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Abstract: With the explosion of the generation, transmission and sharing of image data over the
Internet and other unsecured networks, the need for and significance of the development of novel
image encryption algorithms are unprecedented. In this research work, we propose a novel frame-
work for image encryption that is based on two hyperchaotic maps utilized in conjunction with
the single neuron model (SNM). The framework entails three successive stages, where in every
stage a substitution box (S-box) is applied, then XORing with an encryption key is carried out. The
S-boxes and the encryption keys are generated from the numerical solutions of the hyperchaotic
maps and the SNM. The performance of the proposed framework is gauged through a number of
metrics, reflecting superior performance and complete asymmetry between the plain images and their
encrypted versions. The main advantages of this work are (1) vast key space and (2) high encryption
efficiency. The superior key space of 22551 is the result of employing the two hyperchaotic maps,
while the improved efficiency, resulting in an average encryption rate of 8.54 Mbps, is the result of
using the SNM as well as the employment of optimized parallel processing techniques. In addition,
the proposed encryption framework is shown to output encrypted images that pass the NIST SP 800
suite. Average achieved values for the metrics include MSE of 9626, PSNR of 8.3 dB, MAE of 80.99,
entropy of 7.999, NPCR of 99.6% and UACI of 31.49%.

Keywords: cryptography; hyperchaotic maps; image encryption; NIST; S-box; single neuron model

1. Introduction

With the widespread use of digital images in various fields, including healthcare,
finance and personal communication, there is a growing need to ensure their secure commu-
nication and storage. This is especially true in terms of protecting them from unauthorized
access, tampering and interception [1,2]. Encryption is the process of converting plaintext
(unencrypted data) into ciphertext (encrypted data) using an encryption algorithm and a
secret key. The encrypted data can only be decrypted and read by someone who has the
correct key. Image encryption is a specific type of encryption that is designed to protect
digital images by eradicating any symmetry between a plain image and its encrypted
version. The need for image encryption arises from several factors. Firstly, digital images
often contain sensitive information, such as personal photos, medical images or confidential
documents. This information needs to be protected from unauthorized access or intercep-
tion during transmission over the Internet or storage on a device [3]. Secondly, images
can be easily tampered with and it is often difficult to detect such tampering. Encryption
can help prevent unauthorized modifications of the image data by providing a way to
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verify the authenticity of the image [4]. Thirdly, images are often stored and transmitted in
large quantities, making it difficult to ensure the security of each individual image. Image
encryption algorithms can help secure large quantities of images by providing a way to
efficiently and securely process their data [5].

Recent literature shows the reliance of image encryption algorithms on substitution-
permutation networks (SPNs). SPNs are a popular cryptographic primitive used in sym-
metric key encryption algorithms. These operate by applying a series of substitution and
permutation operations to plaintext blocks, producing ciphertext blocks that are difficult
for an attacker to decipher without the correct key. SPNs have been widely used in image
encryption research due to their ability to efficiently encrypt large amounts of data while
maintaining strong security guarantees [6–8]. In an image encryption algorithm, the plain-
text is typically represented as a matrix of pixel values and the SPN is applied to each pixel
value individually or to a block of pixels simultaneously. One of the main advantages of
using SPNs in image encryption is their ability to provide a high degree of confusion and
diffusion, satisfying Shannon’s theory of secure communication [9]. Confusion refers to
the property of the encryption algorithm that makes it difficult for an attacker to relate the
ciphertext to the plaintext, while diffusion refers to the property that ensures that small
changes in the plaintext lead to significant changes in the ciphertext [2].

SPNs have also been used in combination with other cryptographic techniques, such
as key management and authentication, to provide a more comprehensive approach to
image security [10]. For example, some image encryption algorithms based on SPNs use
secret key management techniques to ensure that the encryption key is securely distributed
and protected from unauthorized access [11]. Overall, the importance of SPNs in image en-
cryption research lies in their ability to provide strong security guarantees while efficiently
processing large amounts of data. As such, they have become a cornerstone of modern
image encryption algorithms and continue to be an active area of research in the field of
cryptography. In general, most recent literature on image encryption carries out confusion
through the application of one or more substitution boxes (S-boxes), while diffusion is
carried out through the application of an encryption key that is based on a pseudo-random
number generated bitstream, where an appropriate logical operation is utilized [7,12,13].
The next couple of paragraphs introduce each of those steps.

Substitution boxes are an important component of many image encryption algorithms.
These are used to substitute plaintext bits with ciphertext bits and they provide a key
component of the confusion step in many encryption algorithms [7]. The importance
of S-boxes in image encryption algorithms lies in their ability to provide strong security
guarantees by introducing non-linear transformations into the encryption process. S-
boxes help to ensure that changes to a single input bit have unpredictable and significant
effects on the output, making it difficult for an attacker to analyze and reverse-engineer
the encryption process. In image encryption, S-boxes are typically used in combination
with permutation operations to form SPNs [12]. As mentioned, the SPN structure is
particularly well-suited to image encryption because it provides a high degree of confusion
and diffusion, which are both important properties for secure encryption. The use of
S-boxes in image encryption algorithms can also help to prevent common attacks, such
as differential and linear cryptanalysis, which rely on analyzing the statistical properties
of the encryption process. S-boxes can help obscure these statistical properties, making it
more difficult for an attacker to break the encryption [12].

Pseudo-random number generators (PRNGs) play an important role in image encryp-
tion algorithms. PRNGs are used to generate a sequence of random numbers that are
used to encrypt the image data. These random numbers are combined with the original
image data using various encryption techniques to produce encrypted image data that
is difficult to decipher without the correct key [2]. The importance of PRNGs in image
encryption algorithms lies in their ability to generate a large amount of unpredictable and
uniformly distributed random numbers. These random numbers are crucial for achieving
the two main goals of encryption: confidentiality and integrity [3]. Confidentiality refers
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to the property of the encryption algorithm that ensures that only authorized parties can
access the encrypted data. Integrity refers to the property that ensures that the encrypted
data has not been tampered with or modified during transmission or storage. PRNGs
are designed to produce random numbers that are indistinguishable from true random
numbers. However, unlike true random number generators, PRNGs are deterministic
and rely on a seed value to produce the same sequence of numbers each time they are
used with the same seed [12]. The seed value is typically generated from a source of true
randomness, such as atmospheric noise, mouse movements or keyboard timings, to ensure
that the resulting sequence of numbers is sufficiently unpredictable. In image encryption
algorithms, PRNGs are used to produce a large sequence of random numbers that are
combined with the original image data to produce encrypted data [2]. The strength and
quality of the encryption depend on the randomness and uniformity of the PRNG output.
Therefore, selecting a secure and robust PRNG is essential for ensuring the security and
effectiveness of the image encryption algorithm.

Chaotic functions exhibit sensitive dependence on initial conditions and cycloidal
behavior, making them suitable for encryption applications [6,8]. There are two main
types: low-dimensional chaotic functions with two or three variables and hyperchaotic
functions with four or more variables, thus spanning multiple dimensions and interacting
in complex ways [14]. Low-dimensional chaotic functions, such as the Lorenz or Henon
maps, have a smaller key space but simpler computational requirements, making them
faster and easier to implement [13,15,16]. However, their lower dimensionality means they
have weaker encryption strengths. Hyperchaotic functions, on the other hand, have a much
larger key space due to their extra variables, providing stronger encryption. However,
they also have greater complexity, requiring more computing power and being slower to
compute. Each type has its advantages and disadvantages for image encryption. Low-
dimensional chaos is suitable for real-time encryption of streaming videos or wireless
communications due to its simplicity. Hyperchaos provides very high encryption strength,
making it suitable for encrypting still images or large file transmissions. However, its
added complexity may be impractical for some applications with limited resources. By
tuning the parameters of a chaotic map, its dynamics can be made sufficiently random-
like for encryption yet still deterministic for decryption [12]. Chaotic ciphers have been
shown to withstand various attacks such as brute force, known plaintext and statistical
analysis [12]. When combined with other techniques such as diffusion and confusion layers,
chaos-based encryption schemes can achieve robust and versatile encryption of images
and multimedia data [17]. Chaos provides an efficient and simple means of generating the
complex, nonlinear transformations needed for strong encryption.

