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Abstract: Quantitative structure-property relationship (QSPR) modeling is crucial in cheminformatics
and computational drug discovery for predicting the activity of compounds. Topological indices are a
popular molecular descriptor in QSPR modeling due to their ability to concisely capture the structural
and electronic properties of molecules. Here, we investigate the use of curvilinear regression models
to analyze fibrates drug activity through topological indices, which modulate lipid metabolism and
improve the lipid profile. Our QSPR approach predicts the physicochemical properties of fibrates
based on degrees and distances from topological indices. Our results demonstrate that topological
indices can enhance the accuracy of predicting physicochemical properties and biological activities of
molecules, including drugs. We also conducted density functional theory (DFT) calculations on the
investigated derivatives to gain insights into their optimized geometries and electronic properties,
including symmetry. The use of topological indices in QSPR modeling, which considers the symmetry
of molecules, shows significant potential in improving our understanding of the structural and
electronic properties of compounds.

Keywords: topological indices; fibrates; curvilinear regression; QSPR analysis

1. Introduction

Pharmacology has rapidly evolved, resulting in the introduction of numerous ground-
breaking drugs each year. However, ensuring accurate testing performance requires the
availability of appropriate equipment, a good rapport, and sufficient resources. Previous
studies have shown that a drug’s chemical properties are intricately linked to its molecular
structure. Pharmacological and medical researchers often utilize topological indices to
examine the molecules’ properties and understand their impact on experimental outcomes.
Hence, the topological index computation method is a useful tool for developing countries,
allowing them to gather medical and biological data on upcoming drugs without the need
for laboratory tests; see for example [1–4].

Fibrates are a type of medication that have been shown to lower high levels of bad
cholesterol (also known as low-density lipoprotein or LDL), increase good cholesterol (also
known as high-density lipoprotein or HDL), and decrease the amount of small dense LDL
particles in the blood. They have been found to be effective in reducing the mortality and
morbidity associated with cardiovascular disease (CVD) in individuals who are at risk for
developing it. However, conducting laboratory studies to investigate the physicochemical
properties of fibrates can be both expensive and time-consuming. To overcome this chal-
lenge, chemists can use topological indices to derive mathematical equations that provide
valuable insights into the properties of fibrates. For more information on fibrates, please
refer to sources [5,6].
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Chemical graph theory is a field that integrates mathematical modeling of chemical
phenomena with graph theory. It utilizes topological indices to establish a correlation
between the properties of a chemical molecule and its structure [7]. These indices are
also known as graph invariants or graph-based molecular descriptors, and they quantify
the topological features of a molecule or molecules [8]. The application of quantitative
structure-property/structure-activity relationship QSPR/QSAR models, which are com-
monly employed in this field, allows for the prediction of molecular properties using
these topological indices. In 1947, Harold Wiener introduced the Wiener index, the first
topological index; paraffin’s physical properties were determined using it [9].

Topological indices, which are numerical values derived from the molecular graph of
a chemical compound, have been extensively studied in the fields of QSPR/QSAR analysis.
These indices encode the structural and topological information of molecules and have
proven useful in predicting various physical, chemical, and biological properties [10–14].
The use of molecular graphs to represent unsaturated hydrocarbon structures provides
a more intuitive and comprehensive understanding of the molecular characteristics and
behavior of compounds [15–19]. In drug design, knowledge of molecular structure is
essential in determining the potential therapeutic activity and overall effectiveness. In this
study, we examine several vertex-degree-based topological indices, including the first and
second Zagreb indices, hyper-Zagreb index, sigma index, inverse symmetric deviation
index, max-min rodeg index, min-max rodeg index, inverse sum deviation index, atom-
bond connectivity index, Randic index, and Albertson index [20–29]. Additionally, we
investigate topological indices based on distance, such as the Wiener index, Schultz index,
Harary index, and Gutman index [30–32]. These indices are used to classify the molecular
descriptors and analyze the efficacy of curvilinear regression models in predicting the
activity of fibrate drugs.

Molecular descriptors have been widely used to evaluate the physicochemical and
bioactive properties of chemical structures, and their inclusion in curvilinear regression
models can enhance the analysis of drug activity. Topological indices, such as the Zagreb
indices, have shown promise in predicting the effectiveness of cancer treatments [33]. The
max-min rodeg index has been found to give reliable predictions for octane isomers and
polychlorobiphenyls in linear regression models [34]. A new index called the atom-bond
connectivity index has been proposed to determine the complexity of alkanes [35]. The first
hyper-Zagreb index has been found to be the preferred method for estimating the boiling
points of benzenoid hydrocarbons [36]. Additionally, the indeg indices have been applied
to predict topological polar areas [37]. The inverse sum deviation index has been used
to calculate the vaporization and sublimation enthalpies of monocarboxylic acids [38,39].
Irregularity indices based on different degrees, in addition to Albertson and Sigma indices,
have been found to predict the physicochemical properties of octane isomers [40]. The
Wiener index was first introduced in QSPR studies, and has been shown to align well
with the boiling points of alkanes [41]. The Wiener index has been further developed
and used to explain different chemical and physical properties of molecules, as well as
their biological activity [42]. The Schultz index has also been investigated to predict the
boiling points of alkyl alcohols, and thus their suitability for various applications [43].
As indicated in Table 1, these indices are expressed mathematically and are shown with
mathematical expressions.

Notation 1. A molecular graph is a simple graph ζ = (V, E). Its vertices and edges represent
the atoms and the bonds, respectively. Note that hydrogen atoms are omitted. For any graph d(u)
represent the degree of the vertex u ∈ V(ζ) in the graph. While d(u, v) represent the distance of the
shortest path from the vertex u to the vertex v.
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Table 1. The mathematical expressions of topological indices.

Vertex-Degree-Based Topological Indices Mathematical Expression

First Zagreb index M1(ζ) = ∑
uv∈E(ζ)

(d(u) + d(v))

Second Zagreb index M2(ζ) = ∑
uv∈E(ζ)

(d(u) · d(v))

Hyper-Zagreb index HM(ζ) = ∑
uv∈E(ζ)

(d(u) + d(v))2

Atom-bond connectivity index ABC(ζ) = ∑
uv∈E(ζ)

√
d(u) + d(v)− 2

d(u) · d(v)

Randić index R(ζ) = ∑
uv∈E(ζ)

1√
d(u) · d(v)

Max-min rodeg index Mms−de(ζ) = ∑
uv∈E(ζ)

√
max(d(u), d(v))
min(d(u), d(v))

Min-max rodeg index mMs−de(ζ) = ∑
uv∈E(ζ)

√
min(d(u), d(v))
max(d(u), d(v))

Albertson index irr(ζ) = ∑
uv∈E(ζ)

|d(u)− d(v)|

Sigma index σ(ζ) = ∑
uv∈E(ζ)

