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Abstract: Both theoretical and applied mathematics depend heavily on inequalities, which are rich in
symmetries. In numerous studies, estimations of various functions based on the characteristics of
their symmetry have been provided through inequalities. In this paper, we study the monotonicity of
certain functions that involve Gamma functions. We were able to obtain some of the bounds of T'(v)
that are more accurate than some recently published inequalities.
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1. Introduction

Mathematicians have made considerable efforts to develop more precise estimates

of n! and its natural extension, Gamma function. Scottish mathematician James Stirling
(1692-1770) introduced the following formula:

n! ~2mn(n/e)",

n— oo €))]

which is the most widely used and well-known approximation formula for handling large
factorials and it bears his name [1-3]. Additionally, Stirling’s series [4]

00 BZP

I(v+1)~ \/27'w(v/e)vez’”:1 2p(2p-1)0?P 1 v — 2)

is a generalization of formula (1), where B, denotes Bernoulli numbers. French scientist
Pierre-Simon Laplace (1749-1827) [4] presented

L—i— 139
120 288v%2 51,8400

[(1+v) ~ vV2mo(v/e)’ (1 + .), v — 0. (3)

In 1917, Burnside [5] provided a more accurate formula than (1) with

) 1 v+1/2
F(v+1)~\/27w( vzj > . v— oo, 4)

Indian mathematician Srinivasa Ramanujan (1887-1920) [6] presented the asymptotic
expansion

F(v+1)N\/E(g)vg/8v3+402+v+l/30, v — (5)

and the following inequality of Gamma function between symmetric bounds

v v
\/E(g) {’/803+4vz+v+1/100<r(v+1)<ﬁ(g) /83 402 +v+1/30, v>0 (6)
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which, according to the book The Lost Notebook and Other Unpublished Papers, are conjectures
based on some mathematical calculations (see also [7-11]). In 2001, Karatsuba [9] presented

T(o+1) ~/7t(v/e)’ /803 +4v2 +0v+1/30+6,(v), v— (7)

where
11 79 3539

~ 2400 T 336002 T 201,60003 T

which proves Ramanujan’s formula (5). In 2011, Mortici [12] presented

01(v) =

T(v+1) ~ V7(v/e)’ V803 + 402 +v+1/30 2%, v - o (8)
where
11 13 1
— + +
11,5200% = 34400°  691,2000°
which improves Ramanujan formula (5) and is faster than formula (7).

In 2002, in web post, Robert H. Windschitl [13] (see also [14]) presented the important
formula

92(0): +...,

Fv+1) = \/2%(0/6)”(vsinhv_l)v/2 [1—1—0(0‘5)}, v — 00 9)

which relates the Gamma function and the hyperbolic sine function. He advised using the

approximation v/27to(v/e)° (ZJ sinho~! + ﬁv%) i to calculate the values of the Gamma
function on calculators with limited program or register memory since it is accurate to
more than eight decimal places for v > 8.

In 2009, Alzer [15] presented the following double inequality with a symmetrical
bounds structure:

F(v+1)
V2mo(v/e)®

with the best possible constants A} = 0 and A; = ﬁ. Numerical calculations show that
the lower bound in inequality (10) is superior to that of its counterpart in inequality (6)
for v > 2.07. Additionally, the upper bound in inequality (10) is superior to that of its
counterpart in inequality (6) for v > 0.992. In 2010, Nemes [16] presented

<v sinhzfl>v/2 [1 + Alvfﬂ < < (v sinhzfl)v/2 [1 + Azzfﬂ, v>0 (10)