Recent literature in the field of image encryption provides a plethora of articles that
combine the use of successive applications of PRNGs and S-boxes to carry out image en-
cryption. In many instances, chaos theory is employed to generate the PRNGs and construct
the S-boxes. In [12], the authors numerically solve the fractional-order hyperchaotic Chen
system and generate a PRNG as an encryption key from its solution. They combine its use,
in a multi-layer encryption algorithm, with other keys and S-boxes based on the Mersenne
Twister, OpenSSL, Rule 30 cellular automata (CA) and Intel’s math kernel library. The
authors of [7] make use of a tan variation of the Logistic map to carry out Deoxyribonucleic
acid (DNA) coding as a first stage of encryption. Subsequent stages utilize the Lorenz
chaotic system to construct an S-box, as well as the Logistic map in its original form for
PRNG key generation. Recaman’s sequence, in conjunction with the Rossler chaotic system,
is used to generate PRNG encryption keys in [18]. In [19], the authors employ chaotic
functions, DNA computing, SHA-256, as well as the random movements of a chess piece,
castle, on a hypothetical chess board, to carry out image encryption. The combination
of DNA coding with chaos theory is also utilized in [20], where the authors further the
image encryption abilities through SHA-2. A number of dynamical functions that exhibit
chaotic behavior are utilized in [17] to generate PRNG encryption keys, including the linear
congruential generator, the Arnold cat map, the Bernoulli map, the 2D Logistic sine map
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and the tent map. In [21], parameters are computed over the finite field ZN through the
utilization of a finite field with the aim of generalizing the Logistic map and searching
for an auto morphic mapping between two Logistic maps, to carry out robust image en-
cryption. The work of [15] adopts a continuous chaotic system, with the aim of achieving
diffusion and an LA-semi group, with the aim of achieving confusion, for efficient image
encryption. A 6D discrete hyperchaotic system is employed in [22] to generate six PRNGs
as encryption keys. Those are used in conjunction with DNA coding, to encrypt each of
the color-separated RGB channels of a color image. The authors of [23] make use of the
spatio-temporal chaos of the 2D nonlinear coupled map lattices and genetic operations, to
carry out low-complexity image encryption. The Mandelbrot set is utilized in a color image
encryption scheme proposed in [24], where the Arnold map combined with DNA sequences
enhances the attained encryption security. The authors of [25] propose an innovative image
encryption algorithm that draws on the distinctive concept of a rotor machine, in addition
to the employment of a piece-wise linear chaotic map and a one-time key. The Logistic
map is used in combination with a dynatomic modular curve, as a form of an SPN, to
perform secure image encryption in [26]. In [27], the authors employ a cloud model, a
Fibonacci chaotic system and a matrix convolution operation to implement a secure image
cryptosystem. Interesting work involving the Josephus problem and its corresponding
Josephus function is employed in [28] in combination with a 4D hyperchaotic function.
Image compression and encryption is carried out in [29], where the Arnold map and Choas
theory are utilized for effective and reliable image transmission over unsecured networks.
The authors of [30] devise a novel chaotic map, the Salomon map and showcase its superior
chaotic behavior, in terms of positive and large Lyapunov exponents, then they employ
its use in image encryption in conjunction with a pixel-splitting algorithm. Another novel
chaotic map is introduced in [31], where the authors conceive a Schaffer map for high
complexity applications. In their work, they compare the Schaffer map with counterparts
from the literature and showcase that it has the best ergodicity and erraticity characteristics.
Next, they illustrate its use in generating encryption keys and apply it to carrying out
permutation and diffusion in a simple image encryption algorithm. In [32], the authors
focus on improving encryption efficiency. This is carried out by designing a parallel image
encryption algorithm using intra bitplane scrambling. In their proposed scheme, multiple
processing threads are employed to carry out image encryption at the bit-level to achieve
permutation. Next, every thread scrambles two bitplanes.

It is clear from the literature review that there are an abundance of techniques and
algorithms that may be utilized to successfully implement secure, robust and efficient
image encryption frameworks. However, almost all of the mentioned algorithms are only
able to offer two of those three vital encryption traits. Such that the offering of higher
security, through more encryption stages, is counteracted with higher design complexity
and software implementations. In some cases, efficiency is capitalized on, but security is
not fully achieved, such that key spaces are rather small. In order to achieve all three traits
of security, robustness and efficiency, this work proposes and accomplishes the following:

• A chaos-based, three-stage, dual-acting image encryption framework is proposed.
In every stage, a novel S-box is constructed and applied. This is followed by the
generation and application of the logical XOR operation between a generated PRNG
key and the image bits.

• In the first stage, a 7D hyperchaotic system of differential equations is numerically
solved and its solution is utilized both for PRNG key generation and S-box construction.

• In the second stage, a single neuron model is numerically solved and its solution is
utilized both for PRNG key generation and S-box construction.

• In the third stage, a 4D hyperchaotic system of differential equations is numerically
solved and its solution is utilized both for PRNG key generation and S-box construction.

• With the utilization of three different systems, two of which are hyperchaotic, as well
as the selection of three S-boxes that satisfy certain criteria, a rather wide key space of
22551 is achieved, providing sufficient resistivity to brute-force attacks.
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• The software implementation of the proposed image encryption framework making
use of advanced parallel processing techniques allows for an average encryption rate
of 8.54 Mbps to be achieved.

This article is organized as follows. Section 2 makes reference to the foundational
systems of differential equations that are to be employed for PRNG key generation and
outlines the adopted methodology for the construction of S-boxes. Section 3 introduces
the image encryption and decryption processes of the proposed framework. Section 4
provides the numerical results and performance evaluation of the proposed framework.
A comparative study of the state-of-the-art is also carried out in this section. Section 5
concludes this research work and provides some suggestions for possible future areas
of research.

2. Preliminary Mathematical Constructs

A number of mathematical constructs are used in the proposed image encryption
framework to generate the PRNG keys and S-boxes. These are presented in this section.

2.1. The Single Neuron Model

The single neuron model (SNM) is a mathematical model that describes the behavior of
a single neuron with an adaptive feedback synapse. The model consists of two differential
equations: one that describes the membrane potential of the neuron and one that describes
the dynamics of the feedback synapse. The authors of [33] have shown that an SNM with
an adaptive feedback synapse has two coexisting chaotic attractors. In this work, we make
use of this SNM because of its rich, complex dynamics and its suitability with respect
to inducing randomness in a simple and deterministic manner. The SNM is described
as follows: u̇ = −u

τ
+ f (qs) f (pu) + I,

ṡ = −αs + α f 2(pu),
(1)

where α = 1/B, while p and q are positive constants. As in [33], f (x) = 3xexp(−x2/2)
(shown in Figure 1), while I(t) = εsin(ωt). The connected chaotic attractor of this system
is plotted in Figure 2 for α = 3, u0 = 0.1 and s0 = 0.5. In Figure 2, the colors model the
time factor representing initiations with cold colors and endings with hot colors. In [33],
bifurcation diagrams are provided for the SNM, confirming its chaotic behavior; however,
a Lyapunov exponents plot is not provided, so we provide such a plot in Figure 3. It is clear
from Figure 3 that two Lyapunov exponents materialize and one of them is positive.

Figure 1. A plot of f (x) = 3xexp(−x2/2).
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Figure 2. The connected chaotic attractor for the SNM at α = 3.

Figure 3. Lyapunov exponent plot for the SNM at α = 3.

