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Abstract: The main purpose of this work is to completely solve two motion problems of some
differential type fluids when velocity or shear stress is given on the boundary. In order to do
that, isothermal MHD motions of incompressible second grade fluids over an infinite flat plate are
analytically investigated when porous effects are taken into consideration. The fluid motion is due to
the plate moving in its plane with an arbitrary time-dependent velocity or applying a time-dependent
shear stress to the fluid. Closed-form expressions are established both for the dimensionless velocity
and shear stress fields and the Darcy’s resistance corresponding to the first motion. The dimensionless
shear stress corresponding to the second motion has been immediately obtained using a perfect
symmetry between the governing equations of velocity and the non-trivial shear stress. Furthermore,
the obtained results provide the first exact general solutions for MHD motions of second grade fluids
through porous media. Finally, for illustration, as well as for their use in engineering applications,
the starting and/or steady state solutions of some problems with technical relevance are provided,
and the validation of the results is graphically proved. The influence of magnetic field and porous
medium on the steady state and the flow resistance of fluid are graphically underlined and discussed.
It was found that the flow resistance of the fluid declines or increases in the presence of a magnetic
field or porous medium, respectively. In addition, the steady state is obtained earlier in the presence
of a magnetic field or porous medium.

Keywords: second grade fluids; MHD motions; porous medium; general solutions; infinite plate;
flow resistance of fluid

1. Introduction

Incompressible second grade fluids have been extensively studied in modern science.
They belong to one of the most popular models of non-Newtonian fluids of the differential
type whose constitutive equation is given by the following relation.

T = − p̂I + µA1 + α1A2 + α2A2
1. (1)

Here, T is the stress tensor, − p̂I represents the indeterminate spherical stress, A1
and A2 are the first two Rivlin–Ericksen tensors, µ is the dynamic viscosity of the fluid,
while α1 and α2 are material constants. Such a constitutive equation is compatible with
thermodynamic laws and stability principles if [1] α1 ≥ 0 and α1 = −α2 = α. Consequently,
the constitutive Equation (1) can be rewritten in a simpler form [2].

T = − p̂I + µA1 + α(A2 −A2
1). (2)

In the existing literature, there are many studies concerning the existence and unique-
ness of solutions corresponding to motions of incompressible second grade fluids (see, for
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instance, the papers [1,3–7] and their references). The weak solvability of the equations
modeling steady state motions of the incompressible second grade fluids was recently
studied by Baranovskii [8].

The first exact solutions for isothermal unsteady motions of the incompressible second
grade fluids seem to be those of Ting [9] in unbounded rectangular and cylindrical domains.
He showed that these solutions become unbounded for fluids of rheological interest if the
constant α takes negative values. Other exact solutions for such motions of incompressible
second grade fluids through rectangular domains have been established by Rajagopal [10],
Bandelli et al. [11], Hayat et al. [12], Erdogan [13–15], Safdar [16] and Baranovskii [17,18].
General solutions for isothermal unidirectional motions of the same fluids between two
infinite parallel walls perpendicular to an infinite flat plate that applies an arbitrary time-
dependent shear stress to the fluid have been determined by Fetecau et al. [19], but only in
the absence of magnetic and porous effects.

Hydromagnetic (MHD) motions of fluids have important applications in geophysical
and astrophysical studies, MHD generators, the petroleum industry and hydrology. The
interaction between a moving electrical conducting fluid and the magnetic field induces
effects with applications in chemistry, physics and engineering. At the same time, motions
of fluids through porous media are important due to their numerous applications in the
petroleum industry, oil reservoir technology, agricultural engineering and many others.
Some extensions of the previous studies to MHD motions of second grade fluids through
porous media have been provided by Hayat et al. [20] and Ali and Awais [21]. Recently,
Fetecau and Vieru [22,23] used a surprising symmetry regarding the governing equations of
velocity and shear stress for MHD motions of incompressible second grade fluids through
porous media in order to provide new exact solutions for motions of the same fluids when
the shear stress is given on the boundary. However, their content is different from the
present results. The first of them contains exact solutions for oscillatory motions, while the
second one provides exact general solutions for motions between parallel plates. Other
general solutions for such motions of the same fluids have been established by Fetecau and
Vieru [24] between parallel plates when shear stress is given on the boundary.

The main purpose of the present work is to establish exact general solutions for MHD
unidirectional motions of incompressible second grade fluids over an infinite flat plate that
moves in its plane with a time-dependent velocity through a porous medium. Based on
the above-mentioned symmetry, the obtained results are used to develop exact solutions
for similar motions of the same fluids when the plate applies an arbitrary time-dependent
shear stress to the fluid. For illustration, as well as to prove the results’ correctness, some
motions with technical relevance are considered, and the corresponding steady solutions
are presented in different forms whose equivalence is graphically proved. In addition,
the influence of the magnetic field and porous medium on the steady state and the flow
resistance of fluid is shown graphically and discussed. It was found that the steady state
for such motions of second grade fluids is earlier obtained in the presence of a magnetic
field or porous medium.

2. Problem Presentation and Governing Equations

Consider an electrical conducting incompressible second grade fluid at rest over an
infinite flat plate incorporated in a porous medium. A magnetic field of strength B acts
perpendicular to the plate. The induced magnetic field is disregarded due to the small
values of the magnetic Reynolds number [25]. We also assume that the fluid is finitely
conducting so that the Joule heating can be neglected. In addition, the Hall effect has no
significant influence on the fluid motion at moderate values of the magnetic parameter. At
the moment t = 0+, the plate begins to move in its plate with the time-dependent velocity
W f (t) or to apply a shear stress Sg(t) to the fluid. The functions f (·) and g(·) are piecewise
continuous, and f (0) = g(0) = 0. The velocity W and the shear stress S are assumed
to be constants. Owing to the shear, the fluid is gradually moved, and its velocity, in a
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convenient Cartesian coordinate system x, y and z whose z-axis is perpendicular to the
plate, is characterized by the following vector relation:

w = w(z, t) = w(z, t)ey. (3)

Here, w is the velocity vector and ey is the unit vector along the y-axis. For such
motions, the incompressibility condition is identically satisfied.