— ra(n/e) 10’ -5
I(v+1) =V2mo(v/e) (1—}—12002_1 {1—}—0(0 )}, v — 00 (11)
which is considerably easier than (9) and has exactly the same number of exact digits.
Formulas (9) and (11) are more accurate than Ramanujan’s formula. In 2014, Lu, Song and
Ma [17] deduced that there exists an n, such that for every v > n, the double inequality

vsinh 1+ 1 67 Z;/2< [o+1) < |vsinh 1—1— ! o
v ' 81007  42,5250° V2ro(v/e)’ v 81007

holds. Additionally, they provided some numerical comparisons to show how much better
their approximations were than others such as Nemes’ formula (11). In 2022, Mahmoud
and Almuashi [18] presented the new asymptotic formulas

v/2 oo
T(v+1) ~V2mo(v/e)’ v % exp| ) tr — 00 (12)
Uz 1 P / o |’ 0
20 r=

and

2_ 1
"=

v+ L 2 [ e Ay
T(v+1) ~V2mo(v/e)’ | — Y =), v — 00 (13)
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2nv(v/e)”<

2 —

P1(0+1) =

where 5
— +1 1
Hr = r(rr+1) — 2P+

Pr = Xr — lZ:]r_11 jP]Xr —jr
X0 1 XZV* (20)“ Xor—1 =Y,
A=1, A **E] 1A=,

Both the two formulas (9) and (13) have the same rate of convergence, but the second
is simpler.

For more details about asymptotic formulas and bounds of I'(v), please see [17,19-23]
and the references therein.

In the rest of this paper, and motivated by formula (13), we will prove the following
double symmetric inequality:

r=123,....

20

) 7 v/2 v/2
v+610> (1+/\)<F(v+l)<\/ (v/e)( +6°> <1+:—5), v>1 (14)

20

with A = 0 and the best possible constant y = 907200 Additionally, we will present compar-
isons between this inequality and the inequalities (6) and (10) presented by Ramanujan and
Alzer, respectively, to clarify the superiority of our new results.

2. Main Results

Now, we will present new bounds of the Gamma function depending on the asymp-
totic formulas (12) and (13).

Theorem 1. The function

is strictly decreasing for v > 1. Furthermore,

20

2 v/2
T(v+1) > vV2ro(v/e)® ( +6°> , v>1 (15)
Proof. The function Ty (v) = log Py (v) — log Py (v + 1) satisfies T’ (v) = EE ; where

4.4256 x 10012 + 7.96608 x 102! + 6.48621 x 101300 4 3.15729 x 104’
+1.02268 x 1008 + 2.32054 x 10'°0” + 3.77909 x 10'°0° + 4.44603 x 10'°7°
+3.74551 x 10P°0* +2.19984 x 10'°0° + 8.53104 x 10'40? + 1.95514 x 1040
+1.99325 x 103

and
By (0) = 202(0 + 1) (2002 - 1)2 (2002 +400 + 19)2 (6002 + 7)2 (60v2 +1200 + 67)2.

Then, T (v) is a convex function for v > 1, and hence Tj (v) is an increasing function
for v > 1. Using the asymptotic expansion (12), we have

In Py (o) 461 B 5197 1,436,249 B 26,863,154,077 0 s oo
1 907,2000°  9,072,00007  1,710,720,0000°  14,010,796,800,000011
and
Pl’ (v) 461 5197 1,436,249 26,863,154,077
+ v — 0.

P(v) ~ 18144005 ' 1,296,0000% _ 190,080,000010 ' 1,273,708,800,00002
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Then,
lim Tj(v) =0

V—00

and Tj (v) is negative for v > 1. So,

/ /
AN (CRa) SR
Pi(v) Pi(v+1)
and hence
/ / / /
Pl(v) <Pl(v+1) <P1(U+2) <.l < lim 1( n)’ v>1
Pi(v) " Pi(v+1)  P(v+2) n—e Py(v+n)
However,

P{(v+n)
im —= =
n—oco Py (v +n)
Therefore, P{(v) < 0 or P;(v) is decreasing function for v > 1 with limy e Py (v) =1,
where we use the asymptotic expansion (13) to obtain

n 461 5197 1,436,249 n
907,200v°  9,072,00007  1,710,720,0000° = "’

Pi(v) ~1 v — .

