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Abstract: We extend the three-dimensional noncommutative relations of the position and momentum
operators to those in the four dimension. Using the Seiberg-Witten (SW) map, we give the Heisen-
berg representation of these noncommutative algebras and endow the noncommutative parameters
associated with the Planck constant, Planck length and cosmological constant. As an analog with the
electromagnetic gauge potential, the noncommutative effect can be interpreted as an effective gauge
field, which depends on the Plank constant and cosmological constant. Based on these noncommu-
tative relations, we give the Klein-Gordon (KG) equation and its corresponding current continuity
equation in the noncommutative phase space including the canonical and Hamiltonian forms and
their novel properties beyond the conventional KG equation. We analyze the symmetries of the KG
equations and some observables such as velocity and force of free particles in the noncommutative
phase space. We give the perturbation solution of the KG equation.

Keywords: Klein-Gordon equation; noncommutative phase space

PACS: 11.10.Nx; 03.65.-w; 03.65.Pm

1. Introduction

The successful applications of quantum mechanics and general relativity imply physics
world running noncommutative algebra and noneuclidian geometry in microscopic world
and gravity. However, the spacetime background incompatibility between quantum me-
chanics and general relativity is still a deep mysteries behind nature [1]. This puzzle
inspires many attempts to construct a unified theoretical framework for physics world [1,2].

In particular, understanding physics behind dark energy and dark matter in cosmo-
logical observations is a challenge for theoretical physicist. Even a few possible candidates,
such as non-baryonic particle and weakly interacting particle (WIMP), could be dark mat-
ter, while dark energy could be interpreted phenomenologically as cosmological constant,
one cannot find any signal of the baryon-type dark matter from the particle physics ex-
periments [3]. The theoretical prediction of the vacuum energy density for dark energy
shows 10121 times larger than the observed value 10−47 GeV [4,5]. These results imply that
we need new ideas, such as quantization of spacetime, noncommutative geometry and
quantum cosmology or quantum gravity to solve these puzzles [6,7].

On the other hand, the intrinsic singularities in cosmology and particle physics hint
us quantizing spacetime and playing noncommutative algebra [8,9]. The early attempts to
quantize spacetime was to assume the noncommutative spacetime emerging in the Planck’s
scale to remove the singularity of particle physics without renormalizable techniques [10].
C. N. Yang generalized this idea to curve space to cover gravitational effects [11].

What can we observe from the noncommutative quantum mechanics? Can we detect
some signals or effects coming from the Planck’s scale and noncommutative spacetime
algebra? In condensed matter physics, one finds that the two-dimensional(2D) electronic
system in magnetic field is equivalent naturally to the 2D free electronic systems working on
the noncommutative phase space [12–15]. The noncommutative spacetime is generalized
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to the noncommutative phase space, namely noncommutative quantum mechanics [16–18].
Several schemes were proposed to implement the noncommutative phase space [17,19],
such as the canonical formulation [17], and Moyal product [16], the path integration [20], the
Weyl-Wigner correspondence [16,18,21,22], and Seiberg-Witten map [23–27]. The noncom-
mutative phase space also extended to the smear Hilbert space to generalize the uncertainty
relations [28,29]. These generalized quantization schemes turn out some novel effects
coming from the noncommutative phase space, such as Aharonov-Bohm effect [30–32],
quantum Hall effect [33–35], magnetic monopoles and Berry phase [36,37]. However, the
noncommutative effects are very difficult to be observed in nano-scale systems because in
general it emerges in the Planck’s scale 10−33 m. In particular, the noncommutative phase
space can be extended to the smeared Hilbert space associated with the generalized and
extended uncertainty relations [28,29].

In general, spacetime can be classified into four regions for different scales, Planck’s
scale, microscopic and macroscopic scales, and universe scale. Physics in different regions
runs different algebras with different energy scales. The noncommutative spacetime
emerges in the Planck and universe scales and the Heisenber’s commutative relations
works in the microscopic scale. The energy-dependent noncommutative phase space was
proposed for understanding novel phenomena in different energy scales [37].

However, most of the previous studies of the noncommutative quantum mechanics
are focused on the 2D or 3D phase space [12,25,38–41].

Interestingly, as a quantum analog, one gave the Lotka-Volterra dynamics in the non-
commutative phase space and analyzed its thermodynamic and statistical behaviors [42].
The quantum dissipation is induced in the noncommutative space [43]. The Robertson-
Schrödinger uncertainty relation was extended the version in the noncommutative phase
space [44,45]. Recently, a few attempts devoted to the noncommutative relativistic quan-
tum mechanics and double quantization [46,47], including emergence of spin and intrinsic
dipole moment in the noncommutative space [46,48,49], deformed special relativity [50],
and Snyder model [51]. More importantly, what physical mechanism hides in the noncom-
mutative phase space? One expects to extend the 3D noncommutative phase space to the
4D case, which can provide a foundation of a self-consistent formalism to unify quantum
theory and gravitational theory.

In this paper, we propose a 4D noncommutative relations between the 4-position
and 4-momentum operators in Section 2. We refer it as to the 4D noncommutative phase
space. Based on the Seiberg-Witten map, we give the Heisenberg’s representation of these
noncommutative relations. In Section 3, we give the Klein-Gordon equation and continuity
equation in the noncommutative phase space, including the canonical and Hamiltonian
forms of the KG equation. We find that the noncommutative effects can be interpreted as
an analog with the effective gauge potential. Interestingly, the free particle carries with an
intrinsic velocity, force and acceleration in the noncommutative phase space. Using the
perturbation theory, we obtain the solution of the KG equation and discuss its physical
meaning, We also give the non relativistic form of the KG equation and its solution. In
Section 4, We discuss the basic symmetry of the KG equation, such as the parity, and time
reversal symmetries. Finally, in Section 5, we give the conclusions and outlook.

