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Abstract: We consider the extension of the general-linear and special-linear algebras by employing
the Maxwell symmetry in D space-time dimensions. We show how various Maxwell extensions of
the ordinary space-time algebras can be obtained by a suitable contraction of generalized algebras.
The extended Lie algebras could be useful in the construction of generalized gravity theories and
the objects that couple to them. We also consider the gravitational dynamics of these algebras in
the framework of the gauge theories of gravity. By adopting the symmetry-breaking mechanism
of the Stelle–West model, we present some modified gravity models that contain the generalized
cosmological constant term in four dimensions.
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1. Introduction

The historical developments show that the concept of gauge symmetry is a very
powerful principle for constructing theories of fundamental interactions. For example,
the electro-weak and strong interactions are described by the gauge theory based on the
internal symmetry groups SU(2)⊗U(1) and SU(3), respectively. In addition to these treat-
ments, inspired by the Yang–Mills gauge theory [1], Einstein’s general theory of relativity
can be considered as a gauge theory of gravity. In 1956, Utiyama proposed that gravity
can be constructed as a gauge theory based on the local homogeneous Lorentz group [2].
Later, in 1961, Kibble and Sciama generalized the gauge group to the Poincaré group and
they arrived at what is now known as the Einstein–Cartan gravity [3,4]. After that, many
space-time symmetry groups have been used to construct different types of gauge theories
of gravity, such as Weyl [5,6], affine [7–9] and conformal groups [10–12].

The invariance of a given system under a certain symmetry transformation helps
to find its physical properties. From this idea, if we use new symmetries or extend the
well-known symmetries (such as the Poincaré group, the de-Sitter group, etc.) it is expected
that one may get more information about any physical systems. Thus, one can say that new
or enlarged symmetries may have a great potential to formulate any physical system more
accurately. In this context, the Maxwell symmetry introduced by [13,14] is a good example
of the symmetry extension, wherein the Poincaré group which describes the symmetries of
empty Minkowski space-time is enlarged by six additional abelian anti-symmetric tensor
generators satisfying

[Pa, Pb] = iZab. (1)

This enlarged symmetry naturally extends the space-time geometry. Physically, this
extension can be considered as the symmetries of a charged particle in a constant electro-
magnetic field background [15].
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Moreover, the Maxwell symmetry has attracted increasing attention after the work
of Soroka [16]. Since then a variety of different Maxwell (super) symmetry algebras
with interesting geometric and physical properties have been constructed and analyzed.
For example, in general, the gauge theory of gravity based on the extended algebras leads to
a generalized theory of gravity that includes an additional term to the energy-momentum
tensor together with the cosmological constant [17–28] (for vanishing cosmological constant
cases, see [20,29–33]). Up to now, the energy-momentum tensor coming from the Maxwell
extension has not been extensively analyzed yet, but in this context, a minimal cosmological
model has been introduced in [34] and also it is thought that the gauge fields of the Maxwell
symmetry may provide a geometric background to describe vector inflatons in cosmological
models [35] (for different solutions, see [33,36]). It is well known that such an additional
term may be related to dark energy [37,38]. For the non-gravitational case, Maxwell
symmetry is also used to describe planar dynamics of the Landau problem [39], higher
spin fields [40,41], and applied to the string theory as an internal symmetry of the matter
gauge fields [36]. Also, recent papers [42–44] have applied the Maxwell group in a classical
form, which is given in [13,14].

Furthermore, it is proposed that the renormalizability and unitarity problems in
quantum gravity can be overcome by taking the affine group as the dynamical group
in the gauge theory of gravity, with the help of generalized linear connection [45–50].
In this paper, we examine the Maxwell extension for both general-linear and special-
linear groups in D dimensions and analyze their gauge theory of gravity, in particular the
generalized cosmological constant term. We have already studied these groups in four
space-time dimensions in [22,24,28], thus this work will generalize our previous results to
D-dimensional space-time.

The organization of the paper is as follows. In Section 2, we study the Maxwell
extensions of the general linear group GL(n,R). Then we show that several Maxwell
algebras can be obtained when we choose appropriate subalgebras and reduce it from
a 5-dimensional case to 4 dimensions. We also construct the gauge theory of gravity
based on the Maxwell extended GL(5,R). After applying dimensional reduction from 5 to
4 dimensions, we analyze the gravity action for two different cases. In Section 3, we present
the special-linear group SL(n + 1,R) and its Maxwell extension. In this framework, we
give three examples that this extension leads to derive different generalizations of the
Maxwell algebra in 4 dimensions. Similar to the previous section, we present the gauge
theory of gravity based on this extended case. Finally, Section 4 concludes the paper with
some discussions.