Then, P;(v) > 1forv > 1or

2 _ 1
|

/2
R G AN
I'(v+1) > Vv2mo(v/e) , v>1.

O
Theorem 2. The function
I'(v+1)
/2
Vam ()" (58) " (shlhes +1)
e 907,2000°

2_ 1
U0

Py(v) =

is strictly increasing for v > 1. Furthermore,

5 7 v/2
T(v+1) < V2ro(v/e)’ <Z2 + 610> (1 + %) v>1 (16)
20

with the best possible constant y = %-

Proof. The function T5(v) = InP,(v) — In P>(v + 1) satisfies T} (v) = %, where

FBv+1)=  —8.11049 x 10%0% — 3.64972 x 10%7v%° — 7.91358 x 10%?® — 1.10102 x 10*°v?’
—1.10437 x 10*1926 — 8.50657 x 10*'v® — 523342 x 10%20?* — 2.64083 x 10*30?
—1.11381 x 10%0%2 — 3.98112 x 10*0?! — 1.21847 x 10%v%° — 3.21822 x 10%v!
—7.37762 x 10¥018 — 1.47414 x 10*0!7 — 25746 x 10*0'® — 3.93687 x 100!
—5.27342 x 10%01* — 6.18444 x 10*00'3 — 6.3396 x 10%°0'? — 5.66425 x 10%0v!!
—4.39262 x 10*910 — 2.93963 x 10%0” — 1.68451 x 10%0® — 8.18045 x 10%°0”
—3.32038 x 10%0° — 1.10538 x 10%°0° — 2.93909 x 10*v* — 6.00088 x 10*3°
—8.83256 x 10*20? — 8.34133 x 10*v — 3.79528 x 10%°
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2
E() = 20% (907,20005 + 4,536,0000* + 9,072,0000° + 9,072,0000% + 4,536,0000 + 907,661)

(v+1)? (2002 - 1)2 (2002 4400 + 19)2 <6002 + 7)2
(60v2 1200 + 67) ? (907,20005 + 461)2.

Then T,(v) is a concave function for v > 1 and hence T}(v) is a decreasing function for
v > 1. Using the asymptotic expansion (12), we have

In P (U) _ 5197 i 1,436,249 i 212,521 n 0 oo
2 9,072,00007 = 1,710,720,000v° = 1,646,023,680,000v10 = "
and
Pﬁ(v) 5197 B 1,436,249 B 212,521 n 5 0o
P (v) 1,296,00008  190,080,000010  164,602,368,000011 = 777 ’
Then
. / _
i, To(0) =0
and Tj(v) is positive for v > 1. So,
P P, 1
»(0)  P(v+1) ~0 ov>1
Py(v)  Py(v+
and hence
Py(v) _ P(v+1) _ Py(v+2) 5 (v + 1)
...... 1 , >1
P(0) - Pot1) Pr(v12) e botn) 7
However,
Pj(v+n)

lim 220 ") _
By O

Therefore, Pj(v) > 0 or P, () is an increasing function for v > 1 with limy_,e P2(v) =1,
where we use the asymptotic expansion (13) to obtain

1 461 5197 1,436,249
Py (v) , U — oo

~ 1+ - + ...
461 5 Vi 5
1+ 557 20005 907,20005  9,072,00007 ' 1,710,720,0000

Then, P,(v) < 1forv > 1or

5 7\ v/2

247 461
o 5 . 50 1+— ), v>1
(v+1) < V2ro(v/e) (Uz 210) ( +907,20005) -

This inequality is equivalent to T3(v) < yu for all v > 1, where

I'(v+1)

TS(U):US 5 7\ /2
\/va(v/e)v<z;_r6f’>

—-1].