Introducing the velocity vector w(z, t) from Equation (3) in the constitutive
Equation (2), one finds that the non-trivial shear stress η(z, t) is given by the relation [22,23]:

η(z, t) =
(

µ + α
∂

∂t

)
∂w(z, t)

∂z
; z > 0, t > 0. (4)

In the absence of a pressure gradient in the flow direction, the balance of linear
momentum reduces to the next partial differential equation [22,23]:

ρ
∂w(z, t)

∂t
=

∂η(z, t)
∂z

− σB2w(z, t) + R(z, t); z > 0, t > 0, (5)

where ρ is the fluid density, σ is its electrical conductivity and

R(z, t) = − ϕ

k

(
µ + α

∂

∂t

)
w(z, t); z > 0, t > 0, (6)

is the Darcy’s resistance. In the last relation, ϕ ∈ (0, 1) denotes the porosity, while k > 0
represents the permeability of the porous medium.

Assuming that the fluid is quiescent at infinity and adheres to the plate, the result is
that the following conditions

w(0, t) = W f (t), lim
z→∞

w(z, t) = 0, lim
z→∞

η(z, t) = 0; t > 0, (7)

or
η(0, t) = Sg(t), lim

z→∞
η(z, t) = 0, lim

z→∞
w(z, t) = 0; t > 0, (8)

have to be satisfied. The third condition from the relations (7) says that there is no shear in
the free stream. The corresponding initial conditions are given by the relations

w(z, 0) = 0, η(z, 0) = 0; z ≥ 0. (9)

3. General Solutions for the Motion Induced by the Flat Plate That Moves in Its Plane

Using the next dimensionless functions, variables and parameter

w∗ = 1
W w, η∗ = 1

ρW2 η, R∗ = ν
ρW3 R, z∗ = W

ν z,

t∗ = W2

ν t, f ∗(z∗, t∗) = f
(

ν
W z∗, ν

W2 t∗
)

, α∗ = W2

µν α
(10)

and excluding the star notation, for more simplified writing, one obtains the following
non-dimensional forms of the governing Equations (4)–(6), namely

η(z, t) =
(

1 + α
∂

∂t

)
∂w(z, t)

∂z
; z > 0, t > 0, (11)

∂w(z, t)
∂t

=
∂η(z, t)

∂z
−Mw(z, t) + R(z, t); z > 0, t > 0, (12)

R(z, t) = −K
(

1 + α
∂

∂t

)
w(z, t); z > 0, t > 0. (13)
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In the above relations, the magnetic and porosity parameters M and K, respectively,
are defined by the following relations:

M =
σB2

ρ

ν

W2 , K =
ϕ

k
ν2

W2 , (14)

where ν = µ/ρ is the kinematic viscosity of the fluid.
Eliminating the shear stress η(z, t) between Equations (11) and (12) and using

Equation (13), one finds the next partial differential equation for the dimensionless fluid
velocity w(z, t):

∂w(z, t)
∂t

=

(
1 + α

∂

∂t

)
∂2w(z, t)

∂z2 −Mw(z, t)− K
(

1 + α
∂

∂t

)
w(z, t); z > 0, t > 0, (15)

with the corresponding initial and boundary conditions

w(z, 0) = 0, z ≥ 0; w(0, t) = f (t), lim
z→∞

w(z, t) = 0; t > 0. (16)

In order to solve the problem with initial and boundary values defined by the relations
(15) and (16), we use the Fourier sine transform and its inverse defined by the relations [26]

wF(ξ, t) =

√
2
π

∞∫
0

w(z, t) sin(zξ)dz, w(z, t) =

√
2
π

∞∫
0

wF(ξ, t) sin(ξ z)dξ. (17)

Consequently, by multiplying Equation (15) by
√

2/π sin(zξ), integrating the result
from zero to infinity and bearing in mind the conditions (16), one obtains the ordinary
differential equation

[
1 + α(ξ2 + K)

]∂wF(ξ, t)
∂t

+ (ξ2 + Ke f f )wF(ξ, t) = ξ

√
2
π

[
f (t) + α f ′(t)

]
; t > 0, (18)

with the initial condition
wF(ξ, 0) = 0. (19)

In Equation (18), wF(ξ, t) is the Fourier sine transform of w(z, t) and Ke f f = M + K is
the effective permeability for MHD motions of incompressible Newtonian fluids through
porous media.

The solution of Equation (18) with the initial condition (19) is

wF(ξ, t) =
ξ
√

2/π

1 + α(ξ2 + K)

t∫
0

[
f (s) + α f ′(s)

]
exp

[
−

ξ2 + Ke f f

1 + α(ξ2 + K)
t

]
ds; t > 0. (20)

Inverting this result, one finds the following expression

w(z, t) =

√
2
π

∞∫
0

ξ sin(zξ)

1 + α(ξ2 + K)

t∫
0

[
f (s) + α f ′(s)

]
exp

[
−
(ξ2 + Ke f f )(t− s)

1 + α(ξ2 + K)

]
dsdξ; z > 0, t > 0, (21)

for the dimensionless velocity field w(z, t). However, in this form, w(z, t) seems to not
satisfy the boundary condition (16)2. This is the reason that we present the following
equivalent form here:

w(z, t) = f (t)− 2Ke f f f (t)
π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ

+ 2(αM−1)
π

∞∫
0

ξ sin(zξ)
(ξ2+Ke f f )[1+α(ξ2+K)]

t∫
0

f ′(s) exp
[
− (ξ2+Ke f f )(t−s)

1+α(ξ2+K)

]
dsdξ; z > 0, t > 0.