2. Maxwell Extensions of GL(n,R) Group

The general linear group GL(n,R) which corresponds to the set of all linear transfor-
mations satisfies the following Lie algebra,[

LA
B,LC

D

]
= i

(
δC

BLA
D − δA

DLC
B

)
, (2)

where LA
B are the generators of the group. This algebra can be extended to Maxwell-general

linear algebra by adding an anti-symmetric tensor generator, ZAB, associated with the
Maxwell symmetry. The generators LA

B and ZAB obey the commutators[
LA

B,LC
D

]
= i

(
δC

BLA
D − δA

DLC
B

)
,[

LA
B,ZCD

]
= i

(
δA

DZBC − δA
CZBD

)
,

[ZAB,ZCD] = 0, (3)

where the capital Latin indices run A, B, C, . . . = 0, 1, . . . , n− 1 and n is the dimension of
the group. The algebra with the commutation relations given by Equation (3), is denoted
asMGL(n,R), the Maxwell-general linear algebra.
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2.1. Decomposition ofMGL(5,R)
In this section, we start with the 35-dimensionalMGL(5,R) algebra in the 5-dimensional

space-time and carry out the dimensional reduction to the 4 dimensions. For this purpose,
if we define the following generators

La
b = La

b, Pa =

(
L4

a −
λ

2
Z4a

)
, Zab = Zab, (4)

and this definition yields the 26-dimensional subalgebra ofMGL(5,R) as,

[La
b, Lc

d] = i(δc
bLa

d − δa
dLc

b),

[La
b, Pc] = −iδa

cPb,

[Pa, Pb] = iλZab,

[La
b, Zcd] = i(δa

dZbc − δa
cZbd), (5)

where the generators La
b, Pa, Zab correspond to the general linear transformation, transla-

tion, and Maxwell symmetry transformation, respectively. Here, the constant λ has the unit
of L−2 which will be related to the cosmological constant where L is considered as the unit
of length. We note that the small Latin indices are a, b, c, . . . = 0, 1, 2, 3 and the remaining
commutators are zero. This algebra is the Maxwell extension of general affine GA(4,R)
algebra which is the semi-direct product of the general-linear group GL(4,R) with the
group of translation T4 (for more details, see [9,45,51]). This 26-dimensional extended
group is denoted byMGA(4,R). The method of nonlinear realization [52–55], allows us
to obtain a differential realization of the generators as [22]

Pa = i
(

∂a −
λ

2
xb∂ab

)
,

Zab = i∂ab,

La
b = i(xa∂b + 2θac∂bc), (6)

where ∂a = ∂
∂xa , ∂ab = ∂

∂θab , and ∂abθcd = 1
2

(
δc

aδd
b − δc

bδd
a

)
. One can check that these

differential operators fulfill the Maxwell–affine algebra and verify the self-consistency of
Jacobi identities.

Taking the tangent space (Minkowski metric), ηab = diag(+,−,−,−) into considera-
tion, we can define the following generators,

Mab = η[acLc
b], Tab = η(acLc

b), Pa =

(
L4

a −
λ

2
Z4a

)
, Zab = Zab, (7)

where the antisymmetrization and symmetrization of the objects are defined by A[aBb] =
AaBb − AbBa and A(aBb) = AaBb + AbBa, respectively. Thus, the Lie algebra of these
generators can be given as,

[Mab, Mcd] = i(ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac),

[Mab, Tcd] = i(−ηadTbc + ηbcTad − ηacTbd + ηbdTac),

[Tab, Tcd] = i(ηad Mbc + ηbc Mad + ηac Mbd − ηbd Mac),

[Mab, Pc] = i(ηbcPa − ηacPb),

[Tab, Pc] = −i(ηbcPa + ηacPb),

[Pa, Pb] = iλZab,

[Mab, Zcd] = i(ηadZbc + ηbcZad − ηacZbd − ηbdZac),

[Tab, Zcd] = i(ηadZbc − ηbcZad − ηacZbd + ηbdZac), (8)
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where Mab is the anti-symmetric Lorentz generator, Tab is the symmetric deformation
generator, Pa is the translation generator, and Zab is the Maxwell symmetry generator.
The algebra spanned by {Mab,Tab,Pa, Zab} is the Maxwell–affine algebra introduced in
Equation (5). This is also a minimal Maxwell extension of GA(4,R) group. The differential
realization of the generators are

Mab = i
(

x[a∂b] + 2θ c
[a∂b]c

)
,

Tab = i
(

x(a∂b) + 2θ c
(a∂b)c

)
,

Pa = i
(

∂a −
λ

2
xb∂ab

)
,

Zab = i∂ab. (9)

Moreover, if we consider the following definitions with the Minkowski metric ηab,

Mab = η[acLc
b], Pa =

(
L4

a −
λ

2
Z4a

)
, D = L4

4 Zab = Zab, (10)

then we get the 17-dimensional subalgebra with following non-zero commutation relations,