2. Noncommutative Algebra in Hilbert Space
2.1. Noncommutative Relations of Operators

Let us consider the noncommutative algebra arising in the Planck scale for avoiding
singularity of spacetime. We introduce the 4-spacetime and 4-momentum operators are
defined by

x̂µ :=


ct̂
x̂
ŷ
ẑ

, p̂µ :=


1
c Ê
p̂x
p̂y
p̂z

, (1)
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where the operators with hat denote operators in the noncommutative phase space. Thus,
the 4D noncommutative relations are defined

[
x̂µ, x̂νT

]
:=


[
ct̂, ct̂

] [
ct̂, x̂

] [
ct̂, ŷ

] [
ct̂, ẑ

][
x̂, ct̂

]
[x̂, x̂] [x̂, ŷ] [x̂, ẑ][

ŷ, ct̂
]

[ŷ, x̂] [ŷ, ŷ] [ŷ, ẑ][
ẑ, ct̂

]
[ẑ, x̂] [ẑ, ŷ] [ẑ, ẑ]

 :=


0 cζ cζ cζ
−cζ 0 θ θ
−cζ −θ 0 θ
−cζ −θ −θ 0

, (2)

[
p̂µ, p̂νT

]
:=


[ p̂0, p̂0] [ p̂0, p̂x]

[
p̂0, p̂y

]
[ p̂0, p̂z]

[ p̂x, p̂0] [ p̂x, p̂x]
[
p̂x, p̂y

]
[ p̂x, p̂z][

p̂y, p̂0
]

[ p̂x, p̂x]
[
p̂y, p̂y

] [
p̂y, p̂z

]
[ p̂z, p̂0] [ p̂z, p̂x]

[
p̂z, p̂y

]
[ p̂z, p̂z]

 :=


0 η η η
−η 0 η η
−η −η 0 η
−η −η −η 0

, (3)

and

[
x̂µ, p̂νT

]
:=


[
ct̂, p̂0

] [
ct̂, p̂x

] [
ct̂, p̂y

] [
ct̂, p̂z

]
[x̂, p̂0] [x̂, p̂x]

[
x̂, p̂y

]
[x̂, p̂z]

[ŷ, p̂0] [ŷ, p̂x]
[
ŷ, p̂y

]
[ŷ, p̂z]

[ẑ, p̂0] [ẑ, p̂x]
[
ẑ, p̂y

]
[ẑ, p̂z]

 :=


κ0 εx εy εz
−εx κα κβ −κβ

−εy κβ κα κβ

−εz −κβ κβ κα

, (4)

where the superscripts T means the transposition of the 4-vectors. The constant matrices in
the right-hand sides of the commutative relations (2)–(4) describe the features of the non-
commutative phase space. We use a set of parameters to characterize the noncommutative
strength, in which c is the speed of light. We will see that there exist some constraints of the
parameters when we map the noncommutative algebra to the Heisenberg algebra and we
will endow the parameters with physical meanings in the following sections.

2.2. Seiberg-Witten Map and Heisenberg Representation

The noncommutative relations of the position and momentum operators in (2)–(4) give
noncommutative operator algebra beyond the canonical (or Heisenberg) algebra in the
canonical quantum mechanics. In general, we have two approaches to implement this
algebra. One is to play directly the noncommutative algebra in the noncommutative
phase space or based on the Moryal product technique [14–18,20], but it is not easy to
reveal the noncommutative effects beyond the canonical quantum mechanics. The other
approach is to map this noncommutative algebra to the Heisenberg algebra based on the
Seiberg-Witten (SW) map [23–27]. Here we adopt the Seiberg-Witten (SW) map to connect the
noncommutative algebra to the Heisenberg (or canonical) commutative algebra [31,36,37]. Thus,
the noncommutative relations (2)–(4) can be expressed in terms of the Heisenberg commutative
relations with additional effects from the noncommutative phase space [31,36,37].

Let us define x̂µ, p̂µ ∈ Ônc living in the noncommutative phase space, where
x̂µ :=

(
ct̂, x̂

)
≡
(
ct̂, x̂, ŷ, ẑ

)
, and p̂µ := ( p̂0, p̂) ≡

(
p̂0, p̂x, p̂y, p̂z

)
, and define xµ, pµ ∈ OH

living in the Heisenberg phase space, where xµ := (ct, x) ≡ (ct, x, y, z), and pµ := (p0, p) ≡(
ct, px, py, pz

)
.

The Seiberg-Witten (SW) map is defined by

MSW : Ônc 3
(

x̂µ, p̂µ

)
→

(
xµ, pµ

)
,

Ô
(

x̂µ, p̂µ

)
→ O

(
xµ, pµ

)
,
∈ OH (5)

where Ô
(

x̂µ, p̂µ

)
means any operator expressed in terms of

(
x̂µ, p̂µ

)
in the noncommutative

phase space, such as momentum and Hamiltonian operators. They obey the noncommu-
tative relations in (2)–(4), while O

(
xµ, pµ

)
represents any operator expressed in terms of(

xµ, pµ

)
. They obey the Heisenberg commutative relations,[

xµ, xν

]
= 0, (6a)[

pµ, pν

]
= 0, (6b)[

xµ, pν

]
= ih̄δµν. (6c)
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Thus, we can obtain a claim in the following.
Claim I: The SW map in (5) is constructed by

ct̂
x̂
ŷ
ẑ

 :=


ct− cζ

h̄
(

px + py + pz
)

x− θ
2h̄
(

py + pz
)

y + θ
2h̄ (px − pz)

z + θ
2h̄
(

px + py
)

 (7a)


p̂0

p̂x

p̂y

p̂z

 :=


ih̄
c

∂
∂t +

η
h̄ (x + y + z)

px +
η
2h̄ (y + z)

py − η
2h̄ (x− z)

pz − η
2h̄ (x + y)

 (7b)

such that the noncommutative algebra of operators in (2)–(4) in the noncommutative phase
space can be implemented equivalently by the Heisenberg commutative algebra (6) in the
canonical phase space.