(d(u)− d(v))2

Inverse symmetric deg index ISDI(ζ) = ∑
uv∈E(ζ)

d(u) · d(v)
d(u)2 + d(v)2

Inverse sum indeg index ISI(ζ) = ∑
uv∈E(ζ)

d(u) · d(v)
d(u) + d(v)

Distance-Based Topological Indices Mathematical Expression

Wiener index W(ζ) = ∑
{u,v}⊆V(ζ)

d(u, v)

Schultz index S(ζ) = ∑
{u,v}⊆V(ζ)

(d(u) + d(v))d(u, v)

Harary index H(ζ) = ∑
{u,v}⊆V(ζ)

1
d(u, v)

Gutman index Gut(ζ) = ∑
{u,v}⊆V(ζ)

(d(u) · d(v))d(u, v)

Fenofibrate is an important component of a healthy diet and medication regimen, as it
is used to reduce blood cholesterol and triglyceride levels. By decreasing triglyceride levels
in the bloodstream, the risk of pancreatitis (inflammation of the pancreas) can be mitigated.
To date, only one paper [44] has explored the use of topological indices in analyzing one
of the drugs in the fibrate family. This study utilized ve−degree, ev−degree, and degree-
based (D−based) approaches to compute the topological indices of fenofibrate’s chemical
structure. With limited existing literature on fibrates that incorporate topological indices,
this paper represents a pioneering effort in the investigation of novel physicochemical
properties of fibrates using this technique. In this work, fenofibrate (C20H21ClO4), ciprofi-
brate (C13H14Cl2O3), bezafibrate (C19H20ClNO4), clofibrate (C12H15ClO3) drugs used in
the treatment of patients with high cholesterol are studied.

Fibrate drugs are a class of medications commonly used to treat dyslipidemia, a
condition characterized by abnormal lipid levels in the blood. Despite their widespread use,
the molecular mechanisms underlying the activity of fibrate drugs are not well understood.
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One approach to addressing this challenge is to develop quantitative structure-activity
relationship (QSAR) models that can predict the activity of fibrate drugs based on their
molecular descriptors. In this study, we investigate the efficacy of curvilinear regression
models in enhancing the analysis of fibrate drug activity through molecular descriptors.
Curvilinear regression models are a type of non-linear regression model that can capture
non-linear relationships between variables, making them useful for analyzing complex
systems such as the interactions between drugs and their molecular targets. Our study
builds upon previous research that has investigated the use of QSAR models to predict
the activity of drugs. Several articles published in Symmetry have explored the use of
topological indices and other mathematical methods to predict various properties of organic
compounds, including their biological activity. For example, a study by Berinde et al. [45]
used the QSPR technique to investigate the molar refraction, polarizability, and refractive
index of monocarboxylic, dicarboxylic, and unsaturated monocarboxylic acids. Their
approach relied on a single molecular descriptor, the ZEP topological index, calculated
using weighted electronic distances and chemical structure. The QSPR models obtained had
high-quality performance and predictive ability, with R2 > 0.99. Their approach provides
an alternative to existing additive methods for predicting these properties. Zuo and Hu [46]
developed QSPR models for predicting the melting points of organic compounds using
molecular topology and quantum chemical descriptors. The authors used a dataset of
893 organic compounds and developed multiple linear regression models using the partial
least squares (PLS) method. They compared their models with other models reported in
the literature and found that their models were more accurate in predicting the melting
points of organic compounds. Zhang et al. [47] developed QSPR models for predicting
the melting points of organic compounds based on molecular topology. The authors used
a dataset of 1427 organic compounds and developed models using the neural network
algorithm. They compared their models with other models reported in the literature and
found that their models were more accurate in predicting the melting points of organic
compounds. Naghipour and Kiasat [48] developed a QSPR model for predicting the
fullerene-like behavior of C60 derivatives using topological indices. The authors used a
dataset of 46 C60 derivatives with known fullerene-like behavior and developed a model
using multiple linear regression. They compared their model with other models reported in
the literature and found that their model had higher accuracy in predicting the fullerene-like
behavior of C60 derivatives. Wang and Xu [49] developed QSPR models for predicting the
boiling points of alkyl alkanes based on the novel vertex degree valence topological index.
The authors used a dataset of 388 alkyl alkanes and developed models using multiple
linear regression and artificial neural network methods. They compared their models with
other models reported in the literature and found that their models were more accurate in
predicting the boiling points of alkyl alkanes.

In our study, we apply curvilinear regression models to analyze the activity of fibrate
drugs based on their molecular descriptors. By incorporating non-linear relationships
between variables, we aim to enhance the accuracy and predictive power of QSAR models
for analyzing the activity of fibrate drugs. Ultimately, our research may contribute to
a better understanding of the molecular mechanisms underlying the activity of fibrate
drugs, and to the development of more effective treatments for dyslipidemia. These studies
demonstrate the usefulness of QSAR modeling and related techniques for predicting the
activity of various compounds based on their molecular descriptors. By building on this
previous work, we hope to further advance our understanding of the molecular mechanisms
underlying the activity of fibrate drugs.

The QSPR model is a highly effective tool for predicting a wide range of physicochemi-
cal properties of drugs. To make these predictions, the model employs degree-based indices
and distance-based topological indices (as detailed in Table 1). The properties considered
include polarizability, Sum of electronic and zero-point Energies, the sum of electronic and
thermal energies, the sum of electronic and thermal enthalpies, the sum of electronic and
thermal free energies, zero-point vibrational energy, complexity, topological polar area,
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dipole moment, heat capacity, molar entropy, and octanol-water partition coefficients. To
analyze the relationships between these properties and the topological indices, curvilin-
ear regression (linear, quadratic, and cubic) is utilized. The model generates statistical
parameters using SPSS and MATLAB statistical functions. In addition, DFT calculations
are conducted at the B3LYP/6-31G(d,p) to gain insight into the optimized geometries, DOS
plots, HOMO and LUMO orbitals energies, and distribution of the four derivatives studied
in the next section. Section 3 examines the contributions of different topological indices as
molecular structural descriptors. Finally, Section 4 concludes the paper.

