Link1(n) if and only if i ∈ Vn−1 and j ∈ Vn−2. The edges
set Link2(n) is defined as the edge {i, j} ∈ Link2(n) if and only if i ∈ Vn−1 and j ∈ Vn−4.
The edges set Link3(n) is defined as the edge {i, j} ∈ Link3(n) if and only if i ∈ Vn−2 and
j ∈ Vn−4, where the vertices sets Vn−1, Vn−2, and Vn−4 are the same as defined in Lemma 4.

For example, from Figure 1, it can be seen that for P6 = (V6, E6), we have V5 =
{0, 1, 2, · · · , 10, 11}, V4 = {12, 13, · · · , 17, 18}, and V2 = {19, 20}. Furthermore, then
Link1(6) = {{0, 12}, {1, 13}, {2, 14}, {3, 15}, {4, 16}, {5, 17}, {6, 18}}, Link2(6) = {{7, 19},
{8, 20}}, and Link3(6) = {{12, 19}, {13, 20}}.

Lemma 5. For the Padovan cube of order n, n ≥ 5, Pn = (Vn, En), we have |Link1(n)| = an−2,
|Link2(n)| = an−4, and |Link3(n)| = an−4.

Proof. Let A(n − 1, n − 2), A(n − 1, n − 4), and A(n − 2, n − 4) be the same as defined
in Corollary 1. Since {i, j} ∈ En if and only if H(IP, JP) = 1, we have |Link1(n)| =
A(n− 1, n− 2), |Link2(n)| = A(n− 1, n− 4), and |Link3(n)| = A(n− 2, n− 4). Therefore,
from Corollary 1, the proof is completed.

We know that for the Padovan sequence {Pn}, an = P2n+1 = ∑n−1
m=0 P2m + 1. Thus, we

have |Link1(n)| = ∑n−3
m=0 P2m + 1 and |Link2(n)| = |Link3(n)| = ∑n−5

m=0 P2m + 1.
We now characterize the Padovan cubes.
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     ①

           
     ①    ②    ③ 

             

     ①    ②    ③    ④    ⑤    ⑥ 

                                          ⑦    ⑧    ⑨    ◯10     ◯11

                       
                                             

     ①    ②    ③    ④    ⑤    ⑥ ◯12     ◯13     ◯14     ◯15     ◯16     ◯17     ◯18     ◯19     ◯20

 ◯33     ◯34     ◯35     ◯36                                             

                       
                       

 ◯21     ◯22     ◯23     ◯24     ◯25     ◯26     ◯27     ◯28     ◯29     ◯30     ◯31     ◯32                                           ⑦    ⑧    ⑨    ◯10     ◯11

                       
                                             

     ①    ②    ③    ④    ⑤    ⑥ ◯12     ◯13     ◯14     ◯15     ◯16     ◯17     ◯18     ◯19     ◯20



     ①    ②    ③    ④    ⑤    ⑥ ⑦ ⑧ ⑨



◯10 ◯11

  



Figure 1. Padovan cubes from P1 to P7.

Theorem 2. For n ≥ 5, the Padovan cube Pn can be decomposed into Pn−1, Pn−2, and Pn−4; the
three subgraphs are pairwise disjointed and are connected exactly by the set of edges in Link1(n),
Link2(n), and Link3(n).

Proof. Let S1(n), S2(n), and S3(n) be the same as defined in Lemma 4. By Lemma 4,
S1(n) ∼= Pn−1, S2(n) ∼= Pn−2, and S3(n) ∼= Pn−4. Moreover, based on the definition
of three induced subgraphs, we have S1(n) ∩ S2(n) = (∅, ∅), S1(n) ∩ S3(n) = (∅, ∅),
and S2(n) ∩ S3(n) = (∅, ∅). It should be clear that each edge {i, j} in Link1(n) connects a
vertex j in S2(n) to a vertex i = j− an−1 in S1(n). Furthermore, each edge {i, j} in Link2(n)
connects a vertex j in S3(n) to a vertex i = j− an−1 in S1(n). Moreover, each edge {i, j} in
Link3(n) connects a vertex j in S3(n) to a vertex i = j− an−2 in S2(n).

We will now show that no other edges exist between S1(n) and S2(n).
By Theorem 1, all vertices in S2(n) have a prefix of ‘10’ in their labels, while all vertices

in S1(n) have a prefix of ‘00’ or ‘01’. If i is the vertex with the prefix of ‘01’ and j is the
vertex with the prefix of ‘10’, then H(IP, JP) ≥ 2. Thus, there is no such edge {i, j} in Pn
that exists between a vertex i ∈ S1(n) and a vertex j ∈ S2(n).The only possibility is to have
the edges between S1(n) and S2(n), as given by Link1(n).