Proof. The SW map (7) can be rewritten as a matrix form

x̂µ = xµ + λµν pν (8a)

p̂µ = pµ + πµνxν, (8b)

where

[λµν] =


0 − cζ

h̄ − cζ
h̄ − cζ

h̄
0 0 − θ

2h̄ − θ
2h̄

0 θ
2h̄ 0 − θ

2h̄
0 θ

2h̄
θ

3h̄ 0

 (9)

and

[πµν] =


0 η

h̄
η
h̄

η
h̄

0 0 η
2h̄

η
2h̄

0 − η
2h̄ 0 η

2h̄
0 − η

2h̄ − η
2h̄ 0

 (10)

Using the Heisenberg commutative relations in (6), the noncommutative relations
between the position operators are expressed as[

x̂µ, x̂νT
]

=
[

xµ + λµκ pκ , (xν + λνσ pσ)T
]

=
[

xµ, pσT
]
λσν + λµκ [pκ , xν]

= ih̄
(
λµν − λµν

)
≡ iΘµν, (11)

where λµν is the transposition of λµν, namely λµν ≡ (λµν)T . Playing the matrix subtraction
in (10), the noncommutative relation is obtained[

x̂µ, x̂νT
]
= iΘµν, (12)

where

[
Θµν

]
=


0 cζ cζ cζ
−cζ 0 θ θ
−cζ −θ 0 θ
−cζ −θ −θ 0

. (13)

This is the noncommutative relation (2).
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Similarly, the noncommutative relations between the momentum operators are ex-
pressed as [

p̂µ, p̂νT
]

=
[

pµ + πµκxκ , (pν + πνσxσ)T
]

=
[
pµ, xσ

]
πσν + πµκ [xκ , pν]

= ih̄
(
−πµν + πµν

)
≡ iΦµν. (14)

By the matrix subtraction of π, the noncommutative relations are obtained[
p̂µ, p̂νT

]
= iΦµν, (15)

where

[
Φµν

]
=


0 η η η
−η 0 η η
−η −η 0 η
−η −η −η 0

. (16)

This is the noncommutative relation (3).
In the same way, the noncommutative relations between the position and momentum

operators are expressed as[
x̂µ, p̂νT

]
=

[
xµ + λµκ pκ , (pν + πνσxσ)T

]
= [xµ, pν] + λµκ

[
pκ , xσT

]
πσν

= ih̄
(
δµν − λµκπκν

)
≡ iΩµν. (17)

Making the matrix product of λ and π, the noncommutative relation can be obtained[
x̂µ, p̂νT

]
= iΩµν, (18)

where

[
Ωµν

]
=


h̄ + 3c ηζ

h̄ c ηζ
h̄ 0 −c ηζ

h̄
ηθ
h̄ h̄ + θη

2h̄
θη
4h̄ − θη

4h̄
0 θη

4h̄ h̄ + θη
2h̄

θη
4h̄

− ηθ
h̄ − θη

4h̄
θη
4h̄ h̄ + θη

2h̄

. (19)

It implies that the matrix Ωµν turns out the matrix in the right hand side of (4), namely

[
Ωµν

]
=


κ0 εx εy εz
−εx κα κβ −κβ

−εy κβ κα κβ

−εz −κβ κβ κα

 =


h̄ + 3c ηζ

h̄ c ηζ
h̄ 0 −c ηζ

h̄
ηθ
h̄ h̄ + θη

2h̄
θη
4h̄ − θη

4h̄
0 θη

4h̄ h̄ + θη
2h̄

θη
4h̄

− ηθ
h̄ − θη

4h̄
θη
4h̄ h̄ + θη

2h̄

. (20)

This representation of the position and momentum operators can be regarded as a
Heisenbereg representation of the noncommutative quantum mechanics. The SW map
provides an efficient way to do the Heisenberg algebra in the noncommutative phase
space even though the SW map is not unitary and canonical. It can be verified that the
commutative relations (12), (18) and (15) satisfy the Lorentz covariants.

2.3. What Physics Involves Noncommutative Algebra?

What are the physical meanings of the noncommutative parameters? In the canonical
quantum mechanics, the Planck constant plays a role to quantize the intrinsic physical
space of elementary particles, such that the quantum state is described by the Hilbert space.
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To explore physics in the noncommutative phase space, we endow the noncommutative
parameters with physical meaning. Based on the SW map, there are only three independent
parameters, ζ, θ and η. In general, physics involved the noncommutative relations happen
in the Planck and universe scales, such as intrinsic spacetime singularities, dark matter and
dark energy in universe. In particular, the interaction between photon and gravity implies
that there exists a minimum length of spacetime in the Planck scale. The dark energy in
cosmology can be regarded as an intrinsic minimum curvature of spacetime, which can be
interpreted phenomenally as cosmological constant. Thus, we propose a parameterization
scheme of the noncommutative parameters associated with a set of physical constants,

ζ = `PtP, θ = `2
P; η = h̄2Λ, (21)

where `P =
√

h̄G
c3 is the Planck length, where h̄ is the Planck constant, G is the gravitational

constant and c is the speed of light. tP = `P
c is the Planck time. Λ ' 10−56 cm−2 is the

cosmological constant [4]. Based on this parameter setting, we obtain the matrices of the
noncommutative relations,

[
Θµν

]
=


0 c`PtP c`PtP c`PtP

−c`PtP 0 `2
P `2

P
−c`PtP −`2

P 0 `2
P

−c`PtP −`2
P −`2

P 0

. (22)

[
Φµν

]
= h̄


0 h̄Λ h̄Λ h̄Λ
−h̄Λ 0 h̄Λ h̄Λ
−h̄Λ −h̄Λ 0 h̄Λ
−h̄Λ −h̄Λ −h̄Λ 0

. (23)

[
Ωµν

]
=


h̄ + 3ch̄Λ`PtP ch̄Λ`PtP 0 −ch̄Λ`PtP

h̄Λ`2
P h̄ +

h̄`2
PΛ
2

h̄`2
PΛ
4 − h̄`2

PΛ
4

0 h̄`2
PΛ
4 h̄ +

h̄`2
PΛ
2

h̄`2
PΛ
4

−h̄Λ`2
P − h̄`2

PΛ
4

h̄`2
PΛ
4 h̄ +

h̄`2
PΛ
2

. (24)

Comparing the matrix (24) with (4), we obtain the noncommutative parameters (4),

κ0 = h̄ + 3ch̄Λ`PtP (25a)

κα = h̄ +
h̄`2

PΛ
2

, κβ =
h̄`2

PΛ
4

(25b)

εx = ch̄Λ`PtP = −εz, εy = 0, (25c)

εx = h̄Λ`2
P = −εz, εy = 0. (25d)

It should be remarked that in general, how to endow the parameters with physics
meanings depends on what problem we solve. The parameter setting (21) is based on
physics we concern in Planck and universe scales. In principle, we can adopt other set-
tings when we concern microscopic or macroscopic physics such as the de Broglie wave
length, which depends on the particle momentum or energy λd = h̄

p . Thus, the de Broglie
wave length as a variable extend the formulation to microscopic regions. In fact, the
energy-dependent noncommutative quantum mechanics has be proposed for some appli-
cations [37].