20

However, using the asymptotic expansion (13), we obtain

. 461
Jim T3(v) = 907,200
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This implies that j > g%y, or the best possible value of j is gy55;- O

3. Comparison between Previous and New Results

Remark 1. Using the expansion
7 1\ . = (p—1)(2p+7)
2 2 1
v+ — | —v|v°— = |sinhv " = E _—
( 60) ( 20) St =2 10(2p +3)!10?r ’

then we obtain

2.4, 7
+5 1
07610 >vsinho™!, o> —
2 — 5 V20
and our new lower bound of inequality (15) is better than the lower bound of Alzer’s inequality (10)
forv>1.

Remark 2. Consider the function

/2 v/2
2+ 2\’ 161 ot + g0 1
4(v) =In ( (Uz —1 <9o7,20005 - > O 162005

then we have T} (v) = — }1:2 Ez; , where
Fs(v+1) = 3.14926 x 10302 +1.00776 x 10%0°! + 156197 x 10*% 4-1.56184 x 10%7v*°

+1.13218 x 10%0?® + 6.339 x 10%0% + 2.85184 x 10%°0%° + 1.05892 x 10*%0?°
+3.30784 x 10%%?* 4 8.81677 x 10*0% + 2.02672 x 104 v?? + 4.05079 x 10*'0?!
+7.08347 x 10*10%° + 1.0888 x 10*0" + 1.47617 x 10*20'® 4 1.76937 x 10*20'7
+1.87751 x 10%20'® 4 1.76448 x 10*?0'° + 1.46798 x 10*20'* + 1.07968 x 10*?v!3
+7.00358 x 10012 +3.99296 x 104 0! 4 1.99146 x 10*'0'° 4 8.63451 x 10*07°
+3.22806 x 10198 +1.02952 x 10%%7” +2.76159 x 10*%0° + 6.11223 x 10%82°
+1.08669 x 10%80* +1.49173 x 10 0% + 1.48399 x 10%°0? + 9.52017 x 10**v
+2.95688 x 103

and
Fs(v) = 0(1 - 2002)2 (60v2 + 7)2 (294v2 + 31)2 (588004 — 36002 + 11)2
(1620v5 + 1) ’ (907,20005 + 461) g

Then Ty (v) is concave for v > 1 or Ty(v) is decreasing for v > 1. However,
T (o) 1793 _ 793,529 B 11,231 n 1,328,563,181 n
4 42,336,0000%  96,808,320,000010  18,289,152,0000'1  1,280,774,073,600,00001> = "’

Then limy_seo Ty (v) = 0 and Ty(v) > 0 for v > 1 or Ty(v) is increasing for v > 1 with
limy 0 T4(v) = 0, where

U — 00,

1793 793,529 11,231

T, ~ e,
1(v) 296,352,00007 + 871,274,880,0000° + 182,891,520,000010 +

U — 0.

Therefore, Ty(v) < 0 forv > 1or

/2 v/2
2+ 2\° 461 ot + Fpo? 1
60 294
—— 41 — o — = +1 >1. (17
(vz 1 (907,20005 * ) < vt — Zo? + AL (16207]5 + ) v=1 (17)

20 5880

Using the following expansion for v > 0
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(11”4 30 )sinh(v) - (3103 ) 3 ((p—3)(p—2)(44p(p +4) + 245))02*!

_2Y 49 Rl
5880 49 204 ¢ 1470(2p + 1)!

we have

inho-! v/2 1 1 U4+%UZ o2 1 1 > 18
— > | — — , > 1.
(USI v ) (162005+ ) b 2021 AL (1620z;5+ ) ¢ (18)

Using inequalities (17) and (18), we conclude that our new upper bound of inequality (15) is
better than the upper bound of Alzer’s inequality (10) for v > 1.