Similarly, for two vertices, i and j, in Pn, these properties are obtained for Link2(n) and
Link3(n), even if the vertices are the same as in the two cases an−1 ≤ i, j ≤ an−2 + an−1 − 1
and an−2 + an−1 ≤ i, j ≤ an − 1, n ≥ 5.

Therefore, the proof is completed.

Let εn be the number of edges of the Padovan cube Pn for n ≥ 1. From Figure 1, we
know that ε1 = 0, ε2 = 1, ε3 = 4, ε4 = 9, ε5 = 19, ε6 = 40, and ε7 = 83.

Corollary 2. If εn is the number of edges of the Padovan cube Pn for n ≥ 5, then we have

εn = εn−1 + εn−2 + εn−4 + an−2 + 2an−4.
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Proof. From Theorem 2, we have

εn = εn−1 + εn−2 + εn−4 + |Link1(n)|+ |Link2(n)|+ |Link3(n)|.

From Lemma 5, since |Link1(n)| = an−2, |Link2(n)| = an−4, and |Link3(n)| = an−4,
the proof is completed.

In particular, the generating function of {εn} is

x(1 + x− x2)

(1 + x)(1− 2x + x2 − x3)2 .

4. Decompositions and Topological Properties of Padovan Cubes

Now, we define a sequence {rn} of positive integers by using the odd-Padovan
sequence {an}. Let {rn} be defined as follows: r1 = a1 = 1, r2 = a2 = 2, r3 = a1 + a2 = 3,
r4 = a2 + a3 = 6, and for n ≥ 5, rn = rn−1 + rn−2 + rn−4. Then, we have

{rn} := 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, · · · .

Since an = an−1 + an−2 + an−4, we know that the sequence {rn} is defined in the same
way as the odd-Padovan sequence {an}.

In Figure 1, we see that P6 contains three subgraphs: P5, P4, and P2. Moreover,
P5 can be decomposed into three subgraphs, P4, P3, and P1; therefore, P6 contains two
disjointed P4, one P3, one P2, and one P1. Using the introduced notations, we write
P6 w 2P4 ] P3 ] P2 ] P1 to denote that P6 contains two disjointed subgraphs that are
isomorphic to P4, one subgraph that is isomorphic to P3, one subgraph that is isomorphic
to P2, and one subgraph that is isomorphic to P1.

Theorem 3. For 4 ≤ k ≤ n and n ≥ 8, the Padovan cube Pn admits the following decomposition:
for n− k ≥ 4,

Pn w rkPn−k ] (rk−1 + rk−3)Pn−k−1 ] rk−2Pn−k−2 ] rk−1Pn−k−3.

Proof. From Theorem 2, we know that Pn w Pn−1 ] Pn−2 ] Pn−4, Pn−1 w Pn−2 ] Pn−3 ]
Pn−5, Pn−2 w Pn−3 ]Pn−4 ]Pn−6, and Pn−3 w Pn−4 ]Pn−5 ]Pn−7. Since r1 = 1, r2 = 2,
r3 = 3, and r4 = 6, we have, for n ≥ 8,

Pn w 6Pn−4 ] 4Pn−5 ] 2Pn−6 ] 3Pn−7

= r4Pn−4 ] (r3 + r1)Pn−5 ] r2Pn−6 ] r3Pn−7.

We now assume that the statement holds true for n ≤ N and k ≤ K, where 4 ≤
K ≤ N. By induction, we consider the case n = N + 1 and k = K + 1. Accord-
ing to Theorem 2, PN+1 consists of one PN , one PN−1, and one PN−3. Based on the
hypothesis, PN is divided into rK of PN−K, (rK−1 + rK−3) of PN−K−1, rK−2 of PN−K−2,
and rK−1 of PN−K−3, PN−1 is divided into rK−1 of P(N−1)−(K−1), (r(K−1)−1 + r(K−1)−3) of
P(N−1)−(K−1)−1, r(K−1)−2 of P(N−1)−(K−1)−2, and r(K−1)−1 of P(N−1)−(K−1)−3, and PN−3
is divided into rK−3 of P(N−3)−(K−3), (r(K−3)−1 + r(K−3)−3) of P(N−3)−(K−3)−1, r(K−3)−2 of
P(N−3)−(K−3)−2, and r(K−3)−1 of P(N−3)−(K−3)−3. Together, the total number of
P(N+1)−(K+1) is rK + rK−1 + rK−3 = rK+1, the total number of
P(N+1)−(K+1)−1 is (rK−1 + rK−2 + rK−4)+ (rK−3 + rK−4 + rK−6) = rK + rK−2, the total num-
ber of P(N+1)−(K+1)−2 is rK−2 + rK−3 + rK−5 = rK−1, and the total number of
P(N+1)−(K+1)−3 is rK−1 + rK−2 + rK−4 = rK. That is,