3. Klein-Gordon Equation
3.1. Canonical Form of Klein-Gordon Equation

Suppose that the energy-momentum relation in the noncommutative phase space still
hold, the Klein-Gordon equation is given by
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(
p̂µ p̂µ −m2

0c2
)

φ = 0, (26)

where the momentum operators obey the noncommutative relations (3) and φ ≡ φ(xµ).
Hereafter we omit the variables xµ for convenience. To explore what novel properties
coming from the noncommutative phase space, we transform the KG equation to the
Heisenberg’s representation based on the SW map (5). Note that the analog of electrody-
namic field with the minimum coupling, the momenta in the noncommutative phase space
can be rewritten as

p̂µ = pµ − Aµ, (27)

where Aµ can be viewed as an effective gauge potential induced by the noncommutative
phase space,

Aµ := −πµνxν =


− η

h̄ (x + y + z)
− η

2h̄ (y + z)
η
2h̄ (x− z)
η
2h̄ (x + y)

. (28)

Note that p̂µ = p̂µgµν, where gµν is the Lorentz metric. The signature is (1 − 1 − 1 − 1).
Thus, the Klein-Gordon (KG) equation can be rewritten as[(

pµ − Aµ

)
(pµ − Aµ)−m2

0c2
]
φ = 0. (29)

where

pµ = ih̄
(

1
c

∂

∂t
,∇
)
≡ ih̄∂µ (30)

is the 4-momentum in the Heisenberg’s canonical representation. In other words, the
operators xµ and pµ play the Heisenberg’s commutative relations. The gauge potential Aµ

descries some novel effects from the noncommutative phase space.

Aµ = (A0, A) (31)

is the 4-potential (or gauge potential) generated from the noncommutative phase space,
in which

A0 = −η

h̄
(x + y + z) (32a)

A =
η

2h̄
[(y + z)i− (x− z)j− (x + y)k] (32b)

The gauge transformation is defined by

Aµ → A′µ = Aµ −
∂χ

∂xµ
, φ→ φ′ = eiΦφ. (33)

More explicitly, the gauge transformation is expressed as

A0 → A′0 −
1
c

∂χ

∂t
(34a)

A → A′ +∇χ, (34b)

φ → φ′ = eiΦφ, Φ =
χ

h̄
. (34c)

It can be verified that the KG Equation (29) is gauge invariant and Lorentz covariant.
Interestingly, the gauge field coupled with the KG equation does not contain a coupled
constant. In other words, the coupled constant is dimensionless.
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By expending the product in the KG Equation (29) and using (28) and (30), ∂µ Aµ = 0
for ∂txi = 0. The KG equation can be rewritten as a tensorial form,[

∂µ∂µ − i
2
h̄

Aµ∂µ +
1
h̄2 Aµ Aµ +

m0c2

h̄2

]
φ = 0 (35)

where ∂µ∂µ := 1
c2 ∂2

t −∇2 is the d’Alembert operator. Since all terms in the KG equation are
Lorentz scaler, the KG equation in the noncommutative phase space is Lorentz covariant.

3.2. Noncommutative Algebra, Gauge Field and Cosmological Constant

As an analog with electrodynamics, we define the gauge field generated from the
gauge potential in the noncommutative phase space,

Fµν = ∂µ Aν − ∂ν Aµ (36)

For ∂txi = 0, using the parameterization scheme (21) and plugging the gauge potential
(28) into (36), the gauge field is obtained

[
Fµν

]
=


0 h̄Λ h̄Λ h̄Λ
−h̄Λ 0 h̄Λ h̄Λ
−h̄Λ −h̄Λ 0 h̄Λ
−h̄Λ −h̄Λ −h̄Λ 0

. (37)

Interestingly, the effective gauge field depends on the Planck constant and cosmo-
logical constant, which is consistent with the interpretation of the dark energy emerged
from the cosmological constant. There does not exist a coupled constant between the
effective gauge field and dynamical equation. This is quite different from the conventional
electromagnetic U(1) gauge field and Yang-Mills SU(2) gauge field. Moreover, there exists
a natural gauge ∂µ Aµ = 0. These features of the effective gauge field show an intrinsic
geometry (curvature) of spacetime coupled with the dynamical equation. In other words,
this property can be interpreted as a natural coupling between quantum and gravity.

3.3. Probability Current and Continuity Equation

To give the probability current and continuity equation, following the similar steps of
those for the KG equation coupled with electromagnetic field, making the product of the
complex conjugated wave function φ∗ in the left-hand side of (29), subsequently subtracting
its complex conjugate, we can obtain the continuity equation [52],

∂µ Jµ = 0, (38)

where Jµ = (cρ, j) is the 4-probability current density. This tensorial form of the current con-
tinuity equation implies that it is Lorentz invariant. The probability and current densities
are given respectively by

ρ =
ih̄

2m0c2

(
φ∗

∂φ

∂t
− ∂φ∗

∂t
φ

)
− 1

m0c
A0φ∗φ (39a)

j = − ih̄
2m0

[φ∗∇φ− (∇φ∗)φ]− 1
m0

Aφ∗φ, (39b)

which are analog with the KG equation coupled with electromagnetic field. The tensorial
form of the continuity Equation (38) means that the current continuity equation is Lorentz
covariant. However, ρ is not positive definite because ∂φ

∂t is arbitrary for the second-order
differential equation. Hence, ρ cannot be interpreted strictly as the probability density and
thus j also cannot be defined strictly as the density of the probability current. Interestingly
both ρ and j depend on the effective gauge potential induced in the noncommutative phase
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space. What effect of the gauge potential plays in the noncommutative phase space? We
will examine the KG equation by the perturbation theory in the following section.