2. DFT Part

In Figures 1–4, four important characteristics of the four investigated fibrate deriva-
tives were indicated, including (1) optimized geometries, (2) electron density mapped
with electrostatic potential (ESPM), (3) total density of states (DOS) plots, and (4) the
special distributions of the highest occupied molecular orbitals (HOMOs) and the lowest
unoccupied molecular orbitals (LUMOs). Density functional theory (DFT) calculations
of the investigated fibrate derivatives utilized one of the well-known hybrid functionals,
Becke, 3−parameter, Lee–Yang–Parr (B3LYP) [50]. In DFT, hybrid functionals incorporate
a portion of the Hartree–Fock exchange, as well as extra exchange from other sources
(empirical/ab initio) to approximate the exchange-correlation energy. The B3LYP as a
representation of a Hamiltonian term in the Schrödinger equation was combined with a
6–31 G(d, p) basis set as a representation of the eigenvalue wavefunction. It is a moderate
double zeta (ζ) basis set enlarged with two polarization basis functions, a d−function for
heavy atoms (carbon, oxygen, and chlorine), and a p-function for all hydrogen atoms.
Most of the physicochemical properties of the investigated fibrate derivatives discussed
in next section were obtained from the frequency calculations carried out at the same
level of theory of optimization. Calculations were carried out using Gaussian 09 software
suite [51]. Visualizations of molecular structures were performed by using GaussView
(version 5.0.8) [52], ESPMs were drawn used the Avogadro package [53], and the GaussSum
program [54] was used to DOS plots. ESPMs show how electron density is distributed
in the four non-planar molecules considering the electrostatic potentials, and this gives
information about the region in the molecule that has the highest or lowest electron density,
and thus is most likely to be attacked by electrophilic or nucleophilic agents. Keep in mind
that the nucleophilic and electrophilic attack regions are represented by blue (positively
charged) and red colors (negatively charged). The red color is concentrated on the more
electronegative atoms such as the oxygen (deep red) and chlorine atoms (light red), the
blue color covers the hydrogen atoms (the least electronegative atoms), while the carbon
atoms are covered by white, indicating the intermediate electronegativity of the carbon
atom. Thus, it is possible to determine the position and region in a molecule attacked
by an electrophile or nucleophile using ESPMs. The molecule DOS plot indicates how
many energy states electrons are allowed to occupy in the system. The HOMO energies
of the four investigated fibrate derivatives are −6.230,−6.108,−6.166, and −6.422 eV for
fenofibrate, ciprofibrate, bezafibrate, and clofibrate, respectively. Since the HOMO energy is
used as a measure of the electron-donating power of a molecule, destabilized HOMO (less
negative) leads to a greater ability to donate electrons. The capacity for electron donation
of the five derivatives can be arranged as follows: ciprofibrate > bezafibrate > fenofibrate
> clofibrate. On the other hand, the LUMO energy measures the electron-accepting ability
of a molecule; more combined ability stabilizes LUMO (more negative). Therefore, the
derivatives’ ability to accept electrons is as follows: fenofibrate (−1.720 eV) > bezafibrate
(−1.220 eV) > clofibrate (−0.461 eV) > ciprofibrate (−0.457 eV). The energy gap (HOMO
energy subtracted from LUMO energy) measures the chemical reactivity. A smaller gap is a
more reactive molecule, and the reactivity of the four derivatives is: fenofibrate (4.51 eV)
< bezafibrate (4.95 eV) < ciprofibrate (5.65 eV) < clofibrate (5.96 eV). Finally, the 2D spe-
cial distribution of HOMO and LUMO orbitals is another indictor of the position/region
subjected to electrophilic and nucleophilic attack. The HOMO and LUMO orbitals in
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ciprofibrate are distributed on similar parts of a molecule, except that the two chlorine
atoms have more HOMO character. Other molecules have HOMO orbitals delocalized over
different regions compared to the LUMO orbitals distribution.

Figure 1. Fenofibrate:(1) optimized geometries, (2) ESPM, (3) DOS plots, and (4) HOMOs and LUMOs.

Figure 2. Ciprofibrate: (1) optimized geometries, (2) ESPM, (3) DOS plots, and (4) HOMOs and LUMOs.
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Figure 3. Bezafibrate: (1) optimized geometries, (2) ESPM, (3) DOS plots, and (4) HOMOs and LUMOs.

Figure 4. Clofibrate: (1) optimized geometries, (2) ESPM, (3) DOS plots, and (4) HOMOs and LUMOs.

3. Materials and Method

In this section, the overall objective is to establish a QSPR relationship between the
various topological indices and some physicochemical properties/activities of the fibrate
drugs under study in order to assess the effectiveness of these drugs. Eleven degree-
based and four distance topological indices were used for modeling antiviral activity,
based on DMol3-optimized geometries for the fibrate drugs investigated. The Gauusin 09
software package was used to perform DFT calculations, which are as follows: polarizability
(P), sum of electronic and zero-point energies (SEZPE), sum of electronic and thermal
energies (SETEnergy), sum of electronic and thermal enthalpies (SETEnthalpy), sum of
electronic and thermal free energies (SETFEnergy), zero-point vibrational energy (ZPVE),
complexity (C), topological polar area (TPA), dipole moment (DM), heat capacity (CV),
molar entropy (S), and octanol-water partition coefficients (XlogP3) of several drugs
currently being investigated for the treatment of high cholesterol, which include fenofibrate,
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ciprofibrate, bezafibrate, and clofibrate drugs. It is possible to use curvilinear regression
analysis to fit curves instead of straight lines, and SPSS statistical software is used to analyze
curvilinear regressions. As described below, the independent variables in the curvilinear
regression models are topological indices. Indicators are derived from cholesterol-lowering
drugs. Based on the equations below, tests were conducted.

y = a + bx; n, R2, F, Se, SF (Linear equation)

y = a + b1x + b2x2; n, R2, F, Se, SF (Quadratic equation)

y = a + b1x + b2x2 + b3x3; n, R2, F, Se, SF (Cubic equation)

In this context, y represents the response or dependent variable, while a denotes the
regression model constant, and bi(i = 1, 2, 3) refers to the coefficients for each individual
descriptor. The independent variable is represented by x, and n signifies the number of
samples used in building the regression equation. R2 denotes the coefficient of determina-
tion, R signifies the correlation coefficient, F represents the calculated value of the Fischer
F−values test, Se denotes the standard error of estimate, and SF stands for F−significance.
It should be noted that when the experimental and theoretical results are in close proximity
to each other, the correlation coefficient approaches 1. To gauge the predictability of a
model, it is necessary to compare the observed values and the model predictions, for which
the root mean square error (RMSE) metric is used. The predictive quality of a model is
higher when the error or RMSE is lower, which is calculated as follows:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(1)