(22)
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The dimensionless shear stress η(z, t) and the Darcy’s resistance R(z, t) correspond-
ing to this motion can be obtained by substituting w(z, t) from Equation (21) or (22) in
Equations (11) and (13), respectively. Direct computations show that η(z, t) and R(z, t) can
be given by the relations

η(z, t) = − 2Ke f f [ f (t)+α f ′(t)]
π

∞∫
0

cos(zξ)
ξ2+Ke f f

dξ

+ 2α(αM−1)
π f ′(t)

∞∫
0

ξ2 cos(zξ)
(ξ2+Ke f f )[1+α(ξ2+K)]dξ

− 2(αM−1)2

π

∞∫
0

ξ2 cos(zξ)

(ξ2+Ke f f )[1+α(ξ2+K)]2

×
t∫

0
f ′(s) exp

[
− (ξ2+Ke f f )(t−s)

1+α(ξ2+K)

]
dsdξ; z > 0, t > 0,

(23)

R(z, t) = −K[ f (t) + α f ′(t)]

[
1− 2Ke f f

π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ

]
− 2αK(αM−1)

π f ′(t)
∞∫
0

ξ sin(zξ)
(ξ2+Ke f f )[1+α(ξ2+K)]dξ

+ 2K(αM−1)2

π

∞∫
0

ξ sin(zξ)

(ξ2+Ke f f )[1+α(ξ2+K)]2

×
t∫

0
f ′(s) exp

[
− (ξ2+Ke f f )(t−s)

1+α(ξ2+K)

]
dsdξ; z > 0, t > 0.

(24)

By choosing suitable expressions for the function f (·), we can determine exact solu-
tions for any motion of this kind of incompressible second grade fluids. Consequently, the
problem in discussion is completely solved. In the following, for completion as well as for
validation of general solutions, we shall provide exact solutions for the Stokes problems,
which are of fundamental theoretical and practical interest.

Taking α = 0 in the previous relations, solutions corresponding to incompressible
Newtonian fluids performing the same motion are immediately obtained. Equation (22),
for instance, takes the simpler form of

w(z, t) = f (t)− 2Ke f f f (t)
π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ

− 2
π

∞∫
0

ξ sin(zξ)
ξ2+Ke f f

t∫
0

f ′(s) e−(ξ
2+Ke f f )(t−s)dsdξ; z > 0, t > 0.

3.1. Stokes Second Problem

By substituting f (t) from Equation (22) with H(t) cos(ωt) or H(t) sin(ωt), where H(·)
is the Heaviside unit step function, one obtains the non-dimensional velocity fields wc(z, t)
and ws(z, t), respectively, corresponding to the second problem of Stokes. They can be
written as the sum of the steady state (permanent or long time) and transient components,
namely

wc(z, t) = wcp(z, t) + wct(z, t), ws(z, t) = wsp(z, t) + wst(z, t); z > 0, t > 0, (25)

in which
wcp(z, t) = cos(ωt)

− 2 cos(ωt)
π

∞∫
0

Ke f f (ξ
2+Ke f f )+ω2(αK+1)[1+α(ξ2+K)]

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

sin(zξ)
ξ dξ

+ 2ω(1−αM) sin(ωt)
π

∞∫
0

ξ sin(zξ)

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

dξ,

(26)
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wct(z, t) = 2(αM−1)
π

∞∫
0

ξ(ξ2+Ke f f ) sin(zξ){
(ξ2+Ke f f )

2
+ω2[1+α(ξ2+K)]2

}
[1+α(ξ2+K)]

× exp
[
− ξ2+Ke f f

1+α(ξ2+K) t
]

dξ,
(27)

wsp(z, t) = sin(ωt)

− 2 sin(ωt)
π

∞∫
0

Ke f f (ξ
2+Ke f f )+ω2(αK+1)[1+α(ξ2+K)]

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

sin(zξ)
ξ dξ

+ 2ω(αM−1)
π cos(ωt)

∞∫
0

ξ sin(zξ)

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

dξ,

(28)

wst(z, t) = 2ω(1−αM)
π

∞∫
0

ξ sin(zξ)

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

× exp
[
− ξ2+Ke f f

1+α(ξ2+K) t
]

dξ.
(29)

In order to obtain the previous results, we used the fact that

H′(t) = δ(t) and
t∫

0

δ(t− s) f (s)ds =
t∫

0

δ(s) f (t− s)ds = f (t),

where δ(·) is the Dirac delta function.
The corresponding expressions for the non-dimensional shear stresses ηcp(z, t), ηct(z, t),

ηsp(z, t), ηst(z, t) and the Darcy’s resistances Rcp(z, t), Rct(z, t), Rsp(z, t), Rst(z, t) can be
obtained by substituting wcp(z, t), wct(z, t) and wsp(z, t), wst(z, t) from Equations (26)–(29)
in (11) and (13), respectively. However, since these motions become steady or permanent
in time and the required time to reach the steady state is very important for the experi-
mental researchers, we shall present the expressions of their steady state components only
but in the simplest forms. In order to do that, we remember the fact that dimensionless
steady state components wcp(z, t), wsp(z, t) of wc(z, t) and ws(z, t) can be presented in the
forms [22]

wcp(z, t) = e−pz cos(ωt− qz), wsp(z, t) = e−pz sin(ωt− qz); z > 0, t ∈ R, (30)

or equivalently

wcp(z, t) = Re
{

eiωt−δ z
}

, wsp(z, t) = Im
{

eiωt−δ z
}

; z > 0, t ∈ R , (31)

in which

p =
√

ω
2

√
mω+
√

(mω)2+n2

1+(αω)2 , q =
√

ω
2

√
−mω+

√
(mω)2+n2

1+(αω)2 ,

m = α +
Ke f f +(αω)2K

ω2 , n = 1− αM, δ =

√
Ke f f +iω(1+αK)

1+iωα .