PN+1 w rK+1P(N+1)−(K+1) ] (r(K+1)−1 + r(K+1)−3)P(N+1)−(K+1)−1

]r(K+1)−2P(N+1)−(K+1)−2 ] r(K+1)−1P(N+1)−(K+1)−3.
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The proof is completed by an induction on n = N + 1 and k = K + 1.

For example, for k = 10, since r10 = 169, r9 = 96, r8 = 55, and r7 = 31, we have

Pn w r10Pn−10 ] (r9 + r7)Pn−11 ] r8Pn−12 ] r9Pn−13 = 169Pn−10 ] 127Pn−11 ] 55Pn−12 ] 96Pn−13.

Thus, if n = 14, then we have

P14 w 169P4 ] 127P3 ] 55P2 ] 96P1.

That is, the Padovan cube P14 consists of 169 P4, 127 P3, 55 P2, and 96 P1.
Let Bn and Γn, respectively, denote the Boolean cube and the Fibonacci cube of order

n. It is well known that the Boolean cube Bn can be decomposed into two isomorphic
Bn−1 plus a set linkB(n) of 2n−1 edges connecting all corresponding vertices in the two
subgraphs, while the Fibonacci cube Γn can be decomposed into two subgraphs Γn−1 and
Γn−2 plus a set linkΓ(n) of Fn−2 edges connecting all corresponding vertices in the two
subgraphs, where Fn−2 is the (n− 2)nd Fibonacci number.

In [1], we have the following lemma.

Lemma 6 ([1]). Let Γn denote the Fibonacci cube of order n. Assume that n ≥ 1. Then,

(1) Γ2n w (Γ1 ] Γ3 ] · · · ] Γ2n−1);
(2) Γ2n+1 w (Γ2 ] Γ4 ] · · · ] Γ2n);
(3) Γn+2 w (Γ1 ] Γ2 ] Γ3 ] · · · ] Γn).

Theorem 4. Let Γn, Pn, and Bn denote the Fibonacci cube, the Padovan cube, and the Boolean
cube, respectively, of order n. Then,

(1) Γn+1 v Pn v Bn−1 for n ≥ 2;
(2) Bn v P2n−1 for n ≥ 2;
(3) Pn v Γ2n−1 for n ≥ 3.

Proof. (1) We will show that the set of vertices in Pn is a subset of Bn−1. If this is true,
then we can safely claim that Pn v Bn−1, because the interconnections are based on the
same Hamming distance. The key observation is as follows. With the Boolean cube Bn,
all 2n combinations of 0s and 1s are permitted in an n-bit binary code. By contrast, from
Lemma 3, there is no case wherein three 1s appear consecutively in the (n− 1)-bit Padovan
representation for Pn. Thus, Pn v Bn−1. Similarly, since no consecutive 1s appeared in the
Fibonacci codes, we have Γn+1 v Pn. Thus, Γn+1 v Pn v Bn−1.

(2) The embedding of Bn in P2n−1 can be proved by induction. As the basis, B2 ∼= P3,
so B2 v P3 (refer to Figure 1). Assume that the statement is true for n ≤ N, where N ≥ 2
denotes an integer. Now, consider n = N + 1.

By Theorem 2, P2(N+1)−1 can be decomposed into P2N , P2N−1, and P2N−3. Fur-
thermore, there are |Link1(2N + 1)| = a2N−1 edges connecting each vertex i in P2N
to its corresponding vertex i + a2N−1 in P2N−1, |Link2(2N + 1)| = a2N−3 edges con-
necting each vertex i in P2N to its corresponding vertex i + a2N−1 + a2N−2 in P2N−3,
and |Link3(n)| = a2N−3 edges connecting each vertex i + a2N−1 in P2N−1 to its corre-
sponding vertex i + a2N−1 + a2N−2 in P2N−3, where 0 ≤ i ≤ a2N−1 − 1.