[Mab, Mcd] = i(ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac),

[Mab, Pc] = i(ηbcPa − ηacPb),

[Pa, Pb] = iλZab,

[Mab, Zcd] = i(ηadZbc + ηbcZad − ηacZbd − ηbdZac),

[Pa, D] = iPa,

[Zab, D] = 2iZab. (11)

This is the Maxwell–Weyl algebra introduced in [56] and studied in the context of the
gauge theory of gravity in [21]. The differential realization of the generators {Mab,Pa, D,Zab}
is given by

Mab = i
(

x[a∂b] + 2θ c
[a∂b]c

)
,

Pa = i
(

∂a −
λ

2
xb∂ab

)
,

D = i
(

xa∂a + 2θab∂ab

)
,

Zab = i∂ab, (12)

and they correspond to the generalized Lorentz transformations, space-time translations,
dilatation, and the Maxwell symmetry transformations, respectively. In the absence of
the dilatation symmetry, L4

4 = 0, the algebra in Equation (11) reduces to the well-known
Maxwell algebra [16,17]. Herein we can conclude thatMGL(n,R) algebra is a compre-
hensive symmetry algebra which has the great potential for obtaining different kinds of
Maxwell extended algebras.

2.2. Gauging theMGL(5,R) Algebra

In this part, we consider the gauge theory of theMGL(5,R) algebra. To gauge this
algebra, we follow the methods presented in [17,22]. At first, we need to introduce gauge
potentials, i.e., a vector-valued 1-form A(x) = AA(x)XA as

A(x) = ω̃B
ALA

B + BABZAB, (13)
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where AA(x) =
{

ω̃B
A, BAB} are the gauge fields corresponding to the generators XA ={

LA
B,ZAB

}
. The variation of the gauge fieldA(x) under infinitesimal gauge transformation

in tangent space can be calculated by using the following formula

δA = −dζ − i[A, ζ], (14)

with the gauge generator
ζ(x) = λ̃B

ALA
B + ϕABZAB, (15)

where, λ̃B
A(x) and ϕAB(x), are the parameters of the corresponding generators. The trans-

formation properties of the gauge fields under infinitesimal action of theMGL(5,R) are

δω̃A
B = −dλ̃A

B + λ̃C
BωA

C − λ̃A
CωC

B,

δBAB = −dϕAB + λ̃
[A
CBCB] − ω̃

[A
C ϕCB]. (16)

The curvature 2-form F (x) is given by the structure equation

F = dA+
i
2
[A,A], (17)

written in terms of components

F (x) = R̃B
ALA

B +FABZAB, (18)

one can calculate the curvature 2-forms of the associated gauge fields as

R̃A
B = dω̃A

B + ω̃A
C ∧ ω̃C

B = Dω̃A
B,

FAB = dBAB + ω̃
[A
C ∧ BCB] = DBAB, (19)

whereD = d+ ω̃ is the exterior covariant derivative with respect toMGL(5,R) connection
ω̃A

B. These is the GL(5,R) curvature 2-form and a new curvature 2-form for the tensor
generator ZAB. Under an infinitesimal gauge transformation with parameters ζ(x), the
change in curvature is given by

δF = i[ζ,F ], (20)

and hence one gets

δR̃A
B = λ̃A

CR̃C
B − λ̃C

BR̃A
C,

δFAB = λ̃
[A
CF

CB] − R̃[A
C ϕCB], (21)

the gauge variations of the curvatures. By taking the exterior covariant derivatives of the
curvatures, the Bianchi identities become

DR̃A
B = 0,

DFAB = R̃[A
CBCB]. (22)

Having found the transformations of the gauge fields and the curvatures, we are ready
to look for an invariant gravitational Lagrangian under these transformations.

2.3. Gravitational Action

In this section, we follow the approach of Stelle and West (SW) [57,58]. Our starting
point is the local SO(2, 3) symmetry with the metric signature as (+,−,−,−,+) on a
4-dimensional Minkowski space-time. It is well known that the symmetry-breaking mech-
anism of the Stelle–West model provides a physically realistic mechanism for obtaining
gravity as a gauge theory with a spontaneously broken local symmetry. Stelle and West
considered an action where a symmetry-breaking mechanism is induced by introducing
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a non-dynamical vector field VA in order to promote local SO(2, 3) transformations to
gauge symmetries, which is constrained by the condition VAVA = c2.