2.2. The 4D Hyperchaotic System

A 3D hyperchaotic system was proposed for the first time by the authors of [34]. This
system was later improved by the authors of [35], who added a linear controller, resulting
in the following 4D system of differential equations:

u̇ = a(ν− u) + eνw,

ν̇ = cu + dν− uw + mp,

ẇ = −bw + uν,

ṗ = −ku− kν,

(2)
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where u, ν, w and p are the states of the system and a, b, c, d, e, m, k are positive real param-
eters of the system and c ∈ R. By letting a = 15, b = 43, c = −1, d = 16, e = 5, m = 5
and varying k, such that k ∈ [1.5, 5.5], the authors of [35] show that the system in (2)
possesses hyperchaotic attractors (shown for various spaces in Figure 4) and two positive
Lyapunov exponents, providing the related plots that justify their claims (see Figure 1 for
the Lyapunov exponents and Figure 2 for the bifurcation diagram, in [35]). In relation to
image encryption, these properties make this system a good choice for utilization in PRNG
generation and subsequent S-box construction. Furthermore, as a 4D system, the system in
(2) has a large number of states and parameters, which allows it to provide an excellent
expansion to the key space of the proposed image encryption framework.

(a) u-ν-w space.

(b) u-ν-p space.

(c) u-w-p space.
(d) ν-w-p space.

Figure 4. Hyperchaotic attractors for system (2) with u0 = 5.2, ν0 = 7.4, w0 = 1.4, p0 = 3.4, shown for
various 3D spaces.

2.3. The 7D Hyperchaotic System

The authors in [36] presented a 7D hyperchaotic system. In their work, they propose
coupling the classical Lorenz 3D system with a 6D hyperchaotic system. This 6D system is
obtained through the addition of a nonlinear feedback controller to the first equation and a
linear feedback controller to the second equation of the classical Lorenz 3D system. Such
coupling results in a novel 7D hyperchaotic system as follows:

ẋ1 = a(x2 − x1) + x4 + bx6,

ẋ2 = cx1 − x2 − x1x3 + x5,

ẋ3 = −dx3 + x1x2,

ẋ4 = ex4 − x1x3,

ẋ5 = − f x2 + x6,

ẋ6 = gx1 + hx2,

ẋ7 = lx7 + mx4,

(3)

where xi, i ∈ [1, 7] are the states of the system and a, b, c, d, e, f , g, h, l and m define its
parameters. The following set of values for the parameters allows the system in (3) to
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have seven Lyapunov exponents of which five are positive: (a, b, c, d, e, f , g, h, l, m) =
(10, 8/3, 28, 2, 9.9, 1, 2, 1, 1, 1). Figure 5 displays the hyperchaotic attractors of this 7D system.
While the system in (3) is shown to have a rather simple algebraic structure, nevertheless it
exhibits complex dynamical behaviors due to possessing five positive Lyapunov exponents.
The authors in [36] provide the related plots that justify their claims (see Figure 6 for the
Lyapunov exponents and Figure 7 for the bifurcation diagram, in [36]). In relation to
image encryption, these properties make this system a good choice for utilization in PRNG
generation and subsequent S-box construction. Furthermore, being a 7D system, it has a
large number of states and parameters, which allows it to provide an excellent expansion
to the key space of the proposed image encryption framework.

(a) x1-x2-x3 space.

(b) x1-x3-x5 space.
(c) x2-x3-x5 space.

Figure 5. Cont.
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(d) x2-x3-x6 space. (e) x1-x3-x6 space.

Figure 5. Hyperchaotic attractors for system (3) with (a, b, c, d, e, f , g, h, l, m) =

(10, 8/3, 28, 2, 9.9, 1, 2, 1, 1, 1), shown for various 3D spaces.

2.4. S-Box Construction

In this work, the main aim of the S-box construction process is to involve the S-box
evaluations in the generation process. In other words, the numerical values produced by
the techniques used in evaluating the performance of S-boxes are utilized as part of the
key space of the S-box generation step (which is reflected in the overall key space of the
proposed image encryption framework). Moreover, the process adopted here makes use of
the generated PRNG bitstreams discussed in Sections 2.1 through 2.3. Accordingly, two
mechanisms are applied to achieve that, with one of them being a sub-routine to the other.

Starting with the inner process, the aim is to transform a bit stream of length 2048
into an S-box. This is performed by, first, converting the 2048 bits into 256 integers. As
these integers are randomly generated, they are expected to be unsorted and to contain
duplicates. Hence, this set of integers is utilized as a selection function applied to a sorted
set [0–255], where the selected element from the set is removed. Therefore, the selected
integers are re-adjusted to the length of the sorted set using the modulus operator. As a
result of the selection and the re-adjustment processes being applied sequentially, values
are shifted from the sorted set (which descends in size) into the S-box, generating an S-box
by the time the length of the sorted set reaches 0.

Based on the inner process discussed above, the role of the outer process is to generate
a set of S-boxes, evaluate each one individually and select the S-box with performance
evaluation values closest to a provided set of values. In consequence, a bitstream of size
2048 × n is needed as an input, such that n is the number of S-boxes to be generated
and evaluated, and from which one is selected. Given such input, the bitstream is par-
titioned into sections of length 2048, transformed into S-boxes (using the inner process)
and evaluated and the performance evaluation values are subtracted from the given target
evaluations yielding the S-box with the smallest difference.

3. Proposed Image Encryption Framework

The encryption process is described in Section 3.1, while the decryption process is
described in Section 3.2. Section 3.3 presents algorithms that are employed as part of the
encryption and decryption processes.

3.1. The Encryption Process

The following sequence of steps outlines the proposed three-stage encryption process.

1. A color image I of length M and width N is chosen and the pixel values of its RGB
channels are arranged as a single bitstream d, of length Ld, where:

Ld = M× N × 3× 8. (4)

2. Encryption stage 1: The 7D hyperchaotic system encryption key and S-box.
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(a) The 7D hyperchaotic system is numerically solved for the S-box seeds, then
the numerical solution is utilized in Algorithm 1, resulting in an S-box SHC7D
(shown in Table 1).

Table 1. Seven-dimensional hyperchaotic system based S-box.

30 62 124 248 235 148 35 202 143 22 43 85 170 76 161 48

129 2 253 231 190 93 153 60 50 100 198 75 151 11 61 212

4 228 167 111 220 142 13 89 210 118 237 168 25 51 101 197

174 38 78 152 54 41 17 65 105 183 29 64 112 215 94 214

10 125 74 56 16 242 136 6 122 147 132 251 146 28 18 34

69 130 95 217 52 102 191 126 113 79 0 119 223 40 82 141

3 120 236 109 162 159 137 115 45 177 239 222 86 171 63 186

241 21 42 200 175 123 12 68 110 234 218 145 221 199 149 24

47 91 179 88 157 55 140 255 14 250 213 138 194 66 58 108

207 131 172 70 165 71 187 44 240 107 243 227 67 182 232 211

7 23 32 73 133 184 163 173 98 192 117 230 208 158 128 225

196 81 144 9 33 247 39 169 185 104 77 31 164 114 229 204

189 103 226 166 57 46 96 249 15 178 181 155 49 106 244 209

26 201 135 20 139 246 238 245 180 176 156 72 193 116 84 83

252 254 195 53 27 134 205 87 97 219 127 150 121 99 188 154

160 37 216 80 224 19 233 59 1 90 206 36 203 8 5 92

(b) A replacement process is applied to the image I, employing SHC7D and result-
ing in image I11.

I11 = SHC7D(I). (5)

(c) The pixels of the encrypted image I11 are transformed into a 1D bitstream d11.
(d) The 7D hyperchaotic system is numerically solved for the key seeds. Algorithm 2

is utilized to generate an encryption key kHC7D from the obtained solution,
such that the length of this key is equal to Ld.