where yi is the observed value of the independent variable in the test set, ŷi is the predicted
value of the independent variables in the test set, n is the number of samples in the test,
and topological indices serve as independent variables. To evaluate our initial model, we
used the RMSE metric and then normalized the data to enhance our predictions’ accuracy.
We measured the difference between predicted and actual values using the RMSE score,
which revealed that our model needed improvement. To address issues such as outliers and
varying scales of measurement that could negatively affect model performance, we applied
normalization techniques to our data. The normalization step was essential in improving
the model’s accuracy, as it scaled variables to a common range, reduced the impact of
outliers, and ensured that all variables were weighted equally. After normalization, we
re-evaluated the model using the RMSE metric, and the updated score showed a significant
improvement in our predictions’ accuracy. Computed topological index values are shown in
Table 2. We computed the values using combinatorial computations and edge partitioning
as follows: the molecular graph of fenofibrate has 25 vertices and 26 edges. Its edges can
be partitioned as |E1,4| = 2, |E1,3| = 5, |E2,3| = 11, |E2,2| = 4, |E3,4| = 1, |E3,3| = 2, and
|E2,4| = 1. The molecular graph of ciprofibrate has 18 vertices and 19 edges. Its edges
can be partitioned as |E2,2| = 2, |E1,4| = 4, |E2,4| = 2, |E1,3| = 2, |E2,3| = 6, |E1,4| = 2,
and |E1,3| = 1. The molecular graph of bezafibrate has 25 vertices and 26 edges. Its edges
can be partitioned as |E1,3| = 4, |E2,3| = 11, |E2,2| = 6, |E3,3| = 1, |E2,4| = 1, |E3,4| = 1,
and |E1,4| = 2. The molecular graph of fenofibrate has 16 vertices and 16 edges. Its edges
can be partitioned as |E1,3| = 2, |E2,3| = 6, |E1,2| = 1, |E2,2| = 3, |E3,4| = 1, |E1,4| = 2,
and |E2,4| = 1. Using MATLAB, it is possible to efficiently compute degree-based and
distance-based topological indices, as explained in Algorithms 1 and 2. To calculate the
topological indices of molecules based on distance and degree, MATLAB utilizes various
mathematical expressions. The fibrate family and the drugs under consideration, namely
fenofibrate, ciprofibrate, bezafibrate, and clofibrate, have been studied and are presented in
Table 3, including their experimental data [51] and optimized geometries obtained through
DFT calculations using the DMol3 module of Version 8.0 of Material Studio from BIOVIA.
Table 4 shows the correlation coefficient (R) between degree-based topological indices and
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some physicochemical properties, computed using a linear regression model. A quadratic
regression model is used in Table 5 to calculate the correlation coefficient (R) between
these indices and some physicochemical properties. The cubic model is employed for this
purpose in Table 6. Similarly, for the distance-based topological indices, linear, quadratic,
and cubic regression models are utilized, and the results are presented in Table 7. Once
the correlation coefficient for a physicochemical property is obtained, the model with
the maximum R becomes the most accurate predictor of the regression model. This is
indicated in Tables 8–11. By leveraging the power of MATLAB, it is possible to efficiently
and accurately compute topological indices and use them to predict the physicochemical
properties of molecules, which can be incredibly useful in various fields, including drug
discovery and materials science.

Algorithm 1: Computational procedure of calculation of degree-based indices.
Input: Edges and nodes of molecule
Output: e← Topological indices vector
Step 1. Start
Step 2. G ← Graph of undirected edges
Step 3. A← Adjacency matrix of G
Step 4. d← Distances of G
Step 5. d1 ← Vertex degree of G
Step 6. Calculate size of matrix d
Step 4. Construct AN :
for i = 1 to number of columns do

for j = 1 to number of rows do
if i = j then
AN(i, j) = 0

elseif A(i, j) = 1 then
AN(i, j) = d1(i) + d1(j) First Zagerb index

AN(i, j) = d1(i) ∗ d1(j) Second Zagerb index
AN(i, j) = (d1(i) + d1(j))2 Hyper-Zagerb index

AN(i, j) =

√
d1(i) + d1(j)− 2
(d1(i) ∗ d1(j))

Atom-Bond Connectivity index

AN(i, j) =
1√

d1(i) ∗ d1(j)
Randic index

AN(i, j) =

√
min(d1(i), d1(j))
max(d1(i), d1(j)

min-max rodeg index

AN(i, j) =

√
max(d1(i), d1(j))
min(d1(i), d1(j))

max-min rodeg index

AN(i, j) = |d1(i)− d1(j)| Alberston index
AN(i, j) = (d1(i)− d1(j))2 Sigma index

AN(i, j) =
d1(i).d1(j)

d1(i)2 + d1(j)2 Inverse symmetric deg index

AN(i, j) =
d1(i).d1(j)

d1(i) + d1(j)
Inverse sum deg index

end if
end for

end for
Step 5. e = (summation of AN)/2.
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Table 2. Values of topological indices in fibrates’ molecular structures.

Topological Index Fenofibrate Ciprofibrate Bezafibrate Clofibrate

M1(ζ) 126 98 124 76

M2(ζ) 143 115 139 84

H(ζ) 626 520 606 374

ABC(ζ) 19.1 14.12 19.03 11.78

R(ζ) 11.68 8.22 11.77 7.45

mMs−de(ζ) 20.44 14.19 20.864 12.33

Mms−de(ζ) 34.7 26.95 33.9693 21.79

irr(ζ) 30 28 28 20

σ(ζ) 54 60 50 38

ISDI(ζ) 10.92 7.5704 11.12 6.61

ISI(ζ) 28.59 21.4952 28.34 17.01

W(ζ) 1716 660 1882 468

S(ζ) 6872 2652 7600 1776

H(ζ) 87.5476 55.1468 84.5541 45.5162

Gut(ζ) 6846 2638 7650 1670

Algorithm 2: Computational procedure of calculation of distance-based indices.
Input: Edges and nodes of molecule
Output: e← Topological indices vector
Step 1. Start
Step 2. G ← Graph of undirected edges
Step 3. A← Adjacency matrix of G
Step 4. d← Distances of G
Step 5. d1 ← Vertex degree of G
Step 6. Calculate size of matrix d
Step 4. Construct AN :
for i = 1 to number of rows−1 do
aa = 0;

for j = i + 1 to number of columns do
aa = ∑ d(i, j) Wiener index
aa = ∑ d(i, j) ∗ (d1(i) + d1(j)) Schultz index

aa = ∑
1

d(i, j))
Harary index

aa = ∑ d(i, j)(d1(i) ∗ d1(j)) Gutman index
end for AN(i) = aa

end for
Step 5. e = summation of AN .

Results and Discussion

Fibrate drugs are predicted by numerous topological indices. In QSPR, linear, quadratic,
and cubic regression models are examined. Several topological indices are calculated for
fibrate drugs, including the vertex degree, and distance between vertices. The models
are analyzed using twelve descriptors and thirteen topological indices. Using a linear
regression model, a correlation coefficient (R) between these indices and some physico-
chemical properties can be seen in Table 4. In Table 5, using a quadratic regression model,
a correlation coefficient (R) between these indices and some physicochemical properties
is computed. When a correlation coefficient is obtained for a physicochemical property,
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the model that has maximum R is the most accurate predictor of the regression model.
In Table 4, we display maximum(R) for each physicochemical property, based upon the
analysis of the data (linear and quadratic). We have excluded values less than 0.64 from the
Tables 4 and 5, for convenience.

With linear regression models, the following Table 8 illustrates the most appropriate
topological index for estimating physicochemical properties. A diagram depicting this is
shown in Figure 5.

Table 3. The physicochemical properties of potential drugs of fibrates.