The SW action can be given by

SSW = σ
∫

VEεABCDERAB ∧RCD + α
(

c2 −VAVA
)

, (23)

where σ is a constant and α is an arbitrary 4-form serving as a Lagrange multiplier. The to-
tally anti-symmetric symbol εABCDE is an invariant tensor of the algebra so(2, 3). We
can also note that AAB(x) is a de-Sitter connection 1-form, and RAB(x) is its curvature
2-form. Choosing

VA = (c, 0, 0, 0, 0), (24)

ea(x) = −lDVa = −lcAa
4, DV4 = 0, (25)

where ea(x) corresponds to the vierbein field, D is the Lorentz covariant derivative and l is
related to the cosmological constant according to l =

√
3/Λ, SO(2, 3) symmetry is broken

spontaneously to SO(1, 3), and we obtain the action

SSW =
1

2κ

∫
εabcd

(
Rab ∧ ec ∧ ed − Λ

6
ea ∧ eb ∧ ec ∧ ed

)
, (26)

where Rab = dωab + ωa
c ∧ ωcb is the Ricci curvature 2-form, and we identify Aab(x) =

ωab(x) and also set σc = − 3
4κΛ together with κ is being Einstein’s gravitational constant.

In analogy with the Stelle–West action in Equation (23), we will try to construct a
gravitational action generalized to the case of theMGL(5,R) symmetry group. For this
purpose, we combine the curvature 2-forms R̃A

B and FAB into an anti-symmetric shifted
curvature 2-form as follows

J AB = R̃AB − µFAB, (27)

where µ is a dimensionless constant which will be employed in the definition of the
cosmological constant Λ = µλ and we define a new object as R̃AB = R̃[A

C gCB]. Here we
introduced an additional symmetric tensor field gAB, which is called the premetric tensor
field. It does not represent the metric tensor of space-time but it helps to construct an
invariant Lagrangian (for more details, see [22,59]). The components of the premetric field
are GL(5,R) tensor valued 0-forms and the infinitesimal transformation of the premetric
tensor field under the local GL(5,R) symmetry group is

δgAB = λ̃
(A
C gCB), δgAB = −λ̃C

(AgCB), (28)

and its covariant derivative is given as

QAB = DgAB = dgAB + ω̃
(A
C ∧ BCB). (29)

We note that if one identifies gAB as the space-time metric tensor, then QAB becomes
the nonmetricity. On the other hand, this kind of additional metric-like fields may be
discussed in the context of the metric-affine gravity [28,49,60].

By using Equation (28), we can find the gauge transformation of the new object as
δR̃AB = λ̃

[A
CR̃

CB]. Moreover, since the tensorial translation being traded for diffeomor-
phism invariance is not symmetric of the action [18], omitting the tensorial-space transla-
tions, the transformation rules for the curvature FAB in Equation (21) can be rewritten as
δFAB = λ̃

[A
CF

CB]. Then using this background, one can show that the shifted curvature in
Equation (27) has the following gauge transformation,

δJ AB = λ̃
[A
CJ

CB]. (30)
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Now, we can start with the following generalized Stelle–West action

SMGL = σ
∫

VEηABCDEJ AB ∧ J CD + α
(

c2 −VAVA
)

, (31)

where VA is a 0-form non-dynamical GL(5,R) five-vector field with dimensions of the
length and it satisfies the transformation δVA = λ̃A

CVC. We also use another definition
VA = VBgAB which obeys the transformation rule as δVA = −λ̃C

AVC. Note that the
totally anti-symmetric symbol ηABCDE is an invariant tensor under gl(5,R) algebra with
the following transformation rule,

δηABCDE = −λ̃F
AηFBCDE − λ̃F

BηAFCDE − λ̃F
CηABFDE − λ̃F

DηABCFE − λ̃F
EηABCDF (32)

With the help of Equation (30), one can easily check that the action Equation (31) is
gauge invariant. We note that J AB is an asymmetric under the interchange of indices due
to the definition of R̃AB. Thus, only the anti-symmetric part of R̃AB contributes to the
gravitational dynamics in the action (31).

Then by the variation of the action with respect to ω̃A
F(x), BAB(x) and gFG(x), we

obtain the field equations

D
(

ηABCDEVEgFBJ CD
)
− µηABCDEVEBFB ∧ J CD = 0,

D
(

VEηABCDEJ CD
)

= 0, (33)

VEηACDE(FR̃A
G) ∧ J

CD +
1
2

VEgFGηABCDEJ AB ∧ J CD = 0,

and they are invariant under localMGL(5,R) transformations.