(e) The plaintext bitstream d11 is XORed with the encryption key kHC7D.

d12 = d11 ⊕ kHC7D. (6)

(f) The resulting bitstream d12 is transformed back into an image I12.

3. Encryption stage 2: The single neuron model encryption key and S-box.

(a) The single neuron model is numerically solved for the S-box seeds, then the
numerical solution is utilized in Algorithm 1, resulting in an S-box SSNM
(shown in Table 2).

(b) A replacement process is applied to image I12, employing SSNM, resulting in
image I21.

I21 = SSNM(I12). (7)

(c) The pixels of the encrypted image I21 are transformed into a 1D bitstream d21.
(d) The single neuron model is numerically solved for the key seeds. Algorithm 2

is utilized to generate an encryption key kSNM from the obtained solution, such
that the length of this key is equal to Ld.
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Table 2. SNM-based S-box.

36 119 247 239 72 35 152 117 47 126 236 87 11 241 183 98

67 15 61 127 90 217 198 139 159 106 167 101 177 197 20 170

163 109 165 99 235 173 216 134 26 238 17 16 34 229 110 212

69 150 196 86 180 115 192 209 146 203 223 95 22 137 120 71

189 129 74 154 114 200 246 80 6 46 214 59 97 65 77 176

108 62 224 14 213 29 226 172 242 0 89 84 195 33 4 23

118 245 116 252 174 96 40 48 240 148 227 54 78 164 38 104

131 64 205 100 142 52 169 215 178 157 51 66 222 237 91 37

138 30 207 123 234 149 221 219 230 50 175 155 141 125 12 92

60 187 251 8 93 105 83 179 121 41 181 171 5 124 19 225

250 185 166 85 112 130 10 228 73 42 18 253 190 79 7 249

220 147 218 156 248 161 107 182 94 53 208 82 136 13 133 63

145 231 31 143 135 202 255 2 43 56 28 103 199 201 232 70

39 122 1 160 58 111 233 194 44 206 210 24 193 76 211 191

49 88 102 244 27 45 57 81 188 254 32 128 153 3 68 204

21 132 243 140 151 113 55 168 25 75 144 184 162 186 9 158

(e) The bitstream of the encrypted image d21 is XORed with the encryption key
kSNM.

d22 = d21 ⊕ kSNM. (8)

(f) The resulting data bits d22 are transformed back into an image I22.

4. Encryption stage 3: The 4D hyperchaotic system encryption key and S-box.

(a) The 4D hyperchaotic system is numerically solved for the S-box seeds, then
the numerical solution is utilized in Algorithm 1, resulting in an S-box SHC4D
(shown in Table 3).

(b) A replacement process is applied to image I22, employing SHC4D and resulting
in image I31.

I31 = SHC4D(I22). (9)

(c) The pixels of the encrypted image I31 are transformed into a 1D bitstream d31.
(d) The 4D hyperchaotic system is numerically solved for the key seeds. Algo-

rithm 2 is utilized to generate an encryption key kHC4D from the obtained
solution, such that the length of this key is equal to Ld.

(e) The bitstream of the encrypted image d31 is XORed with the encryption
key kHC4D

d32 = d31 ⊕ kHC4D. (10)

(f) The resulting data bits d32 are transformed back into an image I32. I′ = I32 is
the final output encrypted image.

A flow chart illustrative of the proposed three-stage encryption process is provided
in Figure 6.
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Table 3. Four-dimensional hyperchaotic system-based S-box.

87 103 129 234 78 114 219 70 90 239 108 223 106 135 133 116

107 91 229 79 71 3 122 83 8 240 17 148 2 150 55 1

32 35 22 137 204 97 16 136 52 27 220 58 202 217 43 218

138 54 157 53 46 80 81 59 60 232 248 215 161 251 62 152

227 235 164 163 177 226 73 23 186 191 120 38 112 246 95 172

101 1 11 72 160 25 15 126 47 6 253 100 183 24 216 39

7 19 26 93 194 67 10 149 140 99 171 154 88 77 132 228

48 225 128 243 245 12 254 139 184 49 5 151 42 44 145 66

34 185 65 82 221 189 36 175 244 213 130 30 69 144 236 142

9 29 197 28 165 115 188 41 74 76 196 110 61 155 211 124

75 238 89 181 252 222 98 237 241 63 121 224 85 212 199 131

57 143 4 51 84 167 105 190 173 203 141 198 207 200 176 174

179 214 242 20 195 205 192 14 111 134 119 230 96 33 170 18

146 158 68 123 127 94 250 31 206 169 147 168 180 64 92 40

178 231 255 56 37 193 182 156 208 117 201 21 109 118 166 153

187 50 45 104 102 162 209 247 233 125 113 249 159 86 0 210

Figure 6. Flow chart of the proposed three-stage encryption process.

3.2. The Decryption Process

The following sequence of steps outlines the proposed three-stage decryption process.
They are in a reverse order to those applied in the encryption process.

1. Beginning with the three-stage encrypted image I′ = I32 of length M and width N.
2. Decryption stage 3: The 4D hyperchaotic system decryption key and inverse S-box.

(a) The pixel values of the encrypted image I32 are transformed into a bitstream
d32.

(b) The encrypted data bits d32 are XORed with the decryption key kHC4D.

d31 = d32 ⊕ kHC4D. (11)
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(c) The resulting encrypted data bits d31 are converted into an image I31.
(d) A reverse replacement process is applied to image I31, employing S−1

HC4D and
resulting in image I22

I22 = S−1
HC4D(I31). (12)

3. Decryption stage 2: The single neuron model decryption key and inverse S-box.

(a) The pixel values of the encrypted image I22 are transformed into a bitstream d22.
(b) The encrypted data bits d22 are XORed with the decryption key kSNM.

d21 = d22 ⊕ kSNM. (13)

(c) The resulting encrypted data bits d21 are converted into an image I21.
(d) A reverse replacement process is applied to the image I21, employing S−1

SNM
and resulting in image I12.

I12 = S−1
SNM(I21). (14)

4. Decryption stage 1: The 7D hyperchaotic system decryption key and inverse S-box.

(a) The pixel values of the encrypted image I12 are transformed into a bitstream d12.
(b) The encrypted data bits d12 are XORed with the decryption key kHC7D.

d11 = d12 ⊕ kHC7D. (15)

(c) The resulting encrypted data bits d11 are converted into an image I11.
(d) A reverse replacement process is applied to the image I11, employing S−1

HC7D
and resulting in a plain image I.

I = S−1
HC7D(I11). (16)

A flow chart illustrative of the proposed three-stage decryption process is provided
in Figure 7.

Figure 7. Flow chart of the proposed three-stage decryption process.
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3.3. Utilized Algorithms

Algorithm 1 describes the generation of an S-box given a pseudo-random bitstream
generated using one of the three PRNGs proposed earlier in Section 2. As discussed in
Section 2.4, by treating the evaluation values of the S-box as part of the key space, Algorithm 1
attempts to achieve a certain set of provided values for S-box evaluations. The approach
towards that is to generate an agreed upon number of S-boxes (which is a part of the key
space as well), then each S-box is evaluated separately and the chosen S-box is the one
with performance evaluation values closer to the target values. Accordingly, it may come
naturally to always provide optimal S-box evaluation values for every attempt at S-box
generation. Nevertheless, to fulfill the need to complicate any cryptanalysis efforts, other
sub-optimal values may be provided, resulting in the generation of different S-boxes. Such
a decision would not affect the overall encryption process much as each generated S-box
is only one component out of many stages. Therefore, the performance evaluation of the
encryption process is based on the integration of all the components in all three stages of the
proposed encryption framework. Algorithm 2 elaborates on the procedure for generating a
PRNG bitstream given the solution of a chaotic system.