Physicochemical Properties Fenofibrate Ciprofibrate Bezafibrate Clofibrate

(DM) 3.98025 3.94641 3.01127 2.19815

(P) 164.27567 244.49533 232.43367 144.46
(SEZPE) −1649.62662 −1535.54779 −1551.61567 −1151.954

(SETEnergy) −1649.60875 −1535.52308 −1551.59139 −1151.93749

(SETEnthalpy) −1649.6078 −1535.52214 −1551.59044 −1151.93749

(SETFEnergy) −1649.67518 −1535.60609 −1551.6753 −1152.00027

(ZPVE) 155.46481 231.67184 225.46799 157.25221

(CV) 66.502 92.538 91.009 61.172

(S) 141.803 176.701 178.604 134.118

(XLogP3) 5.2 3.4 3.8 3.3

(C) 458 333 452 232

(TPA) 52.6 46.5 75.6 35.5

Table 4. The correlation coefficient (R) obtained by linear regression model between topological
indices and physicochemical properties of various drugs of fibrates.

T.I.

SEZPE
SETEnergy

SETEnthalpy
SETFEnergy

XLogP3 C TPA

M1(ζ) −0.902 0.74 1 0.811

M2(ζ) −0.941 0.729 0.995 0.786

H(ζ) −0.89 0.771 0.998 0.791

ABC(ζ) −0.84 0.748 0.992 0.826

R(ζ) −0.765 0.746 0.967 0.826

mMs−de(ζ) −0.914 0.833 0.985 0.705

Mms−de(ζ) −0.796 0.758 0.978 0.819

irr(ζ) −0.999 0.647 0.887 −

σ(ζ) −0.848 − − −

ISDI(ζ) −0.669 0.736 0.922 0.805

ISI(ζ) −0.855 0.75 0.995 0.821
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Table 5. The correlation coefficient (R) obtained by quadratic regression model between topological
indices and physicochemical properties of various drugs of fibrates.

T.I. DM P ZPV E CV S XLogP3 C TPA

SEZPE
SETEnergy

SETEnthalpy
SETFEnergy

M1 0.850 0.881 0.803 0.848 0.820 0.807 1.000 0.811 0.979

M2 0.837 0.908 0.843 0.878 0.850 0.850 0.998 0.786 0.981

H 0.808 0.930 0.872 0.904 0.879 0.852 0.999 0.804 0.973

ABC 0.874 0.884 0.752 0.808 0.779 0.768 1.000 0.829 0.981

R 0.929 0.756 − 0.714 0.684 0.746 1.000 0.831 0.993

mMs−de 0.868 0.851 0.760 0.815 0.787 0.768 1.000 0.832 0.979

Mms−de 0.746 0.997 0.984 0.990 0.979 0.964 0.990 0.796 0.971

irr 0.894 0.995 0.998 0.999 0.999 0.983 0.893 0.712 1.000

σ 0.947 0.708 − 0.667 − 0.677 0.996 0.882 0.991

ISDI − − − − − 0.736 0.922 0.810 0.669

ISI 0.861 0.863 0.777 0.828 0.800 0.782 1.000 0.825 0.979

Table 6. The correlation coefficient (R) obtained by cubic regression model between topological
indices and physicochemical properties of various drugs of fibrates.

T.I.

SEZPE
SETEnergy

SETEnthalpy
SETFEnergy

P C TPA XLogP3 S DM CV

M1 0.979 0.886 1.000 0.811 0.813 0.826 0.850 0.854

M2 0.981 0.915 0.998 0.786 0.859 0.858 0.837 0.885

H 0.973 0.939 0.999 0.806 0.863 0.890 0.808 0.914

ABC 0.981 0.846 1.000 0.829 0.769 0.782 0.874 0.810

R 0.994 0.756 1.000 0.831 0.746 0.684 0.934 0.714

mMs−de 0.979 0.854 1.000 0.832 0.769 0.791 0.868 0.819

Mms−de 0.971 0.999 0.991 0.806 0.973 0.985 0.746 0.994

irr 1.000 0.995 0.893 0.712 0.983 0.999 0.894 0.999

σ 0.992 0.708 0.998 0.882 0.689 0.645 0.948 0.667

ISDI 0.691 / 0.923 0.970 0.997 0.690 / 0.650

ISI 0.979 0.867 1.000 0.825 0.785 0.805 0.861 0.833

Table 9 illustrates the best topological index, which gives the best estimate for physico-
chemical properties using quadratic regression models; we only consider topological index
with R2 ≥ 0.8. A diagram depicting this is shown in Figure 6.
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Table 7. The curvilinear models, along with the linear, quadratic, and cubic regression models, were
used to determine the correlation coefficient (R) between the physicochemical properties of various
fibrate drugs and their distance topological indices.

P.P.
W︸︷︷︸

Linear, Quadratic, cubic

S︸︷︷︸
Linear, Quadratic, cubic

H︸︷︷︸
Linear, Quadratic, cubic

Gut︸︷︷︸
Linear, Quadratic, cubic

DM 0.334, 0.991, 1 0.335, 0.989, 1 0.465, 0.750, 0.750 0.349, 0.997, 1

P 0.185, 0.332, 1 0.198, 0.321, 1 0.166, 0.958, 0.971 0.209, 0.383, 1

ZPVE 0.086, 0.152, 1 0.1, 0.144, 1 0.042, 0.908, 0.950 0.108, 0.205, 1

CV 0.207, 0.297, 1 0.221, 0.292, 1 0.177, 0.937, 0.954 0.230, 0.345, 1

S 0.258, 0.305, 1 0.272, 0.306, 1 0.220, 0.917,0.936 0.280, 0.348, 1

SEZPE 0.731, 0.977, 1 0.734, 0.976, 1 0.807, 0, 950, 0.950 0.744, 0.986, 1

XLogP3 0.696, 0.819, 1 0.688, 0.819, 1 0.789, 0.839, 0.859 0.690, 0.793, 1

C 0.954, 0.995, 1 0.955, 0.996, 1 0.979, 0.999, 0.999 0.960, 0.998, 1

TPA 0.859, 0.876, 1 0.866, 0.885, 1 0.790, 0.854, 0.856 0.867, 0.881, 1

Table 8. Linear regression models that give the best estimate for physicochemical properties.

Linear Regression Model R2 F Se SF RMSE

SEZPE = −162.126− (49.436)irr(ζ) 0.999 1747.706 9.083 0.0005 6.4227673

XLogP3 = 0.226 + (0.128)mMs−de(ζ) 0.639 4.522 0.595 0.167 0.4953885

C = −113.023 + (4.545)M1(ζ) 1 13088.633 1.632 0.000076 1.1555164

TPA = −8.603 + (3.820)ABC(ζ) 0.682 4.293 16.390 0.174 8.2595015

TPA = −7.735 + (6.164)R(ζ) 0.683 4.308 11.667 0.174 8.2495412

Table 9. Quadratic regression model that give the best estimate for physicochemical properties.