Four-Dimensional Case

If we take VA = (c, 0, 0, 0, 0) and fix the constant as σc = − 3
4κΛ , the gravitational

action Equation (31) spontaneously breaks down to,

SMGL = − 3
4κΛ

∫
ηabcdJ ab ∧ J cd

= − 3
4κΛ

∫
ηabcd

(
R̃[a

e geb] ∧ R̃[c
f g f d] − 2µR̃[a

e geb] ∧ F cd + µ2F ab ∧ F cd
)

, (34)

where ηabcd = eεabcd obey the same transformation rule given in Equation (32) and e is
the determinant of the vierbein field and εabcd is the Levi–Civita symbol. This action has
a structural similarity to the Maxwell–Affine gravity action which was given in [22] but
includes more general curvature 2-forms. So we can say that if we construct the Stelle–
West-like action by using curvature 2-forms which come fromMGL(5,R) we can obtain a
generalized framework for Maxwell gravity. Furthermore, if we assume the premetric field
gab(x) as the tangent space metric tensor, then the action (31) can be written as follows

SMGL = − 3
4κΛ

∫
ηabcdJ ab ∧ J cd

= − 3
4κΛ

∫
ηabcd

(
R̃ab ∧ R̃cd − 2µR̃ab ∧ F cd + µ2F ab ∧ F cd

)
. (35)

where R̃ab and F ab are anti-symmetric curvature 2-forms. This action generalizes the
minimal Maxwell gravity which was discussed in [17]. Let us expand this action to a
more explicit form. Similar to the definition in Equation (25), we define the following
vector fields,

ea(x) = −
√

3
Λ

ωa5, ba(x) = −
√

3
Λ

Ba5 (36)
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where ea(x) can be considered as the vierbein vector field and ba(x) is an additional vector
field as an effect of the Maxwell symmetry. Then the shifted curvature becomes

J ab = Rab(ω)− µDBab − Λ
3

(
ea ∧ eb − µe[a ∧ bb]

)
(37)

where D is the Lorentz covariant derivative and Rab(ω) is the Riemann curvature 2-form.
From this background, neglecting the total derivatives, the action (35) reduces

SMGL =
1

2κ

∫
ηabcd

(
Rab ∧ ec ∧ ed − Λ

6
ea ∧ eb ∧ ec ∧ ed

)
−2µηabcd

(
Rab ∧ ec ∧ bd +

1
2

DBab ∧ ec ∧ ed − µDBab ∧ ec ∧ bd
)

+
2Λµ

3
ηabcd

(
ea ∧ eb ∧ ec ∧ bd − µea ∧ bb ∧ ec ∧ bd

)
. (38)

The first line includes the Einstein–Hilbert-like term together with the cosmological
constant term, the second line contains mixed terms, and the last line corresponds to the
generalized cosmological terms with the Maxwell symmetry contributions.

Thus we can say that the gauge theory of gravity based onMGL(5,R) extends the
geometrical framework of Einstein’s gravitational theory to be included the generalized
cosmological constant term. So this theory provides an alternative way to introduce the
cosmological term.

3. Maxwell Extensions of the SL(n + 1,R) Group

The group of special-linear transformations (also known as the metalinear group)
SL(n + 1,R), being the subgroup of GL(n,R), consists of matrices of determinant unity
and it is generated by n(n + 2) trace-free generators,

L̊A
B = LA

B −
1
n

δA
BLC

C, (39)

and satisfies the following Lie algebra [61–63] (for more details, see [64]),[
L̊A

B, L̊C
D

]
= i

(
δC

BL̊A
D − δA

DL̊C
B

)
, (40)

where L̊A
B are the SL(n + 1,R) generators and the index structure is essentially the same

as that of the previous section.
We extend this algebra by an anti-symmetric tensor generator ZAB associated with

the Maxwell symmetry as,[
L̊A

B, L̊C
D

]
= i

(
δC

BL̊A
D − δA

DL̊C
B

)
,[

L̊A
B,ZCD

]
= i

(
δA

DZBC − δA
CZBD +

2
n

δA
BZCD

)
, (41)

[ZAB,ZCD] = 0.

This algebra can be named as the Maxwell-special-linear algebra and denoted with
MSL(n + 1,R).

3.1. Decomposition ofMSL(n + 1,R)
Let us now analyze the algebra (41) in four space-time dimensions. As a first example,

if we define the generators as

L̊a
b = L̊a

b, Pa =

(
L̊4

a −
λ

2
Z4a

)
, Zab = Zab, (42)
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then this definition leads to the following 25-dimensional subalgebra[
L̊a

b, L̊c
d
]

= i
(
δc

b L̊a
d − δa

d L̊c
b
)
,[

L̊a
b, Pc

]
= −i

(
δa

cPb −
1
4

δa
b Pc

)
,

[Pa, Pb] = iλZab, (43)[
L̊a

b, Zcd
]

= i
(

δa
dZbc − δa

cZbd +
1
2

δa
b Zcd

)
,

where the generators L̊a
b, Pa, Zab correspond to the generalized special-linear, translation,

and the Maxwell symmetries, respectively. This algebra is the Maxwell extended special-
affine algebra SA(4,R) which is the semi-direct product of the 15-dimensional SL(4,R)
transformation and 4-dimensional translation T4. It is also known as the Maxwell-special-
linear algebra and denoted by MSA(4,R) (for more details, see [24]). The differential
realization of the generators can also be found as follows