At this point, BN+1 can also be decomposed into two isomorphic BN plus a set
linkB(N + 1) of 2N edges connecting all corresponding vertices in the two subgraphs. By the
induction hypothesis, each BN can be embedded in P2N−1, and therefore, in P2N+1. On the
other hand, it can be seen that linkB(N + 1) is a subset of Link1(2N + 1)∪ Link2(2N + 1)∪
Link3(2N + 1). Thus, BN+1 v P2(N+1)−1 and the proof is therefore completed.

(3) The embedding of Pn in Γ2n−1 can be proved by induction on n. Since Γ5 has five
vertices, which are 000, 001, 010, 100, and 101, and five edges, and P3 has four vertices,
which are 00, 01, 10, and 11, and four edges, it can clearly be seen that we have P3 v Γ5
(refer to Figures 1 and 2). Assume that the statement is true for n ≤ N, where N ≥ 3
denotes an integer. Now, consider n = N + 1.
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It is well known that the Fibonacci cube Γ2N+1 can be decomposed into Γ2N and
Γ2N−1 and there are |linkΓ(2N + 1)| = F2N−1 edges connecting each vertex i in Γ2N to its
corresponding vertex i + F2N−1 in Γ2N−1 where 0 ≤ i ≤ F2N−1 − 1.

Now, PN+1 can also be decomposed into PN , PN−1, and PN−3 plus three sets
Link1(N + 1), Link2(N + 1), and Link3(N + 1) of aN−1, aN−3, and aN−3, respectively,
with edges connecting all corresponding vertices in the three subgraphs. By the induction
hypothesis, PN , PN−1, and PN−3 can be embedded in Γ2N−1, Γ2N−3, and Γ2N−7, respec-
tively. Furthermore, from Lemma 6, we know that Γ2n w (Γ1 ] Γ3 ] · · · ] Γ2n−1). On the
other hand, Γ2N−3 and Γ2N−7 already have been embedded into Γ2N and it can therefore be
seen that Link1(N + 1) ∪ Link2(N + 1) ∪ Link3(N + 1) is a subset of linkΓ(2N + 1).

Therefore, PN+1 v Γ2(N+1)−1 and hence the proof is completed.

Figure 2. Binary cube B4.

For example, the graph B4 is shown in Figure 2. In Figure 3, an embedding of P5 in B4
is shown, where vertices marked with a tiny circle correspond to the ‘forbidden’ codes and
vertices marked with a black point correspond to the ‘embedding’ codes in the Padovan
representation. Similarly, in Figure 4, an embedding of Γ6 in P5 is shown, where vertices
marked with a tiny cross correspond to the ‘forbidden’ codes and vertices marked with a
black point correspond to the ‘embedding’ codes in the Fibonacci representation.

Figure 3. Padovan cube P5.

Figure 4. Fibonacci cube Γ6.

In [19], we can find the backgrounds and application prospects of the hypercube inter-
connection network. That is, in the field of supercomputing computer architecture, the hy-
percube interconnection network is defined as a binary n-cube multiprocessor. The hy-
percube is treated as a loosely coupled system that is composed of N = 2n processors
that are linked in an n-dimensional binary cube. Each processor denotes a node of the
cube. In particular, in [19], the author briefly introduced the fields where the Fibonacci
cube is used. For example, in mathematical chemistry, this concept is used in the study of
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hexagonal graphs. Furthermore, in computer science, Fibonacci cubes are interesting from
an algorithmic point of view. Therefore, research into the Padovan cubes that considers the
Fibonacci cubes is interesting.

We now consider the degree of the vertices in the Padovan cube Pn. The floor function
bxc, also called the greatest integer function or integer value, gives the largest integer less
than or equal to x. Similarly, the ceiling function dxe gives the smallest integer greater than
or equal to x. For example, b2.4c = 2, d2.4e = 3.

Theorem 5. Let dn(i) denote the degree of the vertex i in the Padovan cube Pn, for n ≥ 3. Then,
we can obtain d n

3 e ≤ dn(i) ≤ n− 1.

Proof. From Figure 1, we have d2(i) = 1, 1 ≤ d3(i) ≤ 2, 2 ≤ d4(i) ≤ 3, and 2 ≤ d5(i) ≤ 4.
That is, for n = 2, 3, 4, and 5, the inequality d n

3 e ≤ dn(i) ≤ n− 1 is established.
We now consider n ≥ 6. Recall that the Padovan code that represents a vertex in Pn

has (n− 1) bits. The neighbors of a vertex i all have a Hamming distance of 1 with IP,
the Padovan code of i. Clearly, the vertex 0 has exactly (n− 1) neighbors in Pn, and hence
dn(i) ≤ n− 1 for all other vertices.