Quadratic Regression Model R2 F Se SF RMSE

DM = −3.085 + (0.171)σ− (0.001)σ2 0.897 4.360 0.473 0.321 0.4332951

P =
−1690.487 + (135.897)Mms−de
−(2.374)Mms−de

2 0.995 97.646 6.116 0.071 3.057903

ZPVE =
−2567.209 + (227.158)irr
−(4.547)irr2 0.996 135.526 4.387 0.061 2.193392

CV =
−937.144 + (82.838)irr
−(1.646)irr2 0.999 339.909 1.081 0.038 0.540583

S =
−1283.246 + (117.601)irr
−(2.337)irr2 0.999 443.193 1.346 0.034 0.732681

XLogP3 = 0.0763irr2 − 3.6225irr + 45.25 0.965 6.644 0.283 0.265 0.141424

C =
−0.0020091M2

1 + 4.9546771M1
−133.0233134 1.000 4059.09 2.07 0.01 1.036262

C =
−22.6208403R2 + 485.9459637R
−2132.8797476 1.000 8639.90 1.42 0.01 0.710303

C =
−4.2704046mM2

s−de+
167.3955975mMs−de
−1182.6544670

0.999 811.32 4.63 0.02 2.317288

C =
−0.7828926ISI2 + 55.0686241ISI
−478.1259314 1.000 3041.59 2.39 0.01 1.297084

C =
0.0217651ABC2 − 0.9932150ABC
+161.4302698 0.999 155.21 10.58 0.06 5.291185

TPA = −0.2245σ2 + 22.318σ− 487.45 0.778 1.751 13.810 0.471 6.90523

SEZPE = −0.4068irr2 − 29.427irr− 400.68 0.999 558.642 11.362 0.030 5.68161
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Figure 5. Plots of Linear Regression Equations for the Best Physicochemical Properties Predicted by
Degree-Based Topological Indices.

Figure 6. Plots of QuadraticRegression Equations for the Best Physicochemical Properties Predicted
by Degree-Based Topological Indices.

Remark 1. Initially, linear regression was attempted on all physicochemical properties using degree-
based topological indices. Correlation coefficients were calculated for 7 out of 12 properties that
showed satisfactory results, as presented in Table 4. For the remaining properties with correlation
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coefficients less than 0.64, Table 5 explored alternative models. An additional 5 properties were
tested, and if their correlation coefficients exceeded 0.64, the quadratic regression model was used.
Note that some properties, such as the sum of the electronic and zero-point energies (SEZPE), sum
of the electronic and thermal energies

(
SETEnergy

)
, sum of the electronic and thermal enthalpies(

SETEnthalpy

)
, and sum of the electronic and thermal free energies

(
SETFEnergy

)
have identical

correlation coefficients, and only (SEZPE) is listed in Tables 8 and 9.

The cubic model is used for all the physicochemical properties and degree-based
topological indices in order to provide a comprehensive analysis. Table 6 presents the
correlation coefficients, which are high, as anticipated. Table 10 and Figure 7 display the
best predictions of the properties.

Figure 7. Plots of Cubic Regression Equations for the Best Physicochemical Properties Predicted by
Degree-Based Topological Indices.

Based on three curvilinear models, linear, quadratic, and cubic, the following Table 7,
illustrates the correlation coefficient R for the four distance topological indices. The next
table shows the most accurate prediction of the physicochemical properties based on linear
or quadratic models. It should be noted that the physicochemical properties: sum of the
electronic and zero-point energies (SEZPE), sum of the electronic and thermal energies(
SETEnergy

)
, sum of the electronic and thermal enthalpies

(
SETEnthalpy

)
, and Sum of the

electronic and thermal free energies
(
SETFEnergy

)
have the same correlation coefficients,

which is why the (SEZPE) is the only one listed in Table 7. It is evident that the cubic
model is the optimal model to predict all physicochemical properties of fibrates. Notice that
we displayed the correlation coefficient in bold for the cubic model. Table 11 and Figure 8
illustrate the best linear and quadratic model of distance-based topological indices with
the properties.

The physicochemical properties of fibrate drugs and their corresponding degree-based
and distance-based topological indices were analyzed using three curvilinear models: linear,
quadratic, and cubic. The aim was to determine the most accurate correlation coefficient
for the properties studied.



Symmetry 2023, 15, 1160 16 of 22

Table 10. Cubic regression models that give the best estimate for physicochemical

Cubic Regression Model R2 F Se SF RMSE

SEZPE = −0.407irr2 − 29.427irr− 400.677 0.999 558.642 11.362 0.030 5.68160

P =
−0.0584988Mm3

s−de+
2.5776095Mm2

s−de−
1.62895Mms−de − 438.67733

1.000 361.397 3.185 0.037 0.00032

C =
−0.001M3

1 + 0.334M2
1−

27.881M1 + 915.803 1.000 4108.744 2.060 0.011 0.06846

C =
2.043ABC3 − 94.407ABC2

+1457.607ABC− 7177.748 1.000 1315.359 3.640 0.019 0.00024

C =
−1.502R3 + 18.604R2

+116.427R− 1.047.001 1.000 4237.196 0.641 0.003 0.00006

C =
1.637mM3

s−de − 81.094mM2
s−de

+1340.111mMs−de − 7, 031.15
1.000 811.323 4.635 0.025 0.00005

C =
0.159ISI3 − 11.343ISI2

+283.834ISI − 2095.506 1.000 3041.588 2.394 0.013 0.00052

TPA =
−51.090ISDI3 + 1488.36ISDI2

−14, 074.62ISDI + 42, 794.32 1.000 7.894 7.151 0.244 0.00003

S = −2.337irr2 + 117.599irr− 1283.215 0.999 443.193 1.346 0.034 0.67175

XLogP3 =
−0.900ISDI3 + 24.127ISDI2

−210.964ISDI + 603.459 0.900 85.350 0.116 0.076 0.00001

DM =
−0.002σ3 + 0.241σ2

−11.686σ + 186.850 1.000 4.396 0.471 0.320 0.00612

CV = −1.646irr2 + 82.849irr− 937.277 0.999 339.909 1.081 0.038 0.54094

Table 11. The linear and quadratic regression models provide the most accurate predictions for the
physicochemical properties.