Pa = i
(

∂a −
λ

2
xb∂ab

)
,

Zab = i∂ab, (44)

La
b = i(xa∂b + 2θac∂bc)−

i
4

δa
b

(
xc∂c + 2θcd∂cd

)
,

As a second example, this time we combine the algebras given in Equations (3) and (41)
in four dimensions. Defining the following generators,

La
b = La

b, L̊a
b = L̊a

b, Pa = L4
a −

1
2
Z4a, Pa

∗ = La
4, Zab = Zab, Za = Z4a, (45)

We get the Lie algebra as,

[La
b, Lc

d] = i(δc
bLa

d − δa
dLc

b),

[La
b, Pc] = −iδa

cPb,

[La
b, Pc
∗] = iδc

bPa
∗ ,

[Pa, Pb] = iZab,[
Pa
∗ , Pb
∗

]
= 0,

[Pa
∗ , Pb] = i

(
La

b − δa
bL5

5

)
= iL̊a

b, (46)

[La
b, Zcd] = i(δa

dZbc − δa
cZbd),

[La
b, Zc] = −iδa

cZb,

[Pa, Zcd] = 0,

[Pa, Zc] = −iZac,

[Pa
∗ , Zcd] = i(δa

dZc − δa
c Zd),

[Pa
∗ , Zc] = 0,

where we have used the expression L4
4 = 1

4 Lc
c. Here, Pa

∗ is a vector and Pb is a co-vector with
respect to GL(n,R) transformation and they also generate pseudo-translations. Moreover,
there is an additional vector generator Za that comes from the Maxwell symmetry extension.
This algebra is a novel Maxwell extension of the meta-linear group studied in [62,63] in the
four-dimensional space-time.
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Furthermore, if the tangent (flat) space carries a metric with the component ηab, one
can lower the indices and a finer splitting ofMSA(4,R) algebra can be achieved:

Mab = η[acL̊c
b], Tab = η(acL̊c

b), Pa =

(
L̊4

a −
λ

2
Z5a

)
, Zab = Zab, (47)

and the commutation relations given by Equation (43) become

[Mab, Mcd] = i(ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac),

[Mab, Tcd] = i(−ηadTbc + ηbcTad − ηacTbd + ηbdTac),

[Tab, Tcd] = i(ηad Mbc + ηbc Mad + ηac Mbd − ηbd Mac),

[Mab, Pc] = i(ηbcPa − ηacPb),

[Tab, Pc] = −i
(

ηbcPa + ηacPb −
1
2

ηabPc

)
,

[Pa, Pb] = iλZab,

[Mab, Zcd] = i(ηadZbc + ηbcZad − ηacZbd − ηbdZac),

[Tab, Zcd] = i(ηadZbc − ηbcZad − ηacZbd + ηbdZac + ηabZcd), (48)

where Mab generates the metric-preserving Lorentz subgroup, Tab generates the (nontrivial)
relativistic four-volume-preserving transformations (shear generator) with trTab = 0, Pa is
the translation generator, and Zab is the Maxwell generator. The differential realizations of
these generators are given by

Mab = i
(

x[a∂b] + 2θ c
[a∂b]c

)
,

Tab = i
(

x(a∂b) + 2θ c
(a∂b)c

)
+

i
2

ηab

(
xc∂c + 2θcd∂cd

)
,

Pa = i
(

∂a −
λ

2
xb∂ab

)
,

Zab = i∂ab. (49)

Thus, we derived the Maxwell extension of SA(4,R) algebra in the presence of a
metric [45].

3.2. The Gauge Theory of theMSL(n + 1,R) Group

In the gauging of theMSL(n + 1,R) symmetry group, we adopt the same construc-
tion procedures given in the previous section. For this purpose, we start by writing down
an algebra-valued gauge field

A(x) = AAXA = ω̊B
A ∧ L̊A

B + BABZAB, (50)

where AA(x) =
{

ω̊B
A, BAB} are the gauge fields corresponding to the generators XA ={

L̊A
B,ZAB

}
, respectively. Using the Lie algebra valued gauge parameters

ζ(x) = ζAXA = ϕABZAB + λ̊B
A ∧ L̊A

B, (51)

where ϕAB(x) and λ̊B
A(x) are the Maxwell and the special-linear transformation parameters,

respectively. By using Equations (14), (50), and (51), the transformation properties of the
gauge fields under the infinitesimalMSL(n + 1,R) are

δω̊A
B = −dλ̊A

B + λ̊C
Bω̊A

C − λ̊A
Cω̊C

B,

δBAB = −dϕAB + λ̊
[A
CBCB] − ω̊

[A
C ϕCB]