Let δn denote the minimum degree in Pn. From Figure 1, we know that δ1 = 0,
δ2 = 1, δ3 = δ4 = δ5 = δ6 = 2, and δ7 = 3. The Padovan cube Pn can be decomposed
into three subgraphs Pn−1, Pn−2, and Pn−4, which are induced by the three sets of ver-
tices {0, 1, 2, · · · , an−1− 1}, {an−1, an−1 + 1, · · · , an−1 + an−2− 1}, and {an−1 + an−2, an−1 +
an−2 + 1, · · · , an−1 + an−2 + an−4 − 1}, respectively. Theorem 2 is applied again and
Pn−1 decomposed into three subgraphs, G1

∼= Pn−2, G2 ∼= Pn−3, and G3 ∼= Pn−5, in-
duced by the vertices {0, 1, 2, · · · , an−2 − 1}, {an−2, an−2 + 1, · · · , an−2 + an−3 − 1}, and
{an−2 + an−3, an−2 + an−3 + 1, · · · , an−2 + an−3 + an−5 − 1}, respectively. Let G4 = Pn−2
and G5 = Pn−4, which are induced by the two sets of vertices {an−1, an−1 + 1, · · · , an−1 +
an−2 − 1} and {an−1 + an−2, an−1 + an−2 + 1, · · · , an−1 + an−2 + an−4 − 1}, respectively. It
can be seen that min{δn−2 + 1, δn−3 + 1, δn−5 + 2, δn−2 + 1, δn−4 + 2} ≤ δn ≤ min{δn−2 +
2, δn−3 + 2, δn−5 + 2, δn−2 + 2, δn−4 + 2}, where the first δn−2 corresponds to the minimum
degree of vertices in G1; the second term δn−3 to G2; the third term δn−4 to G3; the fourth
term δn−2 to G4; and the fifth term δn−5 to G5. Since δk ≥ δk−1 for all k ≥ 2, we have
min{δn−3 + 1, δn−5 + 2} ≤ δn ≤ δn−5 + 2.

We now have two cases:

(i) Since δn−3 + 1 ≤ δn and (ii);
(ii) δn = δn−5 + 2.

(i) Since δ1 = 0, δ2 = 1, δ3 = δ4 = δ5 = δ6 = 2, δ7 = 3, and δn−3 + 1 ≤ δn, we know that
3 ≤ δ8, 3 ≤ δ9, 4 ≤ δ10, 4 ≤ δ11, and 4 ≤ δ12, which implies that d n

3 e ≤ δn;
(ii) Since δn = δn−5 + 2, we have that δ8 = 4, · · · , δ11 = 4, δ12 = 5, δ13 = 6, · · · , δ16 = 6,

δ17 = 7, and so on. Thus, this fact can be changed as follows: 4 ≤ δ8, · · · , 4 ≤ δ11,
4 ≤ δ12, 6 ≤ δ13, · · · , 6 ≤ δ16, 6 ≤ δ17, and so on. This implies that d n−1

5 e+ d
n−2

5 e.

From the above two cases, we have min{d n
3 e, d

n−1
5 e + d n−2

5 e} ≤ δn.
Since d n−1

5 e+ d
n−2

5 e − d
n
3 e ≥ 0 for n ≥ 6, we have d n

3 e ≤ δn.

Let IP = (bn−1, · · · , b2, b1)P and JP = (cn−1, · · · , c2, c1)P, respectively, denote the
Padovan codes of two vertices i and j in Pn. Note that a path connecting the vertex i and the
vertex j corresponds to a sequence of codes that transforms IP to JP, where two consecutive
codes differ by exactly one bit. The following lemma shows that the Padovan cube is
connected, i.e., that a path always exists between any pair of vertices i and j. Moreover,
the length of the shortest path is determined by the Hamming distance between IP and JP.

Lemma 7. Let D(i, j) denote the distance between the vertex i and the vertex j in the Padovan cube
Pn, n ≥ 2. Let IP and JP denote the Padovan codes of two vertices, i and j, respectively, in Pn. We
then have D(i, j) = H(IP, JP).
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Proof. To prove that H(IP, JP) is the distance between the vertex i and vertex j, we first
demonstrate that it is possible to construct a path of that length. We then show that there
are no shorter paths between the vertex i and the vertex j. Therefore, D(i, j) = H(IP, JP).