3.4. Hamiltonian Form of Klein-Gordon Equation

To reveal more physics of the KG equation, we can convert the canonical form of the
KG equation to its Hamiltonian form [52]. Let us define

φ := ϕ + χ (40a)

(ih̄∂t − A0)φ := m0c2(ϕ− χ), (40b)

such that we have

m0c2φ + (ih̄∂t − A0)φ = m0c2(ϕ + χ) + m0c2(ϕ− χ) = 2m0c2 ϕ (41a)

m0c2φ− (ih̄∂t − A0)φ = m0c2(ϕ + χ)−m0c2(ϕ− χ) = 2m0c2χ (41b)

Thus, solving (41) to express ϕ and χ in terms of φ, we obtain

ϕ =
1

2m0c2

(
m0c2 + ih̄∂t − A0

)
φ (42a)

χ =
1

2m0c2

(
m0c2 − ih̄∂t + A0

)
φ (42b)

Using (40b), we have

(ih̄∂t − A0)(ϕ− χ) =
1

m0c2 (ih̄∂t − A0)
2φ. (43)

Note that

(pµ − Aµ)
(

pµ − Aµ

)
=

(
ih̄
c

∂

∂t
− A0

)2
−
(

h̄
i
∇−A

)2
(44)

and using the canonical form of the KG Equation (29), the left-hand side of (43) can be
rewritten as

(ih̄∂t − A0)(ϕ− χ) =

[
1

m0

(
h̄
i
∇−A

)2
+ m0c2

]
φ. (45)

Combining (40) and (45), we have

(ih̄∂t − A0)(ϕ + χ) = m0c2(ϕ− χ), (46a)

(ih̄∂t − A0)(ϕ− χ) =

[
1

m0

(
h̄
i
∇−A

)2
+ m0c2

]
(ϕ + χ). (46b)

Adding and subtracting (46), we obtain

(ih̄∂t − A0)ϕ =
1

2m0

(
h̄
i
∇−A

)2
(ϕ + χ) + 2m0c2 ϕ, (47a)

(ih̄∂t − A0)χ = − 1
2m0

(
h̄
i
∇−A

)2
(ϕ + χ)− 2m0c2χ. (47b)

By rearranging the terms of ϕ and χ, the Equation (47) can be rewritten as

ih̄
∂

∂t

(
ϕ
χ

)
=

 1
2m0

(
h̄
i∇−A

)2
+ m0c2 + A0

1
2m0

(
h̄
i∇−A

)2

− 1
2m0

(
h̄
i∇−A

)2
− 1

2m0

(
h̄
i∇−A

)2
−m0c2 + A0

( ϕ
χ

)
(48)
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This is the Hamiltonian form of the KG equation. Let us define ψT := (ϕ, χ), the KG
Equation (48) can be rewritten as the Schrödinger-like equation,

ih̄
∂ψ

∂t
= Hψ, (49)

where the Hamiltonian is given by

H =
τ3 + iτ2

2m0

(
h̄
i
∇−A

)2
+ τ3m0c2 + A0 (50)

where τ2(3) are the Pauli’s matrices. It should be remarked that the Hamiltonian in (50) is
not Hermitian because (iτ2)

† 6= iτ2. We will discuss this issue in the next section.

3.5. Probability and Current Densities

Similarly, as an analog with Schrödinger equation, the probability density is given by

ρ = ψ†τ3ψ = ϕ∗ϕ− χ∗χ, (51)

and the probability current density is obtained

j = − ih̄
2m0

[
ψ†τ3(τ3 + iτ2)∇ψ−∇ψ†τ3(τ3 + iτ2)ψ

]
− 1

m0
Aψ†τ3(τ3 + iτ2)ψ. (52)

However, ρ is also not positive definite such that ρ cannot be endowed strictly as the
probability density and thus j also cannot be defined strictly as the current densities [52].

It should be remarked that the noncommutative effects coming from the noncom-
mutative algebra play an effective gauge potential as an analog with the electromagnetic
gauge potential, which modifies the densities of the probability and probability current, the
velocity and force. However, strictly speaking, the single particle picture is not well-defined
because the Hamiltonian is not Hermitian. One proposes to redefine the inner product
for Hermitization of operators, which is called the generalized inner product. The detail
discussion on this issue may be found in the book [52].

3.6. Velocity and Force

To examine the basic properties of the relativistic particle in the noncommutative phase
space, we consider a free particle model to investigate some dynamical behaviors. Based
on the Heisenberg equation (or called as Heisenberg picture), we have two approaches to
define observables. One is that the observables are defined in the noncommutative phase
space. We refer it as to Case I, in which the commutative relations are calculated directly
by the noncommutative relations in (2)–(4), and then using the SW map to transform the
results to the Heisenberg representation. The other is that the observables are defined in
the Heisenberg phase space. We refer it as to Case II, in which the commutative relations
are calculated by the Heisenberg relations of the SW map. We will discuss these two cases.