= −dϕAB + λ̃
[A
CBCB] − ω̃

[A
C ϕCB] − 2

n
λ̃BAB +

2
n

ω̃ϕAB, (52)
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where λ̃ and ω̃ are the trace parts of the GL(n,R) valued parameter and gauge field,
respectively. To find the curvature 2-forms, we make use of Equation (17) and recall the
following definition

F (x) = FAXA = R̊B
A ∧ L̊A

B +FABZAB. (53)

Then it yields the curvature 2-forms of theMSL(n + 1,R) algebra as

R̊A
B = dω̊A

B + ω̊A
C ∧ ω̊C

B

= Dω̊A
B,

FAB = dBAB + ω̊
[A
C ∧ BCB]

= dBAB + ω̃
[A
C ∧ BCB] − 2

n
ω̃BAB

= DBAB, (54)

where the exterior covariant derivative D is defined with respect to SL(n + 1,R) connec-
tion. The infinitesimal variation of the curvature 2-forms under the gauge transformations
can be obtained by using Equation (20),

δR̊A
B = λ̊A

CR̊C
B − λ̊C

BR̊A
C

δFAB = λ̊
[A
CF

CB] − R̊[A
C ϕCB],

= λ̃
[A
CF

CB] − R̊[A
C ϕCB] +

2
n
R̊ϕAB − 2

n
λ̃FAB. (55)

As before, we again introduce an additional symmetric tensor field, gAB(x) as a
premetric tensor field. The components of the premetric tensor field are SL(n + 1,R)
tensor valued 0-forms. The infinitesimal transformation of the premetric field under local
SL(n + 1,R) is given by

δgAB = λ̊
(A
C gCB), δgAB = λ̊C

(AgCB). (56)

With the help of the premetric tensor field, we can define the following combined structure,

R̊AB = R̊[A
C gCB], (57)

and one can easily show that the gauge variation of R̊AB is given by

δR̊AB = λ̊
[A
E R̊

EB]. (58)

Now, we can define a shifted curvature as follows

YAB = R̊AB − µFAB, (59)

where µ is a dimensionless arbitrary constant. This object also has the following gauge
transformation,

δYAB = λ̊
[A
EY

EB]. (60)

At this point, to find a gravitational action, similar to the previous section, we again
consider the Stelle–West model. Thus, we write the following action in 5 dimensions,

SMSL = σ
∫

VEηABCDEYAB ∧ YCD + α
(

c2 −VAVA
)

, (61)

where, similar to the previous section, VA and VA = VCgCA are 0-form non-dynamical
five-vector fields with respect to the special-linear group in 5 dimensions and satisfy
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δVA = λ̊A
CVC and δVA = λ̊C

AVC, respectively. Moreover, the transformation of the fully
anti-symmetric tensor ηABCDE can be given as

δηABCDE = −λ̊F
AηFBCDE − λ̊F

BηAFCDE − λ̊F
CηABFDE − λ̊F

DηABCFE − λ̊F
EηABCDF. (62)

Here, making use of Equation (39), one can decompose the special linear transforma-
tion parameter as λ̊A

B = λ̃A
B −

1
n δA

Bλ̃. Thus, it can be easily shown that δηABCDE = 0.
The action in Equation (61) is a slightly modified version of Equation (31) due to

the special-linear group symmetry and its equations of motion being the same as that of
Equation (33).

A Gravitational Action in Four Dimensions

To find a gravitational model in four dimensions, we will use the action in Equa-
tion (61). First of all, we assume that the premetric tensor field gAB is diagonal unless other-
wise indicated. The special-linear connection tensor then decomposes into anti-symmetric
and symmetric parts via the premetric tensor as

ω̊A
B = ωACgCB + vACgCB, (63)

where ωAC(x) is anti-symmetric and vAC(x) is symmetric, with respect to the indices. Then
we can decompose the curvature 2-forms as follows

R̊AB = R̊AB + EAB, (64)

where RAB is the anti-symmetric part and EAB is the symmetric part and their explicit
expressions are given by

R̊AB = dωAB + ωA
C ∧ωCB + vA

C ∧ vCB,

EAB = dvAB + ω
(A
C ∧ vCB). (65)

In this regard, the Maxwell curvature 2-form can also be written as

FAB = dBAB + ω
[A
C ∧ BCB] + v[AC ∧ BCB], (66)

and the shifted curvature 2-form takes the following form

YAB = R̊AB + EAB − µFAB. (67)

Now, we will reduce the space-time dimension from 5 to 4. Since gA4 = 0, one can
identify the field gab(x) as the metric tensor in the four dimensions with the variation
δgab = λ̊

(a
cgcb), under infinitesimal gauge transformation. Under these circumstances,

the action in Equation (61) spontaneously breaks down to the MacDowell–Mansouri-like
action [65]