Remark 3. Consider the function

/2
1 1 2+ Z\°
T5(”>_61“(8”3+4”2+”+m)_m( 2”<vz+610) )
2

F(v)
60(2002—1)(6002+7) (80003440002 +100v+1)

then we have TY (v) = , where

F(v+34) = —3.2256 x 10'%! —1.10615 x 10'%0'0 — 1.70749 x 10'32° — 1.5627 x 1048
—9.39317 x 1040”7 — 3.87682 x 10"°v°® — 1.11372 x 10'°0° — 2.20314 x 10'%0*
—2.88463 x 10'00% — 2.28577 x 101002 — 8.809 x 10'°v — 6.29583 x 104,

Then Ts(v) is concave for v > 3.4 or TL(v) is decreasing for v > 3.4. However,

30,847 1 539 23 7

Ti(v) ~ — — 0.
5(9) ~ ~103.680,0000% ~ 1280,00007 + v

207,36000  48000° + 48000 7

Then limy e TE(v) = 0 and TL(v) > 0 for v > 3.4, or Ts(v) is increasing for v > 3.4 with
limy 00 T5(v) = 0, where
529 30,847 1 539 23 7

Ts(0) ~ — - - - s, U o0,
5(0) 61,440,00008 = 725,760,00007  7,680,0000®  1,036,8000° + 19,2000*  14,40003 + e
Therefore, Ts(v) < 0 for v > 3.4 or
/2
1 2+ L !
{’/82)3+4vz+v+<\/2v * e , v>34.
100 v — L
Then our new lower bound of inequality (15) is superior to that of its counterpart in inequality (6)
forv > 3.4.
Remark 4. Consider the function
/2
1 1 2+ 4\’ 461
Te(v) = ~ In( 80° + 407 — ] —In{ V2 &0 e +1
6(0v) g n( v° +4v +v+3o) n 0(02_210 507 20005 +
then we have T} (v) = 5 5 £5(0) 3 -, where
202(1-2002)~(60v2+7)~ (24003 +120024-30v+1)~(907,20005+461) )
F(v+15)  =2.6073 x 10*10%° + 7.68646 x 10720 + 1.0737 x 1008 4 9.44632 x 10*v7

+5.86836 x 1020 +2.73516 x 10%°0'> 4 9.91887 x 102004 4 2.86407 x 10%"v!3
+6.68251 x 107 0'% 4+ 1.27107 x 10?801 +1.97924 x 10%0'° + 2.52336 x 10?80’
+2.62358 x 10%80® + 2.20574 x 10207 4 1.47838 x 102800 + 7.72565 x 10%7v°
+3.04037 x 107 0* + 8.51281 x 10%°0% + 1.5292 x 10%°v% 4 1.39397 x 10%v
+2.20424 x 10%.
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Then Ty (v) is convex for v > 1.5 or T{(v) is increasing for v > 1.5. However,

T.(0) ~ — 2629 1 n 13 1
6 10,368,00008  115,20007 = 2688v° 2880

5+..., U — 00,
(¢

Then limye0 T¢(v) = 0 and T{(v) < 0 for v > 1.5 or Ts(v) is decreasing for v > 1.5 with
limy_y00 Ty (v) = 0, where

121 2629 1 13 11
+ U — 0.

T ~ — — - e
5(v) 22,118,40008 * 72,576,00007  691,2000°  13,4400° + 11,52004 !

Therefore, Tg(v) > 0 for v > 1.5 or

/2
1 2+ 72\’ 461
§/8v3+402+v+30>\/20< 2+610) ( 6 1), v>15.

+
02 — 55 907,2000°

Then our new upper bound of inequality (16) is superior to that of its counterpart in
inequality (6) for v > 1.5.

4. Conclusions

The main conclusions of this paper are stated in Theorems (1) and (2). Concretely
speaking, we studied the monotonicity of two functions involving the Gamma function
to introduce the double inequality (14). We proved that our new inequality is better than
Alzer’s double inequality (10) for v > 1. Additionally, our new lower (upper) bound is
better than the lower (upper) bound of Ramanujan’s inequality (6) for v > 3.4 (v > 1.5),
respectively. Our results demonstrate that the approximation formula (12) had some
advantages over Windschitl’s formula (9) in producing more precise inequalities for the
Gamma function.
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