Assume that IP 6= JP. Now, we will construct a path from the vertex i to the vertex
j. The construction is as follows. Find the most significant bit where IP and JP differ. Let
the bit position found be k. Without a loss of generality, let bk = 1 and ck = 0. Now,
by definition, IP has a link with I′P = (bn−1, bn−2, · · · , b̄k, bk−1, · · · , b1)P, where b̄k denotes
the complement of bk. Note that H(I′P, JP) = H(IP, JP) − 1. The construction ends if
I′P = JP; otherwise, we simply proceed recursively for I′P and JP. By using a simple
inductive argument, it is easy to show that the construction will connect the vertex i and
the vertex j and the length of the path is equal to H(IP, JP).

Now, we show that there are no shorter paths between the vertex i and the vertex j in
Pn. Note that Pn is a subgraph of Bn−1. It is known that in Bn−1, the shortest path between
the vertex k and the vertex l is of length H(K, L), where K and L denote the binary codes of
k and l, respectively. Since the two Padovan codes IP and JP, respectively, represent the two
vertices i′ and j′ in Bn−1, the shortest path between the vertex i′ and the vertex j′ in Bn−1
must be greater than or equal to H(IP, JP). Therefore, we have D(i, j) = H(IP, JP).

Theorem 6. Let ∆n denote the diameter of the Padovan cube Pn for all n ≥ 2. Then, the Padovan
cube Pn is a connected graph and ∆n = n− 1 for all n ≥ 2.

Proof. The graph Pn is connected by Lemma 7. Clearly, from Figure 1, we know that
∆1 = 0, ∆2 = 1, ∆3 = 2, and ∆4 = 3.

For n ≥ 5 and positive integer k ≥ 1, note that

an − 1 =


(1100 · · · 1100)P, n = 4k + 1,
(1100 · · · 11001)P, n = 4k + 2,
(1100 · · · 110011)P, n = 4k + 3,
(1100 · · · 1100110)P, n = 4k + 4,

and

an−2 − 1 =


(0011 · · · 0011)P, n = 4k + 1,
(0011 · · · 00110)P, n = 4k + 2,
(0011 · · · 001100)P, n = 4k + 3,
(0011 · · · 0011001)P, n = 4k + 4,

respectively, differ in exactly (n− 1) places in their Padovan codes. Hence, the distance
between the vertex an − 1 and the vertex an−2 − 1 is (n− 1) by Lemma 7. It should be clear
that no other pairs of vertices in Pn can be of greater distance.

Therefore ∆n = n− 1.

5. Conclusions

Here, we presented the Padovan cube and analyzed its structural properties. The struc-
tural issues that were analyzed include the recursive decompositions, boundary conditions
of the degree, diameter, and relations with other structures of the cubes. We also showed
that various types of structures can be directly embedded in the Padovan cube. These
preliminary results show that the Padovan cubes have very attractive recurrent structures.

However, compared with the Boolean cube and Fibonacci cube, the Padovan cube is
hard to handle. The first few terms of the Padovan sequence overlap in the same number,
so achieving the completeness of the Padovan sequence is easy but uniqueness cannot
be guaranteed. To ensure uniqueness, the Padovan cube was only constructed with the
odd-term subsequences, so the properties of the existing Padovan sequence could not be
used as they were.
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We can consider the communication primitives. On a Padovan cube of order n, we
determine that the send/receive operation between any two vertices can be completed
in at most n − 1 steps, which is optimal. The Padovan cube may also be useful for a
reconfigurable distributed network, because recursive message-routing algorithms can
be designed for such networks, and the cost of interconnections is less than that of the
Boolean cube.

We can construct a Padovan cube Pn of order n with Algorithm 2 (Padovan cubes
algorithm).

Algorithm 2 Padovan Cubes Algorithm.

(1) Choose n according to the length of the binary codes you want to construct. Then, the
binary codes are all n− 1 in length.

(2) For the nth odd-Padovan number an, the set Cn of Padovan codes is obtained using
the Padovan Coding Algorithm.

(3) The an vertices are numbered sequentially from 0 to an − 1.
(4) If the Hamming distance between the codes of any two vertices is 1, then the two

vertices are connected by an edge. Otherwise, the two vertices are not connected.

Various properties related to Padovan cubes that were not covered in this paper
should continue to be studied in the future. For example, we may consider a Padovan cube
polynomial. Furthermore, as in the Lucas sequence in the Fibonacci sequence, the Lucas–
Padovan sequence for the Padovan sequence can be considered, and it is expected that
another cube can be constructed using this approach.
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