Algorithm 1 Generate an S-box given a bitstream bPRNG, the number of S-box trials n,
target performance evaluation values M = {NL, SAC, BIC, LAP, DAP} and a bitstream
bPRNG (an adaptation from that proposed in [12])

1. Sbits = Partittion(bPRNG, 2048)
2. Sboxres =[]
3. Mres = M
4. For each Si ∈ Sbits:

(a) Zi = ToDecimal(Partition(Si, 8))
(b) Li = [0− 255]
(c) For each Uj ∈ Zi:

i. Locj = Uj%Length(Li)

ii. Append(Li[Locj], Sboxi)

iii. Delete(Li[Locj], Li)

(d) Mi = {NL(Sboxi), SAC(Sboxi), BIC(Sboxi), LAP(Sboxi), DAP(Sboxi)}
(e) If |Mi −M| < Mres:

i. Mres = |Mi −M|
ii. Sboxres = Sboxi

5. Return Sboxres

Algorithm 2 Generate a PRNG bitstream given a chaotic system S of k dimensions and the
number of needed bits n (first proposed in [12])

1. Solve S for the size of n
k + 1 and the sufficient seeds producing the list of lists

{L1, L2, ..., Lk} where Li is the solution for dimension i
2. Convert the list of lists into a 1D list as follows:

L = {L1[1], L2[1], ..., Lk[1], L1[2], L2[2], ..., Lk[2], ...}

3. Drop the last |L| − n elements from L

4. Lbits[i] =

{
1, if L[i] > Median(L)
0, otherwise
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4. Numerical Results and Performance Evaluation

The performance of the proposed image encryption framework is provided in this
section. A number of common performance evaluation metrics from the literature are
utilized in this work [2,7,12]. Their mathematical expressions are provided in Table 4. The
tests carried out aim to gauge the security, robustness and efficiency of the proposed frame-
work in eradicating any identifiable information from the output encrypted images, such
that they are completely asymmetric to their plaintext versions. The proposed framework
is implemented on a machine running macOS Catalina v.10.15.7 with a 2.9 GHz 6-Core
Intel® CoreTM i9 and 32 GB of 2400 MHz DDR4 RAM. The software of choice is Wolfram
Mathematica® v.13.2. Common images found in the state-of-the-art are also utilized in this
work to allow for a comparative analysis. All images are 256 pixels in length and 256 pixels
in width, unless stated otherwise.

Table 4. Performance evaluation metrics and their mathematical expressions.

Metric Mathematical Expression

MSE MSE =
∑M−1

i=0 ∑N−1
j=0 (I(i,j) − I′(i,j))

2

M× N
, (17)

where I and I′ are 2 images of dimensions M× N.

PSNR PSNR = 10 log
( I2

max
MSE

)
, (18)

where Imax = 255.

MAE MAE =
∑M−1

i=0 ∑N−1
j=0 |I(i,j) − I′(i,j)|
M× N

. (19)

Entropy
H(m) =

M

∑
i=1

p(mi) log2
1

p(mi)
, (20)

where p(mi) is the probability of occurrence of symbol m, while M is the total number
of bits for each symbol.

DFT
F(k, l) =

N−1

∑
i=0

N−1

∑
j=0

f (i, j)e−i2π( ki
N + li

N ), (21)

f (a, b) is the spatial domain representation of the image, where the exponential term is
the basis function corresponding to each point F(k, l) in the Fourier space.

CC

ρ(x, y) =
cov(x, y)√
σ(x)

√
σ(y)

, (22)

where, cov(x, y) =
1
N

N

∑
i=1

(xi − µ(x))(yi − µ(y)), (23)

σ(x) =
1
N

N

∑
i=1

(xi − µ(x))2, and µ(x) =
1
N

N

∑
i=1

(xi). (24)
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Table 4. Cont.

Metric Mathematical Expression

NPCR

NPCR =
∑M

x=1 ∑N
y=1 D(x, y)

M× N
× 100, (25)

where, D(x, y) =

{
0 I(x, y) = I′(x, y)
1 Otherwise

∣∣∣∣∣x ∈ [1, M] & y ∈ [1, N]. (26)

UACI UACI =
1

M× N

M

∑
x=1

N

∑
y=1

|I(x, y)− I′(x, y)|
255

× 100. (27)

4.1. Visual and Visual-Statistical Analyses

The first measure employed for testing the output encrypted images is an exam-
ination through the human visual system (HVS). It is clear from Figures 8–13 that no
relation whatsoever can be observed between the plain images and their encrypted ver-
sions (i.e., complete asymmetry is achieved). The same can be noticed for their respective
histograms. The histograms of the encrypted images depict a rather uniform distribution
of values, which characterizes excellent encryption.

(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 8. Mandrill image and RGB-separated histogram comparison of the plain and encrypted
versions.
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(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 9. Peppers image and RGB-separated histogram comparison of the plain and encrypted
versions.

(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 10. Sailboat image and RGB-separated histogram comparison of the plain and encrypted
versions.
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(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 11. Tree image and RGB-separated histogram comparison of the plain and encrypted versions.

(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 12. House2 image and RGB-separated histogram comparison of the plain and encrypted
versions.



Symmetry 2023, 15, 1081 19 of 31

(a) Plain image. (b) Plain image DFT.
(c) Plain image pixel cross-correlation.

(d) Encrypted image. (e) Encrypted image DFT.
(f) Encrypted image pixel cross-correlation.

Figure 13. House image, its DCT, and 3D plot of its pixel cross-correlation matrix pre- and post-
encryption.

4.2. Statistical Analyses

The statistical analysis starts with the computation of the mean squared error (MSE),
the peak signal-to-noise ratio (PSNR) and the maximum absolute error (MAE) between
input plain images and output encrypted images. These are quantitative metrics that
measure the degree of change between two images and are very common in the literature
on image encryption. The computed values are reported in Tables 5–7, respectively. It is
clear from each of the tables that the computed values for the proposed image encryption
algorithm are comparable or superior to the state-of-the-art, with high MSE and MAE
values and thus low PSNR values, indicating excellent scrambling and randomization
performance of the proposed image encryption framework.

As for Shannon’s information entropy, Table 8 displays the computed values for
various encrypted images and compares those values with the state-of-the-art. Excellent
entropy performance of 7.999 is showcased for the proposed image encryption framework,
being superior or comparable to counterpart algorithms.

The pixel cross-correlation coefficient ρ is a measure of the linear dependency between
neighboring pixel values in an image. It quantifies how well the encryption process has
scrambled the pixels and eliminated any spatial relationships. For a well-encrypted image,
ρ should have a value close to 0, indicating little or no correlation between adjacent pixel
values. Table 9 provides the ρ values for various images, each computed in three directions
(horizontal, vertical and diagonal). While the plain images have ρ values close to 1, their
encrypted versions have ρ values close to 0. A visual illustration of this metric is provided
as a set of 2D plots in Figure 14 for the House image, as well as in Figures 15–17, respectively,
for each of its RGB channels, while sub-figures (c) and (f) of Figure 13 provide 3D plots of



Symmetry 2023, 15, 1081 20 of 31

the same metric for the House image. It is clear that the plots of encrypted images exhibit a
uniform distribution of values, unlike those of their plain versions. Tables 10 and 11 display
a comparison of ρ with the state-of-the-art, utilizing the Lena image and each of its RGB
channels, respectively. The computed ρ values are shown to be near 0, as is the case in the
state-of-the-art, in each of the tables.

Another interesting manner of examining the pixel cross-correlation among pixels
would be to do so in the Fourier domain by generating the discrete Fourier transform (DFT)
of the plain and encrypted House images, as shown in sub-figures (b) and (e) of Figure 13
and visually examining them. The presence of a bright star-like shape at the center of the
DFT plain image is characteristic of a normal plain image which has pixels depicting edges
and corners. This is unlike the DFT of the encrypted image, which lacks any identifying
visual characteristics.