Figure 1 clearly shows the equivalence of the expressions of wcp(z, t) and wsp(z, t)
given by the Equations (26), (30)1, (31)1 and (28), (30)2, (31)2, respectively.

The expressions of the non-dimensional steady state shear stresses ηcp(z, t), ηsp(z, t)
and of the Darcy’s resistances Rcp(z, t), Rsp(z, t) corresponding to the two motions in the
discussion also have the simple forms

ηcp(z, t) = −re−pz cos(ωt− qz− ϕ), ηsp(z, t) = −re−pz sin(ωt− qz− ϕ); z > 0, t ∈ R, (32)

Rcp(z, t) = −K
√

1 + (αω)2e−pz cos(ωt− qz + ψ); z > 0, t ∈ R,

Rsp(z, t) = −K
√

1 + (αω)2e−pz sin(ωt− qz + ψ); z > 0, t ∈ R,
(33)
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or equivalent

ηcp(z, t) = −Re
{
(1 + iωα)δ eiωt−δ z

}
, ηsp(z, t) = −Im

{
(1 + iωα)δ eiωt−δ z

}
; z > 0, t ∈ R, (34)

Rcp(z, t) = −KRe
{
(1 + iωα)eiωt−δ z

}
, Rsp(z, t) = −KIm

{
(1 + iωα)eiωt−δ z

}
; z > 0, t ∈ R, (35)

where

r =
√
(αωp + q)2 + (αωq− p)2, ϕ = arctg

(
αωp + q
αωq− p

)
, ψ = arctg(αω).
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Figure 1. The equivalence of the expressions of the velocities wcp(z, t) and wsp(z, t) given by
Equations (26), (30)1, (31)1 and (28), (30)2, (31)2, respectively, for t = 10, α = 0.7, ω = π/6,
M = 0.6 and K = 0.5.

Figure 2 shows the equivalence of the expressions of ηcp(z, t) and ηsp(z, t) given by
the Equations (32)1, (34)1 and (32)2, (34)2, respectively. The equivalence of the expressions
of the corresponding Darcy’s resistances Rcp(z, t) and Rsp(z, t) given by Equations (33)1,
(35)1 and (33)2, (35)2, respectively, has been proved in the reference [22].
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(32)2, (34)2, respectively for t = 10, α = 0.7, ω = π/6, M = 0.6 and K = 0.5.



Symmetry 2023, 15, 1269 8 of 17

In all cases, the solutions corresponding to incompressible Newtonian fluids perform-
ing the same motions are immediately obtained, taking α = 0 in the above relations. In
addition, if we want to eliminate the magnetic or porous effects, it is sufficient to put M = 0
or K = 0, respectively, in the previous solutions. In the absence of both effects, for instance,
the dimensionless starting velocity fields wc(z, t) and ws(z, t) have the simplified forms

wc(z, t) = cos(ωt)− 2ω2 cos(ωt)
π

∞∫
0

(1+αξ2) sin(zξ)

ξ[ξ4+ω2(1+αξ2)
2
]
dξ

+ 2ω sin(ωt)
π

∞∫
0

ξ sin(zξ)

ξ4+ω2(1+αξ2)
2 dξ

− 2
π

∞∫
0

ξ3 sin(zξ)

ξ4+ω2(1+αξ2)
2 exp

(
− ξ2t

1+αξ2

)
dξ; z > 0, t > 0,

(36)

ws(z, t) = sin(ωt)− 2ω2 sin(ωt)
π

∞∫
0

(1+αξ2) sin(zξ)

ξ[ξ4+ω2(1+αξ2)
2
]
dξ

− 2ω cos(ωt)
π

∞∫
0

ξ sin(zξ)

ξ4+ω2(1+αξ2)
2 dξ

+ 2ω
π

∞∫
0

ξ sin(zξ)

ξ4+ω2(1+αξ2)
2 exp

(
− ξ2t

1+αξ2

)
dξ; z > 0, t > 0.

(37)

3.2. The First Problem of Stokes

Making ω = 0 in Equation (25)1, in which wcp(z, t) and wct(z, t) are given by
Equations (26) and (27), respectively, one finds the dimensionless velocity field

wC(z, t) = 1− 2Ke f f
π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ

+ 2(αM−1)
π

∞∫
0

ξ sin(zξ)
(ξ2+Ke f f )[1+α(ξ2+K)] exp

(
− ξ2+Ke f f

1+α(ξ2+K) t
)

dξ; z > 0, t > 0,
(38)

corresponding to the MHD motion of the same fluids over an infinite flat plate which,
after the moment t = 0+, slides in its plane with the constant velocity W through a porous
medium. This motion is known in the literature as “the first problem of Stokes”.