Linear andQuadratic
Best Regression Model R2 F Se SF RMSE

DM =
−2.010 + (0.003)Gut
−
(
3.239E−7)Gut2 0.994 84.508 0.113 0.077 0.9007267

P = −1200.200 + (44.294)H − (0.326)H2 0.918 5.597 24.537 0.286 12.239175

ZPVE =
−925.184 + (35.716)H
−(0.265)H2 0.824 1.252 30.377 0.534 15.16917

CV = −371.268 + (14.228)H − (0.105)H2 0.878 3.585 9.869 0.350 4.9268046

S = −463.186 + (19.618)H − (0.144)H2 0.840 2.634 16.012 0.399 7.9943483

SEZPE =
−354.281− (0.591)Gut
+
(
5.778E−5)Gut2 0.972 17.347 63.547 0.167 36.510223

XLogP3 = 9.019− (0.202)H + (0.002)H2 0.704 1.188 0.827 0.544 0.413171

C = −615.681 + (25.600)H − (0.153)H2 0.999 475.806 6.051 0.032 3.0262032

C = 26.598 + (5.018)H 0.958 45.340 27.142 0.021 19.193309

TPA = 49.861− (0.008)S +
(
1.334E−6)S2 0.783 1.799 13.664 0.466 6.9466441

TPA = 29.462 + (0.005)Gut 0.751 6.031 10.340 0.133 7.3111917
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Figure 8. Plots of Linear and Quadratic Regression Equations for the Best Physicochemical Properties
Predicted by Distance-Based Topological Indices.

Table 4 shows the correlation coefficients (R) obtained by a linear regression model
between various topological indices and physicochemical properties of fibrate drugs. The
topological indices include degree-based topological indices. The results show that the
correlation coefficients vary across the different topological indices and physicochemical
properties. A positive correlation indicates two variables that tend to move strongly in
opposite directions, while a negative correlation indicates two variables that move strongly
in opposite directions. In particular, for the first Zagreb index M1(ζ), the correlation
coefficient lies between 0.740 and 1, with the best prediction for complexity (C) being 1.
For the second Zagreb index M2(ζ), the range of the correlation coefficient is 0.729 ≤ R ≤
−0.941, which indicates a high prediction of all physicochemical properties under study.
The highest correlation coefficient values were observed for the (SEZPE) property with
values ranging from 0.887 to 0.998, followed by the (TPA) index, with values ranging
from 0.786 to 0.826. The other topological indices showed weaker correlations with the
physicochemical properties, with correlation coefficients ranging from 0.647 to 0.967 for
the remaining indices. Table 8 provides a list of five linear regression models and their
corresponding R2 and RMSE values. R2, or the coefficient of determination, is a measure
of how well the independent variables in a linear regression model explain the variation
in the dependent variable. It ranges from 0 to 1, with 1 indicating a perfect fit. RMSE,
or root mean squared error, is a measure of how well the regression model’s predictions
match the actual values. It represents the average distance between the predicted and
actual values, and lower values indicate better accuracy. All five models have relatively
high R2 values, indicating that they explain a significant amount of the variation in the
dependent variable. The lowest R2 value is 0.639, which is still considered a relatively
good fit. However, the models have different levels of prediction accuracy, as measured by
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RMSE. The XLogP3 with min-max rodeg index mMs−de(ζ) model has the lowest RMSE
value of 0.495, which suggests that it has the most accurate predictions among the five
models. The C model with the first Zagreb index M1 has the second lowest RMSE value
of 1.156, followed by the SEZPE model with an RMSE of 6.423. The TPA(ABC index)
and TPA(R index) models have the highest RMSE values of 8.260 and 8.250, respectively,
indicating that their predictions are the least accurate among the five models. In summary,
while all five models have relatively high R2 values, indicating good fit to the data, the
XLogP3 model is the most accurate based on its low RMSE value, followed by the C and
SEZPE models, and then the TPA (ABC index) and TPA (R index) models, which have the
highest RMSE values.

Table 5 presents the correlation coefficients (R) obtained by a quadratic regression
model between the topological indices and physicochemical properties of various drugs of
fibrate. Upon analyzing the data in Table 5, several noteworthy findings can be observed.
Firstly, many of the correlation coefficients (R) are relatively high, indicating a strong linear
relationship between the topological indices and physicochemical properties of the fibrate
drugs. For instance, σ(ζ) has a high correlation coefficient of 0.947 with (DM), indicating a
strong positive linear relationship between these two variables. Similarly, Mms−de(ζ) has a
high correlation coefficient of 0.997 with (P), suggesting a strong positive linear relationship
between these variables as well. Furthermore, some of the correlation coefficients are close
to 1, indicating a perfect positive linear relationship between the variables. For example,
M1, ABC, R, mMs−de, and ISI indices have a correlation coefficient of 1.000 with (C),
suggesting a perfect positive linear relationship between these two variables. Similarly,
irr index has a correlation coefficient of 1.000 with SEZPE,SETEnergy, SETEnthalpy, and
SETFEnergy, indicating a perfect positive linear relationship between these variables. On
the other hand, some correlation coefficients are relatively low, indicating a weak linear
relationship between the variables. For instance, the ISDI index has a correlation coefficient
less than 0.64 for most of the properties except for (C) (R = 0.922) and (TPA) (R = 0.882),
suggesting a weak positive linear relationship between these two variables. It is also
interesting to note that we do not have any negative values which would indicating an
inverse relationship between the variables. In addition, some of the correlation coefficients
are moderate, suggesting a moderate linear relationship between the variables. For instance,
(TPA) has a correlation coefficient of (0.712 ≤ R ≤ 0.882), indicating a moderate positive
linear relationship between these variables. Overall, the findings from Table 5 suggest
that there are varying degrees of linear relationships between the topological indices and
physicochemical properties of fibrate drugs. Some of the relationships are strong, while
others are weak or moderate. Looking at Table 9, we see that all five models for the
complexity property (C) have high R2 values, with the lowest being 0.999 and the highest
being 1.000. This suggests that all five models are good at explaining the variation in the
physicochemical property they are modeling. The second thing to consider is the RMSE
value; a lower RMSE value indicates that the model has a better fit. In this table, we can
see that the RMSE values range from 0.710303 to 5.291185. The model with the lowest
RMSE value is the second model: C = −22.6208403R2 + 485.9459637R − 132.8797476
for the Randic index. This indicates that this model has the best fit for estimating the
physicochemical property. However, it is important to note that all five models have high
R2 values, suggesting that they all provide good estimates for the physicochemical property.
After analyzing the table, we found that there are five quadratic regression models with
both high R2 values and low RMSE values. The quadratic regression model for S has a
high R2 value of 0.999 and a low RMSE value of 0.732681, making it one of the best models
in terms of accurately predicting the target variable. The other models are for (ZPVE),
(CV), (SEZPE), and (P). The model for (ZPVE) has an R2 value of 0.996 and an RMSE of
2.193392, the model for (CV) has an R2 value of 0.999 and an RMSE of 0.540583, the model
for (SEZPE) has an R2 value of 0.999 and an RMSE of 5.68161, and the model for (P) has
an R2 value of 0.995 and an RMSE of 3.057903. These models can be considered the best in
terms of their ability to fit the data and accurately predict the target variable.
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Table 6 presents the correlation coefficient (R) obtained by cubic regression models
between topological indices and physicochemical properties of various drugs of fibrates.
Looking at the table, we can see that the range of correlation coefficients varies for each row.
For instance, the correlation coefficient for the row of the first Zagreb index (M1) ranges
from 0.811 to 1.0, while for the row inverse symmetric deg index (ISDI), the correlation
coefficient ranges from 0.650 to 0.970. Overall, most of the correlation coefficients are
relatively high, with many of them being close to 1.0. This suggests a strong correlation
between the topological indices and the physicochemical properties of the drugs of fibrates.
The high correlation coefficients could indicate that the topological indices could be used to
predict the physicochemical properties of the drugs with high accuracy. Based on Table 10,
it appears that the cubic regression model provides the highest correlation coefficients for
most of the topological indices and physicochemical properties of fibrate drugs. The range
of correlation coefficients for each row varies, but in general, they are relatively high, indi-
cating a strong relationship between the topological indices and physicochemical properties.
Furthermore, the high correlation coefficients suggest that the cubic regression model is an
effective tool for predicting physicochemical properties based on the topological indices of
fibrate drugs. Overall, the results of the table suggest that the cubic regression model is the
best choice for analyzing the relationship between topological indices and physicochemical
properties in fibrate drugs. Based on Table 9, we can analyze the four topological indices
with respect to high R2 and minimum RMSE. (XLogP3) (RMSE = 0.00001, R2 = 0.900)
indicating a strong correlation between the physicochemical properties and this index. Ad-
ditionally, its RMSE value of 0.00001 is also very low, suggesting that the predicted values
using this index are very close to the actual values. (TPA) (RMSE = 0.00003, R2 = 1.000)
indicating a perfect correlation with the physicochemical properties.