Since randomness is an integral measure of any image encryption algorithm, an
objective quantitative measure of it should be utilized. This is best carried out through
a National Institute of Standards and Technology (NIST) SP 800 analysis [37]. In brief, a
NIST analysis tests a bitstream for a number of characteristics, including its randomness,
quantifies its randomness and detects structural weaknesses. Such an analysis provides
empirical evidence of the suitability of a PRNG’s use in cryptography applications. Table 12
presents the results of a NIST analysis carried out on a bitstream depicting the data of an
encrypted Girl image. All NIST tests are successfully passed, with scored p-values greater
than 0.01.

Table 5. MSE values for various images, for the proposed framework and the state-of-the-art.

Image Proposed [7] [13] [38] [15] [6] [19] [12]

Lena 8890.05 9112.1 8926.96 10,869.73 4859.03 8888.88 N/A 8912.4
Mandrill 8345.25 8573.38 8290.84 10,930.33 6399.05 8295.21 N/A 8320.41
Peppers 10,074.0 10,298.7 10,045.1 N/A 7274.44 10,092.3 N/A 10,065.4
House 8361.44 8427.04 8351.64 N/A N/A N/A N/A 8395.53

House2 9190.27 9374.65 N/A N/A N/A N/A N/A 9142.54
Girl 12,152.8 12,450.9 N/A N/A N/A N/A N/A 12,104.2

Sailboat 10,063.3 N/A N/A N/A N/A N/A N/A 10,071.9
Tree 9931.63 N/A N/A N/A N/A N/A N/A 9873.24

Average 9626.09 9706.13 8903.64 10,900 6177.51 9092.13 N/A 9610.65

Table 6. PSNR values for various images, for the proposed framework and the state-of-the-art.

Image Proposed [7] [13] [38] [15] [6] [19] [12]

Lena 8.64176 8.53462 8.6237 7.7677 11.3 8.64233 8.5674 8.63086
Mandrill 8.91641 8.79929 8.9448 7.7447 10.10 8.94253 10.0322 8.92936
Peppers 8.09877 8.00296 8.11128 N/A 9.55 N/A N/A 8.10248
House 8.90799 8.87405 8.91309 N/A N/A N/A N/A 8.89032

House2 8.49752 8.41125 N/A N/A N/A N/A N/A 8.52013
Girl 7.28403 7.17879 N/A N/A N/A N/A N/A 7.30144

Sailboat 8.10339 N/A N/A N/A N/A N/A N/A 8.0997
Tree 8.1606 N/A N/A N/A N/A N/A N/A 8.18621

Average 8.32631 8.30016 8.64822 7.7562 10.3167 8.79243 9.2998 8.33256
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Table 7. MAE values for various images, for the proposed framework and the state-of-the-art.

Image Proposed [7] [6] [38] [39] [19] [12]

Lena 77.409 78.3564 77.3752 87 77.35 77.96 77.4877
Peppers 82.0156 82.3273 81.7740 N/A 74.71 N/A 81.9832
Mandrill 75.3335 81.913 75.1659 92 73.91 67.85 75.1632

House 75.3132 N/A N/A N/A N/A N/A 75.4983
House2 78.5675 N/A N/A N/A N/A N/A 78.3327

Girl 90.1646 N/A N/A N/A N/A N/A 89.9807
Sailboat 82.0101 N/A N/A N/A N/A N/A 82.1003

Tree 81.4948 N/A N/A N/A N/A N/A 81.1623

Average 80.9993 80.8656 78.105 89.5 75.3233 72.905 80.2136

Table 8. Entropy values for various images, for the proposed framework and the state-of-the-art.

Image Proposed [7] [13] [38] [40] [15] [6] [19] [12]

Lena 7.999 7.9856 7.999 7.999 7.997 7.996 7.997 7.9972 7.99887
Mandrill 7.999 7.9905 7.999 7.999 7.999 N/A 7.996 7.9969 7.99866
Peppers 7.999 7.9951 7.999 7.9991 N/A 7.997 7.9969 N/A 7.99834
House 7.999 7.9577 7.999 N/A N/A N/A N/A N/A 7.99729

House2 7.999 7.9847 N/A N/A N/A N/A N/A N/A 7.99848
Girl 7.999 7.9789 N/A N/A N/A N/A N/A N/A 7.99477

Sailboat 7.999 N/A N/A N/A N/A N/A N/A N/A 7.99875
Tree 7.999 N/A N/A N/A N/A N/A N/A N/A 7.99713

Average 7.999 7.98208 7.999 7.999 7.99903 7.9965 7.99663 7.99705 7.99711

Table 9. Correlation coefficient values for various plain and encrypted images.

Plain Image Encrypted Image

Correlation Coefficient Correlation Coefficient

Image Horizontal Diagonal Vertical Horizontal Diagonal Vertical

Lena 0.938611 0.913175 0.96833 0.00180128 −0.000991502 −0.00018608
Mandrill 0.848778 0.750624 0.79088 0.00713777 −0.00152782 0.00491305
Peppers 0.959422 0.930426 0.966795 0.00301689 0.00419115 −0.00012237
House 0.978232 0.936044 0.952926 −0.00147997 −0.00286442 −0.0015624
House2 0.907075 0.850782 0.923091 0.000841531 −0.00214171 −0.00626431

Girl 0.974013 0.951471 0.965671 0.000841531 −0.00214171 −0.00626431
Sailboat 0.952381 0.0.919872 0.950138 0.00608092 0.00279574 0.00170383

Tree 0.968153 0.929967 0.94515 −0.00226616 0.00137505 0.00332063

Table 10. Correlation coefficient values comparison with the state-of-the-art, for an encrypted Lena
image.

Algorithm Horizontal Diagonal Vertical

Proposed 0.00180128 −0.000991502 −0.000186079
[6] 0.002287 −0.00132 −0.00160
[7] 0.003265 −0.00413 0.002451
[12] 0.0064113 −0.0015143 0.000568333
[17] 0.00144 −0.00151 0.00795
[19] −0.0061 −0.0018 0.0067
[22] 0.000199 0.003705 −0.000924
[38] 0.0054 0.0054 0.0016
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Table 11. Color channel separated correlation coefficient value comparison with the state-of-the-art,
for the Lena image.

Channel Direction Plain
Image

Encrypted
Image [23] [24] [25] [6]

Red
Horizontal 0.952474 0.00266725 0.001365 0.0021 0.9568 −0.00364
Diagonal 0.928029 0.00564219 0.000232 −0.0026 0.0075 0.00016
Vertical 0.975913 −0.0008351 0.004776 0.0018 −0.0376 0.000697

Green
Horizontal 0.935628 0.00307568 0.003294 −0.0006 0.0020 0.000118
Diagonal 0.910534 −0.0020740 0.004807 0.0001 −0.0046 0.00177
Vertical 0.966647 −0.0011823 −0.000579 0.0004 −0.0013 −0.0011

Blue
Horizontal 0.917439 −0.00046821 0.002060 −0.005 0.0071 −0.00164
Diagonal 0.888482 −0.0025489 −0.004043 −0.0104 −0.0009 −0.00523
Vertical 0.947961 0.0053944 0.000194 0.001 −0.0423 0.006041

Table 12. NIST analysis on Girl encrypted image.

Test Name Value Remarks

Frequency 0.425242 Success
Block Frequency 0.276783 Success

Run 0.714157 Success
Longest run of ones 0.932530 Success

Rank 0.138292 Success
Spectral FFT 0.846825 Success

Non overlapping 0.613084 Success
Overlapping 0.449023 Success

Universal 0.687511 Success
Linear complexity 0.241374 Success

Serial 0.850353 Success
Approximate Entropy 0.030357 Success

Cumulative sum (forward) 0.503876 Success
Cumulative sum (reverse) 0.783156 Success

(a) Plain Horizontal. (b) Plain Diagonal. (c) Plain Vertical.