SMSL = − 1
4κΛ

∫
ηabcdY ab ∧ Y cd

= − 1
4κΛ

∫
ηabcd

(
R̊ab ∧ R̊cd − 2µR̊ab ∧ F cd + 4µF ab ∧ F cd

)
. (68)

where we again used VA = (c, 0, 0, 0, 0) and σc = − 1
4κΛ . We also note that R̊ab = R̊ab + Eab

is asymmetric under the interchange of indices, so only the anti-symmetric part of R̊ab

contributes to the equations of motion in the presence of the fully anti-symmetric tensor
ηabcd. At this point, one can redefine the shifted curvature in terms of an anti-symmetric
part of R̊ab by excluding the symmetric Eab part as

Yab = Rab − µFab, (69)
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where the new objects Rab and Fab are given by

Rab = Rab(ω) + va
c ∧ vcb,

Fab = dBab + ω
[a
c ∧ Bcb] + v[ac ∧ Bcb] − λea ∧ eb − λra ∧ rb + 2λba ∧ bb, (70)

with the following linear combinations

ea(x) =
1√
|Λ|

(ωa5 − µBa5), (71)

ra(x) =
1√
|Λ|

(va5 − µBa5), (72)

ba(x) =
µ√
|Λ|

Ba5. (73)

The field ea(x) may be identified as the generalized vierbein field and the remaining
objects are additional vector fields. If one assumes ωab(x) to be the Riemannian connection
1-form, then one can identify Rab(ω) = dωab + ωa

c ∧ ωcb to be a Riemann curvature 2-
form. Making use of the new definition of the shifted curvature Equation (69), the action
Equation (68) can be written as follows,

SMSL = − 1
2κ

∫
ηabcd

[
1

2Λ
Rab(ω) ∧ Rcd(ω) +

1
Λ

Rab(ω) ∧ vc
e ∧ ved

]
−ηabcd

[
µ

Λ
Rab(ω) ∧ Fcd +

µ

Λ
Fab ∧ vc

e ∧ ved − µ2

2Λ
Fab ∧ Fcd

]
. (74)

The first term in the first line is the topological Gauss–Bonnet term with respect to
Rab(ω), which does not contribute to the equations of motion. In the second line, the first
term contains generalized Einstein–Hilbert action together with some additional interaction
terms. The third term contains the generalized cosmological constant term and additional
interaction terms between Bab(x), ea(x), va(x), and ca(x) fields.

4. Conclusions

In this work, we investigated the Maxwell extensions of the general-linear group
GL(n,R) and the special-linear group SL(n + 1,R). Firstly, we presented the Maxwell
extension of the GL(n,R) group and we showed that this extension leads to the Maxwell
algebra [16,17], Maxwell–Weyl algebra [21], and Maxwell–Affine algebra [22] when we
chose appropriate subalgebras of GL(5,R). In this context, we also derived a new type
of Maxwell–Affine algebra endowed with a metric tensor in Equation (8). Moreover, we
constructed the gauge theory of gravity based on the extended case (3) and we wrote down
a Stelle–West-like gauge invariant gravitational action in 5 dimensions.

Then we analyzed the action in Equation (23) for two conditions under the dimensional
reduction from 5 to 4 dimensions (an alternative approach to the Stelle–West method, one
can use the coset space dimensional reduction method [66,67]). In the first one, we kept
the affine characteristics of the construction and we found an action in Equation (34)
which has a similar structure as that of the action given in [22], but with a more general
gravitational action. In the second condition, we employed the premetric tensor as a
diagonal metric tensor for the tangent space and found a generalized gravitational theory
which includes the Einstein–Hilbert-like action together with the generalized cosmological
term in Equation (38).

Secondly, we demonstrated the tensor extension of the SL(n + 1,R) group in the
context of Maxwell symmetry. By using suitable subalgebras of SL(n + 1,R), we obtained
the Maxwell-special-affine algebra [24] and additional new kinds of extended algebras.
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The algebra given in Equation (46) corresponds to the Maxwell extension of the meta-linear
algebra [62,63] and in Equation (48) we presented a new kind of Maxwell-special-affine
algebra endowed with a metric tensor. Moreover, we constructed the gauge theory of
gravity and we derived a modified gravitation theory in five dimensions from the Stelle–
West-like action. We then reduced the dimension of the action in Equation (61) from 5 to 4
dimensions, and we derived a gravitational action which contains the Einstein–Hilbert term,
a generalized cosmological term together with additional terms. This result generalizes the
results given in [24].

Finally, we can infer that the Maxwell extension of GL(n,R) and SL(n + 1,R) algebras
lead to the derivation of richer gravity theories which may include generalized cosmological
constant terms and some additional terms in 4-dimensional space-time. It is well-known
that dark energy may be described by adding the cosmological constant term to the standard
Einstein–Hilbert action, so the gauge theory of the Maxwell extended algebras may play an
important role to explain dark energy phenomenon.
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