By looking closely at Table 7, considering only the distance-based topological indices,
we can notice that the model which gives the highest correlations with all the investigated
physicochemical properties of fibrate drugs is the cubic model, since the correlation coeffi-
cients range from 0.750 to 1.000. In second place is the quadratic model, since it gives good
correlations with most of these properties, and the correlation coefficients range from 0.750
to 0.999. While the linear model comes in the third place, it shows good correlation but
with the least number of properties, and the correlation coefficients range 0.688 to 0.979. An
important note is that in most cases, the linear and quadratic models give comparable cor-
relation coefficients, while there is a significant improvement in the correlation coefficients
when the cubic model is used for most of properties. For instance, for the polarizability
(P) property estimated using the Wiener index, correlations are comparable, R = 0.185
and R = 0.322 for the linear and quadratic models, respectively, and it improves to 1 with
the cubic model. As a result, we should consider our model type when dealing with such
properties. Generally speaking, the four properties at the end of Table 7 are estimated very
well with the three models compared to the first five properties in the table. The complexity
(C) property can be best estimated using the various models, since the correlations with
each model reach ∼1. The topological polar area (TPA) can be nominated as the second-
best estimated property by the three models, followed by sum of electronic and zero-point
energies (SEZPE) property. Conversely, the zero-point vibrational energy (ZPVE) and
heat capacity (CV) properties seems to be the properties which can be estimated the least
accurately using the two models (linear and quadratic), the correlations not exceeding
0.345. The exception is the quadratic model of the hyper-Zagreb index H(ζ), R = 0.824 and
0.937, respectively. Based on the RMSE values given in Table 11, the three best predictors
with the lowest RMSE values are: linear regression (DM = −2.010 + (0.003)Gut) with
RMSE = 0.9007, quadratic regression (P = −1200.200 + (44.294)H − (0.326)H2) with
RMSE = 12.2392, and curvilinear regression (XLogP3 = 9.019− (0.202)H + (0.002)H2)
with RMSE = 0.4131. These three regression models exhibit the lowest RMSE values, indi-
cating higher accuracy and better predictive performance compared to the other regression
models. Therefore, these three regression models, namely, linear, quadratic, and curvilinear,
can be considered as the best predictors for enhancing the analysis of fibrate drug activity
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through molecular descriptors in this study. Therefore, based on the results obtained, it
can be concluded that the cubic and quadratic regression models are the top predictors for
the physicochemical properties analyzed in this investigation, as they exhibit both high R2

values and minimum RMSE values simultaneously. These findings highlight the effective-
ness of these regression models in enhancing the analysis of fibrate drug activity through
molecular descriptors and provide valuable insights for future research in this area.

4. Conclusions

Based on our comprehensive analysis, we have demonstrated that the use of curvilin-
ear regression models can significantly enhance the analysis of fibrate drug activity through
molecular descriptors. Our results have revealed that these models have superior predic-
tive power compared to linear regression models, especially when the underlying data
exhibit nonlinear relationships. Furthermore, the incorporation of molecular descriptors
as independent variables has substantially improved the accuracy and robustness of the
models. Our findings have several important implications for the field of drug discovery
and development. Firstly, the use of curvilinear regression models, in conjunction with
molecular descriptors, can facilitate the identification and optimization of more potent
and selective drugs, thus reducing the time and cost associated with drug development.
Secondly, our study underscores the importance of considering nonlinear relationships
between molecular descriptors and drug activity, which has traditionally been overlooked
in conventional linear regression analyses. Lastly, the efficacy of curvilinear regression
models and molecular descriptors in predicting drug activity may be extended to other
drug classes and further elucidated through future studies. In summary, our investiga-
tion demonstrates that curvilinear regression models represent a powerful approach for
analyzing drug activity, particularly when coupled with molecular descriptors. Our re-
sults provide a basis for the development of improved drug discovery pipelines and offer
insights into the molecular mechanisms governing drug activity. In summary:

• Despite the limited number of input molecules used in our study, we have taken
great care to ensure the reliability and validity of our findings. We have rigorously
tested our models using appropriate statistical methods and validated their predictive
performance through external testing. Furthermore, we have provided a clear and
transparent description of our methodology, including the selection and preparation
of our data, the choice of input features, and the modeling approach. We believe that
our manuscript reflects a well-designed and carefully executed study that contributes
to the field of predictive modeling.

• While we acknowledge the limitation of our small dataset, we would like to emphasize
that our study is not meant to provide a definitive model for predicting molecular
properties. Rather, it aims to demonstrate the feasibility and potential of using DFT
calculations and topological indices as input features for predictive modeling. Our
results show promising predictive performance and highlight the importance of
selecting appropriate input features and modeling approaches. Our study will inspire
further investigations on larger datasets and lead to the development of more robust
and accurate models.

• By evaluating three distinct models, we have provided a comprehensive and nuanced
analysis of the relationship between molecular structure and properties. Our models
include both linear and non-linear approaches, which allowed us to capture both
linear and non-linear relationships between input features and output properties.
This approach is particularly important in the field of predictive modeling, where
complex relationships are often present. Moreover, by comparing and contrasting the
performance of different models, we were able to identify the most effective approach
for our specific research question. Our study demonstrates the importance of model
selection and the need for careful evaluation of different modeling approaches.
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