(d) Encrypted Horizontal. (e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 14. Two-dimensional plot of pixel cross-correlation matrices of the House image pre- and
post-encryption.
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(a) Plain Horizontal. (b) Plain Diagonal. (c) Plain Vertical.

(d) Encrypted Horizontal. (e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 15. Two-dimensional plot of pixel cross-correlation matrices of the red channel of the House
image pre- and post-encryption.

(a) Plain Horizontal. (b) Plain Diagonal. (c) Plain Vertical.

(d) Encrypted Horizontal. (e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 16. Two-dimensional plot of pixel cross-correlation matrices of the green channel of the House
image pre- and post-encryption.
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(a) Plain Horizontal. (b) Plain Diagonal. (c) Plain Vertical.

(d) Encrypted Horizontal. (e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 17. Two-dimensional plot of pixel cross-correlation matrices of the blue channel of the House
image pre- and post-encryption.

4.3. Differential Attack Analysis

A differential attack analysis is a type of cryptanalytic attack on encryption algorithms
where an attacker analyzes the effect of specific changes in the input plaintext on the
output ciphertext. For example, the change of a single bit in the input plain image. By
analyzing these differences, the attacker may be able to deduce information about the
key or algorithm used. Two tests are commonly employed in the literature for such an
analysis: The number of pixel change ratios (NPCR) for pixel-by-pixel comparison and
the unified averaged change intensity (UACI) for the evaluation of the mean average
difference [41] have ideal values for well-encrypted images of 100% and 33.33%, respec-
tively. The mathematical expressions corresponding to each of those metrics are provided
in Table 4. The computed NPCR and UACI values for various images are displayed
in Table 13, with achieved average values of 99.6186% and 31.4857%, respectively, reflecting
excellent performance. Table 14 compares the computed values with the state-of-the-art for
the RGB channels of various images. As expected, a comparable performance is achieved.
Moreover, Table 15, displays another comparison with counterpart algorithms for the Lena
image. Once again, a comparable performance is achieved.

Table 13. NPCR and UACI values of various images.

Metric Image Result

NPCR

Lena 99.6114
Peppers 99.6267
Mandrill 99.6094

House 99.6165
House2 99.6318

Girl 99.6287
Sailboat 99.6318

Tree 99.5926

Average 99.6186
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Table 13. Cont.

Metric Image Result

UACI

Lena 30.3565
Peppers 32.163
Mandrill 29.5425

House 29.5346
House2 30.8108

Girl 35.3587
Sailboat 32.1608

Tree 31.9587

Average 31.4857

Table 14. NPCR and UACI values comparison with the state-of-the-art for various images.

Metric Image Color
Channel Proposed [6] [42] [12]

NPCR

Lena
Red 99.6231 99.6109 99.6355 99.5712

Green 99.614 99.6109 99.6256 99.5758
Blue 99.5972 99.6375 99.6159 99.6094

Peppers
Red 99.6002 99.6032 99.6307 99.6338

Green 99.6429 99.6032 99.6250 99.6338
Blue 99.6368 99.3750 99.6213 99.6628

Mandrill
Red 99.5819 99.5880 99.6102 99.5911

Green 99.6292 99.5880 99.6134 99.5865
Blue 99.617 99.5880 99.6057 99.6292

UACI

Lena
Red 32.8621 33.4158 33.4657 33.1056

Green 30.6466 30.3902 33.4552 30.5178
Blue 27.5607 33.2420 33.4550 27.5385

Peppers
Red 28.9367 33.3459 33.4832 28.8353

Green 33.8071 33.4702 33.4904 33.8409
Blue 33.7452 33.4357 33.4619 33.7746

Mandrill
Red 29.7236 33.4273 33.5002 29.5137

Green 28.0515 33.4635 33.4711 28.0464
Blue 30.8524 33.7951 33.4951 30.8671

Table 15. NPCR and UACI values comparison of the Lena image with the state-of-the-art.

Scheme NPCR UACI

Proposed 99.6114 30.3565
[2] 99.625 30.5681
[6] 99.63 30.3432
[12] 99.5855 30.3873
[17] 99.6246 30.5681
[19] 99.61 33.516
[38] 99.52 26.793
[43] 99.63 33.48
[44] 99.61 33.434

4.4. Key Space Analysis

It is of vital importance to carry out a key space analysis of any image encryption
technique. Such an analysis quantifies how much information (in bits) is required to specify
an encryption key. The more bits needed, the larger the key space. Consequently, a large
key space makes brute-force attacks infeasible. The larger the number of possible keys,
the greater the resources and time required to try every key. This helps ensure encryption
is secure against brute-force cracking. In the proposed image encryption framework, the
attained key space is vast, mainly due to the utilization of the hyperchaotic maps. The 4D
hyperchaotic map employs four initial values and seven constants; the 7D hyperchaotic
map employs seven initial conditions and 10 constants; and the SNM employs a total of
five variables only. For each of the three S-boxes, five specific values for the metrics are
chosen. This gives a total of 4 + 7 + 7 + 10 + 5 + 3× 5 = 48 variables in the computation
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of the key space. The computer and software package used to implement the proposed
image encryption framework have a machine precision of 10−16. Ultimately, this gives a
key space of 1048×16 = 10768 ≈ 22551. This computed value far surpasses the threshold
suggested earlier in the literature [45], of 2100, for successful resistance to brute-force attacks.
A comparative analysis is carried out with the state-of-the-art in Table 16, showcasing the
superior key space of the proposed image encryption framework.

Table 16. A comparison of key space values with the state-of-the-art.

Algorithm Key Space

Proposed 22551

[2] 2478

[7] 2372

[12] 21658

[17] 2554

[19] 2604

[20] 2312

[21] 2256

[22] 2187

[26] 2128

[27] 2219

4.5. Histogram Dependency Tests

In this testing perspective, the histograms of the plain and encrypted images are
statistically compared in order to show the lack of statistical dependence between the
two. Table 17 shows the five utilized tests (Blomqvist β, Goodman–Kruskal γ, Kendall τ,
Spearman ρ and Pearson r) and their mathematical expressions [46]. Table 18 demonstrates
the results of applying these tests to a variety of images. As seen in the table, most of the
resulting values approach 0, which shows a lack of any statistical dependency between
every plain image and its encrypted version.

Table 17. Histogram dependency tests and their mathematical expressions.

Metric Mathematical Expression

Blomqvist β = {(X− x)(Y− y) > 0} − {(X− x)(Y− y) < 0}. (28)

Goodman–Kruskal γ =
nc − nd
nc + nd

. (29)

Kendall τ =
nc − nd
n(n−1)

2

. (30)

Spearman ρ =
∑(Rix − Rx)(Riy − Ry)√

∑(Rix − Rx)2 ∑(Riy − Ry)2
. (31)

Pearson r = ∑(Xi − X)(Yi −Y)√
∑(Xi − X)2 ∑(Yi −Y)2

. (32)
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Table 18. Tests of histogram dependency for various images.