Case I: In the noncommutative phase space, the velocity of particle is defined by
v̂ = dx̂

dt in the noncommutative phase space. The Hamiltonian in (50) of free particle is
given by

Ĥ =
τ3 + iτ2

2m0
p̂2 + τ3m0c2. (53)

Thus, the velocity of particle is given by the Heisenberg equation

〈v̂〉 = 1
ih̄

〈[
x̂, Ĥ

]〉
, (54)

where 〈Ô〉means the expectation value of Ô in state ψ. Using the commutative relations (18)
(see the Appendix A), we have
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[
x̂, p̂2

]
= 2i

(
καp̂ + κβk̂v

)
, (55)

where
k̂v =

(
p̂y − p̂z

)
i + ( p̂x + p̂z)j +

(
− p̂x + p̂y

)
k. (56)

Thus, putting the Hamiltonian (53) into (54), the velocity is obtained as

〈v̂〉 = τ3 + iτ2

m0h̄

(
κα〈p̂〉+ κβ

〈
k̂v

〉)
. (57)

Similarly, the force is defined by f̂ = dp̂
dt . In the same way, we have

f̂ =
1
ih̄

[
p̂, Ĥ

]
. (58)

Using the commutative relations (15) (see the Appendix A), we have[
p̂, p̂2

]
= 2η

[(
p̂y + p̂z

)
i + (− p̂x + p̂z)j−

(
p̂x + p̂y

)
k
]

(59)

Consequently, the force is obtained as〈
f̂
〉
=

τ3 + iτ2

m0h̄
η
[〈

p̂y + p̂z)
〉
i + 〈− p̂x + p̂z〉j−

〈
p̂x + p̂y

〉
k
]
. (60)

Case II: The velocity of particle is defined by v = dx
dt in the Heisenberg phase space.

based on the SW map, the Hamiltonian in (50) of free particle is given by

H =
τ3 + iτ2

2m0
(p−A)2 + τ3m0c2 + A0. (61)

The velocity of particle is given by

〈v〉 = dx
dt

=
1
ih̄
〈[x, H]〉. (62)

Note that [x, p2] = 2ih̄p and [x, A] = 0, the velocity is obtained as

〈v〉 = τ3 + iτ2

m0
〈p−A〉. (63)

The force is defined by f = dp
dt in the Heisenberg phase space. Using the Heisenberg

equation, we have

〈f〉 = 1
ih̄
〈[p, H]〉. (64)

Note that
[

∂
∂xµ

, Aν

]
= ∂Aν

∂xµ
and ∂Aµ

∂xµ
= 0, we have[

px, (p−A)2
]

= iη(py − Ay + pz − Az), (65a)[
py, (p−A)2

]
= iη(−px + Ax + pz − Az), (65b)[

pz, (p−A)2
]

= −iη(px − Ax + py − Ay). (65c)

Putting the Hamiltonian (61) into (62), the force is obtained as

〈f〉 = τ3 + iτ2

m0h̄
η
[〈

py − Ay + pz − Az
〉
i + 〈−px + Ax + pz − Az〉j−

〈
px − Ax + py − Ay

〉
k
]
. (66)
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Let us compare the results from two different starting points. The velocity in (57) is
mapped to the Heisenberg representation,

〈v̂〉 = τ3 + iτ2

m0h̄

[
κα〈p−A〉+ κβ

〈
k̂v

〉]
, (67)

where〈
k̂v

〉
=
〈

py − Ay − pz + Az)
〉
i + 〈px − Ax + pz − Az〉j +

〈
−px + Ax + py − Ay

〉
k (68)

It can be seen that the velocity (67) depends on κα and κβ. Note that κα = h̄
(

1 + θη

2h̄2

)
,

the first term in (67) is consistent with the velocity (63). This is because the noncommutative
relations contain the couplings between coordinates and momenta, but the commutative
relation [x, H] in Case II does not contain the couplings between relations coordinates
and momenta.

Interestingly, the forces from these two starting points are same when we transform
those of Case I to the Heisenberg representation using the SW map. The free particle
carries with an intrinsic velocity and force induced by the noncommutative phase space for
both cases.

Consequently, in principle, we seems to have two choices to define oservables. How-
ever, the results tell us the definition of observables in the noncommutative phase space
contains more noncommutative effects.

4. Perturbation Solution of Klein-Gordon Equation
4.1. Eigen Energies and Wave Functions

To explore the basic properties of the KG equation, we solve the KG equation. Note
that the noncommutative effects are very small because the noncommutative parameters
`P � 1 and Λ� 1, the KG equation can be solved by using the perturbation theory. The
Hamiltonian associated with the KG Equation (50) can be separated into two parts,

H = H0 + H′ (69)

where

H0 = − h̄2(τ3 + iτ2)

2m0
∇2 + τ3m0c2, (70a)

H′ =
τ3 + iτ2

2m

(
h̄
i

A · ∇+ A2
)
+ A0, (70b)

where H0 is the conventional part in the KG equation and H′ is the perturbed part induced
by the noncommutative algebra, which can be regarded as a perturbation. Note that

τ3 + iτ2 =

(
1 1
−1 −1

)
, (71)

The Hamiltonian H0 can be expressed as a matrix form

H0 =

(
− h̄2

2m0
∇2 + m0c2 − h̄2

2m0
∇2

h̄2

2m0
∇2 h̄2

2m0
∇2 −m0c2

)
, (72)

Suppose that the wave vectors are given by

ψp =
1

(2πh̄)3/2

(
ϕ
χ

)
ei(p·x−Et)/h̄, (73)
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Substituting the wave vectors (73) into the Schrödinger-like equation, ih̄∂tψ
±
p = H0ψ±p ,

we have  p2

2m0
+ m0c2 p2

2m0

− p2

2m0

p2

2m + m0c2

( ϕ
χ

)
= E

(
ϕ
χ

)
(74)

Solving the eigen Equation (74), the eigen energies are obtained [52]

E± = ±c
√

p2 + m2
0c2 ≡ ±cp0 (75)

where p0 =
√

p2 + m2
0c2 and the corresponding eigen vectors are given by

ψ+
p =

1
(2πh̄)3/2

(
m0c + p0
m0c− p0

)
ei(p·x−cp0t)/h̄, (76a)

ψ−p =
1

(2πh̄)3/2

(
m0c− p0
m0c + p0

)
ei(p·x+cp0t)/h̄, (76b)

Note that the Hamiltonian (70b) is non-Hermitian, one introduces the generalized
inner product, (G-inner product) [52], which is defined by

〈ϕ|ψ〉G := 〈ϕ|τ3|ψ〉, (77a)

〈ϕ|Q|ψ〉G := 〈ϕ|τ3Q|ψ〉. (77b)

Using the G-inner product, the wave vectors are normalized to

ψ+
p =

1
2
√

mcp0

(
m0c + p0
m0c− p0

)
ei(p·x−cp0t)/h̄

(2πh̄)3/2 , (78a)

ψ−p =
1

i
√

2(m2c2 + p2
0)