Expressions of the dimensionless shear stress ηC(z, t) and the Darcy’s resistance
RC(z, t) corresponding to the first problem of Stokes, namely

ηC(z, t) = − 2Ke f f
π

∞∫
0

cos(zξ)
ξ2+Ke f f

dξ − 2(αM−1)2

π

×
∞∫
0

ξ2 cos(zξ)

(ξ2+Ke f f )[1+α(ξ2+K)]2
exp

[
− ξ2+Ke f f

1+α(ξ2+K) t
]

dξ; z > 0, t > 0 ,
(39)

RC(z, t) = −K

[
1− 2Ke f f

π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ

]
− 2K(αM−1)2

π

∞∫
0

ξ sin(zξ)

(ξ2+Ke f f )[1+α(ξ2+K)]2
exp

[
− ξ2+Ke f f

1+α(ξ2+K) t
]

dξ; z > 0, t > 0,
(40)

have been obtained by introducing wC(z, t) from Equation (38) in (11) and (13). The
corresponding Newtonian solutions wNC(z, t), ηNC(z, t), RNC(z, t) can be immediately
obtained, making α = 0 in Equations (38)–(40), respectively.
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The steady components wCp(z), ηCp(z) and RCp(z) of the starting solutions wC(z, t),
ηC(z, t) and RC(z, t), respectively, are given by the next relations

wCp(z) = 1− 2Ke f f
π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ, ηCp(z) = −
2Ke f f

π

∞∫
0

cos(zξ)
ξ2+Ke f f

dξ,

RCp(z) = −K

[
1− 2Ke f f

π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ

]
; z > 0, t ∈ R .

(41)

As expected, they are the same both for second grade and Newtonian fluids. Using
entries 2 and 3 of Tables 4 and 5, respectively, of the reference [26], the result is that these
solutions can be written in the simple forms

wCp(z) = e−z
√

Ke f f , ηCp(z) = −
√

Ke f f e−z
√

Ke f f , RCp(z) = −Ke−z
√

Ke f f ; z > 0, t ∈ R. (42)

In the absence of magnetic and porous effects, RC(z, t) = 0 and

wC(z, t) = 1− 2
π

∞∫
0

sin(zξ)

ξ(1 + αξ2)
exp

(
− ξ2t

1 + αξ2

)
dξ; z > 0, t > 0, (43)

ηC(z, t) = − 2
π

∞∫
0

cos(zξ)

(1 + αξ2)2 exp
[
− ξ2t

1 + αξ2

]
dξ; z > 0, t > 0. (44)

The velocity field wC(z, t) given by Equation (43) has been obtained by Christov [27].
Taking α = 0 in Equations (43) and (44) and using entries 5 and 1 of Tables 4 and 5,
respectively, from the reference [26], the classical solutions corresponding to the first
problem of Stokes for incompressible Newtonian fluids, namely

wclassic(z, t) = Erfc
(

z
2
√

t

)
, ηclassic(z, t) = − 1√

π t
exp

(
− z2

4t

)
; z > 0, t > 0, (45)

are immediately recovered.

4. Motion Due to the Plate That Applies a Shear Stress Sg(t) to the Fluid

As already seen in Section 2, the velocity vector and governing equations correspond-
ing to this motion are characterized by the same Equations (3)–(6). The initial conditions
are also given by Equation (9), while the boundary conditions are given by Equation (8).
Introducing the following non-dimensional functions, variables and parameter

w∗ = w
√

ρ
S , η∗ = 1

S η, R∗ = ν
√

ρ

S
√

S
R, z∗ = z

ν

√
S
ρ ,

t∗ = S
µ t, α∗ = αS

µ2 , g∗(z∗, t∗) = g
(

ν z∗
√

ρ
S , µ

S t∗
) (46)

and again dropping out the star notation, dimensionless governing equations correspond-
ing to this motion have identical forms to those from relations (11)–(13) in which

M =
σB2

ρ

µ

S
=

ν

S
σB2, K =

ϕ

k
µν

S
. (47)

Dimensionless initial and boundary conditions corresponding to this problem are

w(z, 0) = 0, η(z, 0) = 0; z ≥ 0, (48)

respectively,
η(0, t) = g(t), lim

z→∞
η(z, t) = 0, lim

z→∞
w(z, t) = 0; t > 0. (49)
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Eliminating the velocity w(z, t) between Equations (11) and (12) and having
Equation (13) in mind, one finds the following partial differential equation

∂η(z, t)
∂t

=

(
1 + α

∂

∂t

)
∂2η(z, t)

∂z2 −Mη(z, t)− K
(

1 + α
∂

∂t

)
η(z, t); z > 0, t > 0, (50)

for the dimensionless shear stress η(z, t).
The governing Equation (50) is identical in form to the governing Equation (15) of

the dimensionless velocity field w(z, t). Consequently, bearing in mind the corresponding
initial and boundary conditions as well as the expression of w(z, t) from the previous
section, the result is that

η(z, t) = g(t)− 2Ke f f g(t)
π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ + 2(αM−1)
π

∞∫
0

ξ sin(zξ)
(ξ2+Ke f f )[1+α(ξ2+K)]

×
t∫

0
g′(s) exp

[
− ξ2+Ke f f

1+α(ξ2+K) (t− s)
]

dsdξ; z > 0, t > 0.
(51)

Once the dimensionless shear stress η(z, t) is known for a given function g(·), the
corresponding velocity field w(z, t) can be immediately determined by solving the linear
ordinary differential Equation (12), in which R(z, t) is given by Equation (13). The Darcy’s
resistance R(z, t) is then obtained using Equation (13). For exemplification, we consider
two special cases when the flat plate applies oscillatory shear stresses or constant shear
stress to the fluid.