Image Color β (28) γ (29) τ (30) ρ (31) r (32)

Lena

Red 0.00397832 0.0313687 0.0303408 0.0434341 0.0270663
Green 0 0.0215872 0.014269 0.0166966 0.0193475
Blue −0.0793976 −0.0608106 −0.0572115 −0.0818634 −0.109206

Combined 0.0277309 −0.0199151 −0.0198071 −0.0329345 −0.0468979

Peppers

Red −0.0316218 −0.0270098 −0.0264574 −0.036404 −0.0223967
Green 0.0355072 0.0185307 0.0183487 0.0317549 0.0375528
Blue −0.00396106 −0.0164391 −0.016167 −0.0263073 −0.0482875

Combined 0.0948802 0.0436563 0.0433807 0.0645118 0.0666087

Mandrill

Red −0.0198078 −0.0466956 −0.0462145 −0.0686459 −0.0672317
Green 0.0676058 0.0704028 0.0691334 0.099575 0.108835
Blue −0.00394524 −0.027233 −0.0269739 −0.0414617 −0.032399

Combined 0.0316238 −0.00105387 −0.00104776 −0.00335102 −0.00619468

House

Red −0.078125 −0.0735036 −0.0713676 −0.10807 0.129594−
0.124939

Green 0.0278483 0.0505291 0.0499853 0.0757827 0.100048
Blue −0.0558677 −0.0186177 −0.0178087 −0.0270381 −0.0762734

Combined −0.03125 −0.0270421 −0.0268626 −0.0384522 −0.0603119

House2

Red −0.122785 −0.11135 −0.109577 −0.159726 −0.187521
Green −0.0159414 −0.00680612 −0.00674228 −0.00405984 0.0230262
Blue 0.0560937 0.0890006 0.0876046 0.131527 0.132005

Combined −0.109375 −0.0772136 −0.0768099 −0.110878 −0.0822007

Girl

Red 0.0830847 0.0581335 0.0489882 0.0663806 0.0108236
Green 0.0336761 0.0192351 0.0159392 0.0191791 0.0103639
Blue −0.0232813 −0.0120988 −0.00979622 −0.0113034 −0.0309034

Combined 0.15625 0.0462478 0.0441833 0.0606254 −0.00724911

Sailboat

Red −0.0158755 0.00608236 0.00584084 0.00894156 0.015278
Green −0.0994093 −0.0609726 −0.060292 −0.0933644 −0.0969401
Blue −0.0357981 −0.0261754 −0.025861 −0.0370723 −0.104682

Combined 0.031754 −0.0324742 −0.0322749 −0.0539398 −0.123518

Tree

Red −0.0239129 −0.0587334 −0.0575335 −0.0886452 −0.116216
Green 0.00401018 0.00607749 0.00597875 0.00638248 −0.0328477
Blue 0.0236235 0.0389318 0.0374368 0.0573412 0.0216757

Combined 0.015625 0.00158429 0.00157335 0.00789208 −0.0243032

4.6. Execution Time Analysis

The execution time of an image encryption algorithm is an important metric, as
it allows for a comparison of the efficiency and performance of different algorithms as
well as an estimation of the computational resources required for software and hardware
implementation. Moreover, an analysis of the execution time reveals the applicability of
an algorithm for real-time image encryption applications. The software implementation
of the proposed image encryption framework is carried out over Wolfram Mathematica®

v.13.2. The algorithm’s execution time is optimized through parallel processing over the
six cores of the Intel® CoreTM i9 processor. The full details of the computing environment
are provided in the first paragraph of Section 4. Table 19 reports the attained execution
times of the Lena image at various dimensions. These times result in an average encryption
rate of 8.54 Mbps. Moreover, Table 20 provides a comparative analysis of the state-of-
the-art algorithms. The superiority of the proposed framework is clear, with the attained
encryption times being much shorter in comparison to their counterparts, irrespective of
the machine specifications.
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Table 19. Execution times, in terms of encryption, decryption and their combined values for the
proposed framework at various image dimensions.

Image Dimensions tEnc (s) tDec (s) tAdd (s)

64× 64 0.011306 0.011419 0.0227249
128× 128 0.039643 0.038158 0.077801
256× 256 0.167471 0.161055 0.328526
512× 512 0.732927 0.751684 1.48461

1024× 1024 2.99817 3.161 6.15917

Table 20. A comparison of the encryption time for various algorithms from the literature for a Lena
image with dimensions 256× 256.

Algorithm tEnc (s) Machine Specifications (CPU and RAM)

Proposed 0.167471 2.9 GHz Intel® CoreTM i9, 32 GB
[2] 2.750966 3.4 GHz Intel® CoreTM i7, 8 GB
[6] 2.582389 2.9 GHz Intel® CoreTM i9, 32 GB
[7] 1.42545 2.9 GHz Intel® CoreTM i9, 32 GB

[12] 0.426243 2.9 GHz Intel® CoreTM i9, 32 GB
[17] 3.0019 3.4 GHz Intel® CoreTM i7, 8 GB
[19] 2.7236 2.7 GHz Intel® CoreTM i7, 8 GB
[27] 3.45 N/A
[28] 1.112 3.4 GHz Intel® CoreTM i3, 4 GB
[29] 1.1168 3.4 GHz Intel® CoreTM i7, 8 GB

4.7. S-Box Performance Analysis

The proposed S-boxes are evaluated in this section independently of the proposed
framework’s performance as a whole. This is because an S-box is a consistent element that
is nearly always at the core of image encryption algorithms and is tasked with applying
Shannon’s property of confusion. In order to evaluate the ability of an S-box to cause
confusion, five metrics are commonly computed [47]. These are the non-linearity (NL),
linear approximation probability (LAP), differential approximation probability (DAP), bit
independence criterion (BIC) and strict avalanche criterion (SAC). They are calculated
for the proposed S-boxes (shown in Tables 1–3) and compared to those reported in the
state-of-the-art as well as to the ideal values, in Table 21. While all three proposed S-boxes
exhibit performances comparable to counterpart algorithms from the literature, it is clear
that the S-boxes constructed from the hyperchaotic functions perform better than the S-
box constructed from the SNM. This is an advantage of hyperchaotic functions [48]. As
in [12] and as described earlier in Section 3.3, upon designing and constructing each of the
proposed S-boxes, the aim is not to reach the ideal values of the metrics but rather to reach
a set of target metrics that are in close proximity to the ideal ones. This was carried out so
as to include this set of target values as part of the key space, expanding it by 5× 3 = 15
variables and allowing it to reach a key space of 22551, as explained earlier in Section 4.4.

Table 21. Comparison of the numerical evaluation of the proposed S-boxes (displayed in Tables 1–3)
among those provided in the literature.

S-box NL SAC BIC LAP DAP

Ideal values 112 0.5 112 0.0625 0.015625

Proposed, SNM (1) 106 0.499268 104 0.09375 0.015625
Proposed, HC 4D (2) 108 0.500977 108 0.078125 0.015625
Proposed, HC 7D (3) 108 0.506592 108 0.078125 0.015625
[12] MT 108 0.503662 92 0.140625 0.015625
[12] OpenSSL 108 0.499023 112 0.0625 0.015625
[12] Intel’s MKL 108 0.499268 104 0.09375 0.015625
[38] 111 0.5036 110 0.0781 0.0234
[49] 107 0.497 103.5 0.1560 0.0390
[50] 100 0.5007 104.1 0.0390 0.1250
[51] S4 112 0.5 112 0.0625 0.0156
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5. Conclusions and Future Works

This work attempted to propose a novel framework for image encryption, capitalizing
on the inherent characteristics of hyperchaotic functions and the simplicity of the single
neuron model. Encryption was carried out over three stages, where in each stage the
solution of one of the systems was numerically computed and used to generate a PRNG
and construct an S-box. Next, the S-box was applied to scramble the image data, while an
XOR operation with the encryption key was applied to randomize it. The main advantages
of the proposed framework could be summarized as attaining a vast key space of 22551

and a high encryption rate of 8.54 Mbps. Reaching such a key space is attributed to the
usage of hyperchaotic functions, while the efficiency of the framework is attributed to the
optimization of its software implementation and making use of parallel processing over
six cores. Moreover, the proposed framework was tested against an array of security tests,
both quantitative and qualitative in nature and was shown to exhibit comparable or even
superior performance, in comparison to the state-of-the-art. Average achieved values for
the quantitative metrics include MSE of 9626, PSNR of 8.3 dB, MAE of 80.99, entropy of
7.999, NPCR of 99.6% and UACI of 31.49%.

Future research efforts could be dedicated to attempting to improve the efficiency of
the proposed image encryption framework even more. This could be carried out through
an enhanced parallel processing architecture by running it over a network of connected
machines or, better yet, by implementing it in hardware (i.e., on an FPGA, for example).
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