(
m0c− p0
m0c + p0

)
ei(p·x+cp0t)/h̄

(2πh̄)3/2 , (78b)

Based on the perturbation theory, the 1-order correction of the eigen energyies are
given by

E(1)
± =

〈
ψ±|H′|ψ±

〉
G, (79)

and the 1-order correction of the eigen vectors are expressed as

ψ
(1)
+ =

〈ψ−|H′|ψ+〉G
E+ − E−

ψ+ (80a)

ψ
(1)
− =

〈ψ+|H′|ψ−〉G
E− − E+

ψ−. (80b)

Plugging the eigen vectors and the perturbation Hamiltonian into (79) and (80), the
correction of the eigen energies are obtained

E(1)
+ =

cA2 + cA · p + 2A0 p0

2p0
(81a)

E(1)
− =

cm0
(
cA2 + cA · p

)
− 2A0 p0

m2
0c2 + p2

0
(81b)
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and corresponding eigen vectors are obtained

ψ
+(1)
p = −

m0c
(
A2 + cA · p

)
4p0
√

mcp0(m2
0c2 + p2

0)

(
m0c− p0
m0c + p0

)
ei(p·x−cp0t)/h̄

(2πh̄)3/2 , (82a)

ψ
−(1)
p =

i
(
A2 + cA · p

)
4p2

0

√
2(m2

0c2 + p2
0)

(
m0c + p0
m0c− p0

)
ei(p·x+cp0t)/h̄

(2πh̄)3/2 , (82b)

Thus, we obtain the perturbation solutions of the KG equation in the 1-order approxi-
mation,

E± = ±cp0 + E(1)
± (83)

and their wave vectors are expressed as

ψ+
p =

1
2
√

mcp0

[(
m0c + p0
m0c− p0

)
−

m0c
(
A2 + cA · p

)
2p0(m2

0c2 + p2
0)

(
m0c− p0
m0c + p0

)]
ei(p·x−cp0t)/h̄

(2πh̄)3/2 , (84a)

ψ−p =
1

i
√

2(m2
0c2 + p2

0)

[(
m0c− p0
m0c + p0

)
− A2 + cA · p

4p2
0

(
m0c + p0
m0c− p0

)]
ei(p·x+cp0t)/h̄

(2πh̄)3/2 . (84b)

The physical meanings of these solutions are expected to be studied further for some
practical issues.

4.2. Probability and Current Densities

Using the wave vectors (84) and the probability and current densities (51) and (52), we
obtain the probability density in the 1-order approximation,

ρ+ = − 1
(2πh̄)3/2

(
1−

m0c
(
A2 + cA · p

)
2p0(m2

0c2 + p2
0)

)2

, (85a)

ρ− =
2m0cp0

(2πh̄)3/2(m2
0c2 + p2

0)

(
1− A2 + cA · p

4p2
0

)2

. (85b)

and the probability current density,

j++ =
m0c

(2πh̄)3
(p−A)

p0
, (86a)

j−− =
1

(2πh̄)3
2m0cp0

m2
0c2 + p2

0
(p−A), (86b)

j+− = − i
√

2
(2πh̄)3

m2c2
√

m0cp0

(p−A)√
m2

0c2 + p2
0

ei2cp0t/h̄, (86c)

j−+ =
i
√

2
(2πh̄)3

m0cp0√
m0cp0

(p−A)√
m2

0c2 + p2
0

e−i2cp0t/h̄, (86d)

Even though the probability density and current density are not positive definite, what
observables related to these densities are worth studying further.

4.3. Nonrelativistic Approximation

In the nonrelativistic approximation, suppose that |A0| � m0c and |A| � m0c [53],
we have

1
2m0

(
h̄
i
∇−A

)2
φ± = m0c2O

(
v2

c2

)
φ± (87)
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and (
ih̄

∂

∂t
− A0

)
φ+ = m0c2

(
1 +O

(
v2

c2

))
φ+, (88)(

ih̄
∂

∂t
− A0

)
φ− = m0c2

(
−1 +O

(
v2

c2

))
φ−. (89)

For the positive solution,

ψ =

(
ϕ
χ

)
=

(
1

O
(

v2

c2

)
.

)
ϕ. (90)

The KG equation can be rewritten as

ih̄
∂ϕ

∂t
=


(

h̄
i∇−A

)2

2m0
+ m0c2 + A0 +O

(
v4

c4

)ϕ. (91)

For the negative solution,

ψ =

(
ϕ
χ

)
=

(
O
(

v2

c2

)
1

)
χ (92)

The KG equation can be rewritten as

ih̄
∂χ

∂t
=

−
(

h̄
i∇−A

)2

2m0
+ m0c2 + A0 +O

(
v4

c4

)χ (93)

The Hamiltonian form of the KG equation can be expressed as

ih̄
∂ψ

∂t
= Hnrψ, (94)

where the Hamiltonian is given by

Hnr = τ3


(

h̄
i∇−A

)2

2m0
+ m0c2 + A0 +O

(
v4

c4

). (95)

Thus, in the nonrelatativistic approximation, the KG Equation (48) is decoupled to the
positive and negative differential equation.

5. Symmetry

Let us explore the fundamental symmetries of the noncommutative relations and the
KG equation in the noncommutative phase space. In the 4D spacetime with the Lorentz
symmetry, it can be verified that the noncommutative relation and the KG equation cannot
hold invariants under either parity or time reversal transformation. Thus, we define the
composites of the parity and time reversal transformations,

Definition 1.