4.1. The Case g(t) Equal to H(t) cos(ωt) or H(t) sin(ωt)

Bearing in mind the previous results, the result is that the dimensionless starting shear
stresses ηc(z, t), ηs(z, t) corresponding to this motion can be written in the forms

ηc(z, t) = ηcp(z, t) + ηct(z, t), ηs(z, t) = ηsp(z, t) + ηst(z, t); z > 0, t > 0, (52)

where
ηcp(z, t) = cos(ωt)

− 2 cos(ωt)
π

∞∫
0

Ke f f (ξ
2+Ke f f )+ω2(αK+1)[1+α(ξ2+K)]

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

sin(zξ)
ξ dξ

+ 2ω(1−αM) sin(ωt)
π

∞∫
0

ξ sin(zξ)

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

dξ,

(53)

ηct(z, t) = 2(αM−1)
π

∞∫
0

ξ(ξ2+Ke f f ) sin(zξ){
(ξ2+Ke f f )

2
+ω2[1+α(ξ2+K)]2

}
[1+α(ξ2+K)]

× exp
[
− ξ2+Ke f f

1+α(ξ2+K) t
]

dξ,
(54)

ηsp(z, t) = sin(ωt)

− 2 sin(ωt)
π

∞∫
0

Ke f f (ξ
2+Ke f f )+ω2(αK+1)[1+α(ξ2+K)]

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

sin(zξ)
ξ dξ

+ 2ω(αM−1)
π cos(ωt)

∞∫
0

ξ sin(zξ)

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

dξ,

(55)

ηst(z, t) = 2ω(1−αM)
π

∞∫
0

ξ sin(zξ)

(ξ2+Ke f f )
2
+ω2[1+α(ξ2+K)]2

× exp
[
− ξ2+Ke f f

1+α(ξ2+K) t
]

dξ,
(56)

In addition, the dimensionless steady state components ηcp(z, t) and ηsp(z, t) can also
be written in equivalent forms, i.e.,

ηcp(z, t) = e−pz cos(ωt− qz), ηsp(z, t) = e−pz sin(ωt− qz); z > 0, t ∈ R, (57)
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or
ηcp(z, t) = Re

{
eiωt−δ z

}
, ηsp(z, t) = Im

{
eiωt−δ z

}
; z > 0, t ∈ R , (58)

in which the constants p, q and δ have the same significations as in the previous section.
Lengthy but straightforward computations show that dimensionless steady state

velocities wcp(z, t), wsp(z, t) and the Darcy’s resistances Rcp(z, t), Rsp(z, t) corresponding
to these two motions are given by the following relations:

wcp(z, t) = 1
r e−pz cos(ωt− qz + ϕ),

wsp(z, t) = 1
r e−pz sin(ωt− qz + ϕ); z > 0, t ∈ R,

(59)

Rcp(z, t) = K
r

√
1 + (αω)2e−pz cos(ωt− qz + ϕ + ψ); z > 0, t ∈ R,

Rsp(z, t) = K
r

√
1 + (αω)2e−pz sin(ωt− qz + ϕ + ψ); z > 0, t ∈ R,

(60)

or equivalently

wcp(z, t) = −Re
{

1
δ(1+iωα)

eiωt−δ z
}

,

wsp(z, t) = −Im
{

1
δ(1+iωα)

eiωt−δ z
}

; z > 0, t ∈ R ,
(61)

Rcp(z, t) = KRe
{

1
δ

eiωt−δ z
}

, Rsp(z, t) = KIm
{

1
δ

eiωt−δ z
}

; z > 0, t ∈ R , (62)

The equivalence of the expressions of Darcy’s resistances Rcp(z, t) and Rsp(z, t) given
by the relations (60)1, (62)1 and (60)2, (62)2, respectively, is proved by Figure 3.
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Figure 3. Equivalence of the expressions of Rcp(z, t) and Rsp(z, t) given by Equations (60)1, (62)1 and
(60)2, (62)2, respectively, for t = 10, α = 0.7, ω = π/6, M = 0.6 and K = 0.5.

As a check of the results’ correctness, here, we include Table 1 for the values of Darcy’s
resistances Rcp(z, t) and Rsp(z, t), which are given by the Equations (60) and (62).

These values correspond to t = 10, α = 0.7, ω = π/6, M = 0.6 and K = 0.5.
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Table 1. Values of Darcy’s resistances given by Equations (60) and (62).

y
Rcp(z)

Given by
Equation (60)1

Rcp(z)
Given by

Equation (62)1

Rsp(z)
Given by

Equation (60)2

Rsp(z)
Given by

Equation (62)2

0 0.181 0.181 −0.413 −0.413

0.5 0.090 0.090 −0.244 −0.244

1.0 0.043 0.043 −0.144 −0.144

1.5 0.020 0.020 −0.084 −0.084

2.0 8.466 · 10−3 8.466 · 10−3 −0.049 −0.049

2.5 3.151 · 10−3 3.151 · 10−3 −0.029 −0.029

3.0 8.127 · 10−4 8.127 · 10−4 −0.017 −0.017

3.5 −1.122 · 10−4 −1.122 · 10−4 −9.558 · 10−3 −9.558 · 10−3

4.0 −3.993 · 10−4 −3.993 · 10−4 −5.497 · 10−3 −5.497 · 10−3

4.5 −4.223 · 10−4 −4.223 · 10−4 −3.149 · 10−3 −3.149 · 10−3

5.0 −3.533 · 10−4 −3.533 · 10−4 −1.798 · 10−3 −1.798 · 10−3

5.5 −2.663 · 10−4 −2.663 · 10−4 −1.022 · 10−3 −1.022 · 10−3

6.0 −1.890 · 10−4 −1.890 · 10−4 −5.790 · 10−4 −5.790 · 10−4

6.5 −1.291 · 10−4 −1.291 · 10−4 −3.266 · 10−4 −3.266 · 10−4

7.0 −8.572 · 10−5 −8.572 · 10−5 −1.834 · 10−4 −1.834 · 10−4

7.5 −5.575 · 10−5 −5.575 · 10−5 −1.026 · 10−4 −1.026 · 10−4

8.0 −3.568 · 10−5 −3.568 · 10−5 −5.707 · 10−5 −5.707 · 10−5

8.5 −2.253 · 10−5 −2.253 · 10−5 −3.160 · 10−5 −3.160 · 10−5

9.0 −1.407 · 10−5 −1.407 · 10−5 −1.739 · 10−5 −1.739 · 10−5

9.5 −8.709 · 10−6 −8.709 · 10−6 −9.518 · 10−6 −9.518 · 10−6

10 −5.345 · 10−6 −5.345 · 10−6 −5.173 · 10−6 −5.173 · 10−6

4.2. The Case g(t) Equal to H(t)

Making ω = 0 in Equation (52)1, in which ηcp(z, t) and ηct(z, t) are given by
Equations (53) and (54), one finds the dimensionless shear stress

ηS(z, t) = 1− 2Ke f f
π

∞∫
0

sin(zξ)
ξ(ξ2+Ke f f )

dξ

+ 2(αM−1)
π

∞∫
0

ξ sin(zξ)
(ξ2+Ke f f )[1+α(ξ2+K)] exp

(
− ξ2+Ke f f

1+α(ξ2+K) t
)

dξ; z > 0, t > 0,
(63)

corresponding to the motion of incompressible second grade fluid induced by the lower
plate that applies a constant shear stress S to the fluid after the moment t = 0+. Direct
computations show that the steady solutions wSp(z), ηSp(z) and RSp(z) corresponding to
this motion have the simple expressions

wSp(z) = −
1√
Ke f f

e−z
√

Ke f f , ηSp(z) = e−z
√

Ke f f , RSp(z) =
K√
Ke f f

e−z
√

Ke f f ; z > 0, t ∈ R, (64)

which are the same for both incompressible second grade and Newtonian fluids.
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5. Influence of Magnetic Field and Porous Medium on Steady State and the Flow
Resistance of Fluid

All exact solutions that have been previously determined correspond to isothermal
unsteady motions, which become steady over time. The corresponding starting solutions
describe the fluid motion sometime after its initiation. After this time, the fluid behavior
can be characterized by the corresponding steady state solutions, which satisfy governing
equations and boundary conditions but are independent of the initial conditions. From a
mathematical point of view, it is the time after which the diagrams of starting solutions
overlap with those of the steady state solutions (steady state components of starting
solutions). This time is very important for experimental researchers who want to know
the transition moment of the motion toward the steady state. From Figures 4 and 5, which
show the convergence of the starting solution wC(z, t) given by Equation (38) to its steady
component wCp(z) (from Equation (41)1 or (42)1) for increasing values of the dimensionless
time t and distinct values of M and K, the result is that the steady state for the first problem
of Stokes of incompressible second grade fluids is earlier obtained in the presence of a
magnetic field or porous medium.

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 4. Convergence of starting velocity ),( tzwC  given by Equation (38) to its steady compo-
nent )(zwCp  given by Equation (42)1 for ,2.0,7.0 == Kα  two values of M and increasing val-

ues of the time t. 

 
Figure 5. Convergence of starting velocity ),( tzwC  given by Equation (38) to its steady compo-

nent )(zwCp  given by Equation (42)1 for ,8.0,7.0 == Mα  two values of K and increasing 

values of the time t. 

In order to show the flow resistance of the fluid, the variations of the Darcy’s re-
sistance ),( tzRC  against z given by Equation (40) are presented in Figure 6 for 

5,2.0,7.0 === tKα  and increasing values of the magnetic parameter M and 
5,8.0,7.0 === tMα  and increasing values of the porosity parameter K. From these 

figures, the result is clearly that the flow resistance of fluid, in absolute value, declines 
for increasing values of M and is an increasing function with respect to the parameter K. 
Consequently, the fluid flows faster in the presence of a magnetic field while its velocity, 
as expected, diminishes through porous media. 

Figure 4. Convergence of starting velocity wC(z, t) given by Equation (38) to its steady component
wCp(z) given by Equation (42)1 for α = 0.7, K = 0.2, two values of M and increasing values of the
time t.

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 4. Convergence of starting velocity ),( tzwC  given by Equation (38) to its steady compo-
nent )(zwCp  given by Equation (42)1 for ,2.0,7.0 == Kα  two values of M and increasing val-

ues of the time t. 

 
Figure 5. Convergence of starting velocity ),( tzwC  given by Equation (38) to its steady compo-

nent )(zwCp  given by Equation (42)1 for ,8.0,7.0 == Mα  two values of K and increasing 

values of the time t. 

In order to show the flow resistance of the fluid, the variations of the Darcy’s re-
sistance ),( tzRC  against z given by Equation (40) are presented in Figure 6 for 

5,2.0,7.0 === tKα  and increasing values of the magnetic parameter M and 
5,8.0,7.0 === tMα  and increasing values of the porosity parameter K. From these 

figures, the result is clearly that the flow resistance of fluid, in absolute value, declines 
for increasing values of M and is an increasing function with respect to the parameter K. 
Consequently, the fluid flows faster in the presence of a magnetic field while its velocity, 
as expected, diminishes through porous media. 