PT : x̂µ → −x̂µ, p̂µ → − p̂µ, (96a)

⇔ t→ −t, x̂→ −x̂, p̂→ −p̂, (96b)

i→ i. (96c)
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The second line in (96b) is equivalent to the first line. Consequently, based on this definition of PT
transformation, PT x̂µ x̂νT P = x̂µ x̂ν, we obtain

Claim II: The noncommutative relations are invariant under the parity and time
reversal transformations in (96),

PT
[
x̂µ, x̂ν

]
T P =

[
x̂µ, x̂ν

]
, (97a)

PT
[
x̂µ, p̂ν

]
T P =

[
x̂µ, p̂ν

]
, (97b)

PT
[
p̂µ, p̂ν

]
T P =

[
p̂µ, p̂ν

]
. (97c)

The angular momentum is defined by L̂µ := εµνκ x̂ν p̂κ in the noncommutative phase
space. Since PT x̂µT P = −x̂µ,PT p̂µT P = − p̂µ, and PT L̂µT P = L̂µ, thus, we have

Claim III:

PT
[

x̂µ, L̂ν

]
T P = −

[
x̂µ, L̂ν

]
, (98a)

PT
[

p̂µ, L̂ν

]
T P = −

[
p̂µ, L̂ν

]
, (98b)

PT
[

L̂µ, L̂ν

]
T P =

[
L̂µ, L̂ν

]
, (98c)

Note that the effective gauge potential under the parity and time reversal transforma-
tions in (96) is Aµ → −Aµ, and we have PT

(
p̂µ − Aµ

)
T P = −

(
p̂µ − Aµ

)
, thus, we obtain

Claim IV: The canonical form of the KG Equation (29) is invariant under the parity
and time reversal transformations in (96).

The effective gauge field (37) is a skew constant matrix. Hence, we have
Claim V: The gauge field Fµν in (37) is invariant under the parity and time reversal

transformations in (96).
It should be remarked that we should note that the complex variable i does not change

under the definition of the time reversal transformations in (96), which is different from
those in the Schrödinger equation in the canonical phase space, where i → −i . This
property could provide some hints for understanding some unsolved puzzles.

6. Conclusions and Outlook

The intrinsic spacetime singularities, such as the early universe and black hole, hint the
existence of a minimum length in the Planck scale and a minimum curvature of spacetime
driving the acceleration expansion of the universe that would be interpreted as dark energy
associated with the cosmological constant. These mysterious phenomena lead to many
attempts to quantize spacetime background and deform the canonical quantum mechanics.
The noncommutative quantum mechanics shows some novel phenomena in condensed
matter physics [31,36].

We extend the quantization of the 3D to 4D spacetime in the Planck and universe scales.
We generalize the noncommutative relations between the 4-position and 4-momentum.
Using the Seiberg-Witten (SW) map, the noncommutative algebra can be mapped to the
Heisenberg commutative algebra. We endow the noncommutative parameters with the
Planck constant, Planck length, and cosmological constant. We find that the noncommuta-
tive effects can be regarded as an effective gauge field as an analog with the electromagnetic
gauge potential. The effective gauge field can be interpreted as the cosmological constant
and Planck constant. We give the Klein-Gordon (KG) equation in the noncommutative
phase space, including the canonical and Hamiltonian forms of the KG equation. We obtain
the current continuity equation. Using the perturbation approach, we obtain the pertur-
bation solution of the KG equation. Moreover, we analyze the fundamental symmetry
of the formulation of KG theory in the noncommutative phase space. We find that the
noncommutative relations and the KG equation are invariants under the composites of the
parity and time reversal transformations if i is invariant.

It should be emphasized that the novel results include
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• We extend the 3D noncommutative phase space to 4D noncommutative phase space
based on the SW map such that we give the KG equation in the noncommutative
phase space. We also obtain the perturbation solution of the KG equation and its
corresponding probability density and current continuity equation.

• We propose a parameterization scheme to endow the noncommutative parameters
with the Planck length and cosmological constant such that we can apply this formula-
tion to explore some unsolved puzzles, such as dark energy and intrinsic singularities
of spacetime background.

• We find that the noncommutative effects can be interpreted as an effective gauge
potential. The gauge field depends on the Planck constant and cosmological constant.
The gauge field is embedded naturally with the dynamical equation without coupled
constant, which is not like the U(1) electromagnetic field and the SU(2) Yang-Mills
field. This provides physical scenarios of dark energy and interplay between quantum
and gravity.

• We find that the free particle carries with an intrinsic velocity and force induced by
the noncommutative relations, which could inspire some hints to reveal the physical
scenario of the acceleration expending of universe.

This formulation opens not only a novel insight into relativistic quantum mechanics
in the noncommutative phase space, but also inspires some novel mathematical structures.
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Appendix A

Appendix A.1. The Basic Commutative Relations

For convenience, we compare some basic commutative relations in the Heisenberg
phase space and noncommutative phase space.

In the Heisenberg phase space, the basic commutative relations are given by[
x, p2

]
= 2ih̄px; (A1a)[

y, p2
]

= 2ih̄py; (A1b)[
z, p2

]
= 2ih̄pz, (A1c)

where p2 = p2
x + p2

y + p2
z .

In the noncommutative phase space, using relations of the position and momentum
operators in (12), (15) and (18), we have[

x̂, p̂2
]

= 2i
[
κα p̂x + κβ

(
p̂y − p̂z

)]
; (A2a)[

ŷ, p̂2
]

= 2i
[
κα p̂y + κβ( p̂x + p̂z)

]
; (A2b)[

ẑ, p̂2
]

= 2i
[
κα p̂z + κβ

(
− p̂x + p̂y

)]
. (A2c)

They can be rewritten as a vector form[
x̂, p̂2

]
= 2i

(
καp̂ + κβk̂v

)
, (A3)
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where
k̂v =

(
p̂y − p̂z

)
i + ( p̂x + p̂z)j +

(
− p̂x + p̂y

)
k. (A4)

As with the position operator, we have[
p̂x, p̂2

]
= 2iη

(
p̂y + p̂z

)
; (A5a)[

p̂y, p̂2
]

= 2iη(− p̂x + p̂z); (A5b)[
p̂z, p̂2

]
= −2iη

(
p̂x + p̂y

)
. (A5c)

The vector form can be expressed as[
p̂, p̂2

]
= 2iη

[(
p̂y + p̂z

)
i + 2iη

(
− p̂x + P̂z

)
j− 2iη

(
p̂x + p̂y

)
k
]
. (A6)

It is quite different from those in the Heisenberg phase space, [p, p2] = 0. When
the noncommutative parameters vanish, the above commutative relations reduce to the
canonical relations in the Heisenberg’s algebra.
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