Figure 5. Convergence of starting velocity wC(z, t) given by Equation (38) to its steady component
wCp(z) given by Equation (42)1 for α = 0.7, M = 0.8, two values of K and increasing values of the
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In order to show the flow resistance of the fluid, the variations of the Darcy’s resistance
RC(z, t) against z given by Equation (40) are presented in Figure 6 for α = 0.7, K = 0.2,
t = 5 and increasing values of the magnetic parameter M and α = 0.7, M = 0.8, t = 5
and increasing values of the porosity parameter K. From these figures, the result is clearly
that the flow resistance of fluid, in absolute value, declines for increasing values of M and
is an increasing function with respect to the parameter K. Consequently, the fluid flows
faster in the presence of a magnetic field while its velocity, as expected, diminishes through
porous media.
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6. Conclusions

In the present work, the first exact general solutions for isothermal MHD motions of
the incompressible second grade fluids over an infinite flat plate incorporated in a porous
medium are determined. The fluid motion is induced by the flat plate that, after the moment
t = 0+, begins to move in its plane with the time-dependent velocity W f (t). Closed-form
expressions are established for the dimensionless velocity field w(z, t), the corresponding
non-trivial shear stress η(z, t) and the Darcy’s resistance R(z, t). For illustration, as well
as for the validation of the obtained results, some motions with engineering applications
are considered, and the steady state components wcp(z, t), wsp(z, t) of the dimensionless
starting velocities wc(z, t), ws(z, t) are presented in three different forms whose equivalence
was graphically proved in Figure 1. The equivalence of the expressions of the dimensionless
steady state shear stresses ηcp(z, t) and ηsp(z, t) given by Equations (32)1, (34)1 and (32)2,
(34)2, respectively, was proved by Figure 2.

In the next section, based on an important remark regarding the governing equations
of velocity and shear stress for such motions of incompressible second grade fluids, a
general expression for the dimensionless starting shear stress corresponding to the motion
produced by the flat plate that applies a time-dependent shear stress Sg(t) to the fluid was
immediately provided. Once the shear stress is known by a prescribed function g(·), the
fluid velocity can be easily determined by solving an ordinary linear differential equation
(see Equation (12), in which R(z, t) is given by Equation (13)). In addition, as well as in the
case of previous motions, the steady state velocity fields wcp(z, t), wsp(z, t) and the Darcy’s
resistances Rcp(z, t), Rsp(z, t) for motions due to oscillatory shear stresses H(t) cos(ωt) or
H(t) sin(ωt) on the boundary are presented in equivalent forms. The equivalence of the
expressions of Darcy’s resistances Rcp(z, t) and Rsp(z, t) given by Equations (60)1, (62)1 and
(60)2, (62)2, respectively, was graphically proved by Figure 3. The respective graphs, as it
results from Table 1, perfectly overlap. Effects of magnetic field and porous medium on the
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steady state of the motion and the flow resistance of fluid have been graphically brought to
light in Figures 4–6.

Finally, we mention the fact that the dimensionless shear stress η(z, t) given by the
Equation (51) can be written in the simple form

η(z, t) = g(t)− 2
π g(t)

∞∫
0

sin(zξ)
ξ(1+αξ2)

dξ

+ 2
π

∞∫
0

ξ sin(zξ)

(1+αξ2)
2

t∫
0

g(s) exp
[
− ξ2(t−s)

1+αξ2 (t− s)
]
dsdξ; z > 0, t > 0,

(65)

in the absence of the magnetic field and porous medium. As expected, the dimensional
form of this solution is identical to that obtained by Fetecau et al. [19] (the Equation (20))
by a completely different method as a limiting case of the solution corresponding to the
motions between two parallel walls perpendicular to an infinite plate.

The main outcomes that have been obtained here are:

(1) Dimensionless exact solutions for the isothermal MHD motion of incompressible sec-
ond grade fluids over an infinite flat plate embedded in a porous medium have been
determined when the plate moves in its plane with the time-dependent velocity W f (t).

(2) Using an interesting but surprising symmetry between the governing equations
for velocity and shear stress, the shear stress corresponding to the motion of the
same fluids due to the infinite plate that applies a shear stress Sg(t) to the fluid has
been provided.

(3) In both cases, for the validation of the results, some motions with technical rele-
vance are considered, and the steady state components of the corresponding dimen-
sionless starting solutions are presented in different forms. Their equivalence was
graphically proved.

(4) It was graphically proved that the steady state is earlier obtained in the presence of a
magnetic field or porous medium. In addition, the flow resistance of fluid diminishes
in the presence of a magnetic field and, as expected, increases through porous media.

The present results, as well as those from the references [23,24], can be extended to
MHD motions of incompressible Oldroyd-B fluids between infinite parallel plates. The
governing equations for velocity and shear stress corresponding to these motions of the
respective fluids are also identical.
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Nomenclature

T Cauchy stress tensor
A1, A2 First two Rivlin–Ericksen tensors
I Identity tensor
p̂ Hydrostatic pressure
ey Unit vector along the y-axis
B Magnitude of the applied magnetic field
w Velocity vector
x, y, z Cartesian coordinates
R(z, t) Darcy’s resistance
w(z, t) Fluid velocity



Symmetry 2023, 15, 1269 16 of 17

M Magnetic parameter
K Porosity parameter
k Permeability of porous medium
Ke f f Effective permeability
α1, α2 Material constants
µ Dynamic viscosity
ρ Fluid density
ν Kinematic viscosity
η(z, t) Shear stress
ω Frequency of oscillations
ϕ Porosity
σ Electrical conductivity
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