
Citation: Rizwan, M.; Shahab, S.;

Bhatti, A.A.; Javaid, M.; Anjum, M.

On the Hyper Zagreb Index of Trees

with a Specified Degree of Vertices.

Symmetry 2023, 15, 1295. https://

doi.org/10.3390/sym15071295

Academic Editors: Ismail Naci

Cangul, Kinkar Chandra Das and

Ahmet Sinan Cevik

Received: 24 May 2023

Revised: 19 June 2023

Accepted: 20 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

On the Hyper Zagreb Index of Trees with a Specified Degree
of Vertices
Muhammad Rizwan 1, Sana Shahab 2 , Akhlaq Ahmad Bhatti 1, Muhammad Javaid 3,* and Mohd Anjum 4

1 Department of Sciences and Humanities, National University of Computer & Emerging Sciences, Lahore
Campus, Lahore 54770, Pakistan; L165514@lhr.nu.edu.pk (M.R.); akhlaq.ahmad@nu.edu.pk (A.A.B.)

2 Department of Business Administration, College of Business Administration, Princess Nourah Bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; sshahab@pnu.edu.sa

3 Department of Mathematics, School of Science, University of Management and Technology,
Lahore 54770, Pakistan

4 Department of Computer Engineering, Aligarh Muslim University, Aligarh 202002, India;
mohdanjum@zhcet.ac.in

* Correspondence: muhammad.javaid@umt.edu.pk or javaidmath@gmail.com

Abstract: Topological indices are the numerical descriptors that correspond to some certain physico-
chemical properties of a chemical compound such as the boiling point, acentric factor, enthalpy of
vaporisation, heat of fusion, etc. Among these topological indices, the Hyper Zagreb index, is the
most effectively used topological index to predict the acentric factor of some octane isomers. In the
current work, we investigate the extremal values of the Hyper Zagreb index for some classes of trees.
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1. Introduction

Here, we only work with simple, connected, and finite tree graphs. We assume
that in a graph G(V(G), E(G)), V(G) and E(G) represent the set of vertices and the set
of edges, respectively. The degree of a vertex v is denoted by the symbol dv or dv(G).
The symbols ∆ or ∆(G) represent a vertex’s highest degree in a graph G. Every acyclic
graph is called a tree, which is denoted by T. A leaf or a pendant vertex is a vertex of
degree one. A branching vertex contains a degree more than or equal to three. We use the
notation NG(v) to express the set of all neighbouring vertices to v. Further, we assume that
NG [v] = NG (v)

⋃{ v}. The graph G
′

comes into existence when some transformations or
operations are applied on G. In such a case, we assume dt or dt(G) is the vertex degree of t
in G, whereas |V(G)| = |V(G

′
)|. For the undefined terminologies and notations related to

this work, the reader can consult [1].
Graphs can be used to represent chemical substances (such as hydrocarbons) [2].

A topological descriptor is a number (or combination of numbers) that captures a certain
characteristic of the graph. If a certain molecular property resembles the descriptor, it is con-
sidered a topological index. This particular type of descriptor, known as a topological index,
can be used to analyse the physicochemical characteristics of chemical substances. Dur-
ing the past few years, there has been extensive research into the structural and analytical
properties of topological indices in the field of mathematical chemistry [3–5]. For instance,
topological indices have been used in (QSPR) and (QSAR) studies to model the properties
of chemical compounds [6–8]. Topological indices have theoretical and practical appeal
because they are now essential resources for the investigation of numerous real-world
issues in fields such as computer science [9], physics [10], and ecology [11], among others.

Many topological index applications have been documented, the majority of which
focus on investigating medical and pharmaceutical problems. A substantial and quickly
growing field of study on this subject started midway through the 1990s, yielding a large
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amount of research, and this marked an important development in the study of topological
indices mathematically. The work conducted by Erdös [12,13] should be particularly
addressed within this scenario.

As an innovative method of describing heteroatoms in molecules, the idea of gen-
eralised molecular descriptors was put forth [14,15], in addition to evaluating structural
variations [16]. The Zagreb types of topological indices and Zagreb polynomials for a few
nanotubes covered by cycles were discussed in [17]. The regression relation between some
topological indices and the sum-based geometric arithmetic index was determined in [18].
In [19], the authors showed the ability to use many topological indices for correlation, given
the situation of typical temperatures of production; in addition, the authors assessed the
common boiling temperatures of octane isomers. Siddiqui computed the exact formula for
Zagreb indices and Zagreb polynomials for certain graphs, Sn, S(n, C3), and S(n, C4), with
n = 1, 2, 3, and they also determined the corresponding graphs, see [20].

To achieve a forecast of a certain property of molecules, topological indices are primar-
ily used; for more information, see [21–23]. Finding the extremal graphs on a collection of
graphs that satisfy the limitations imposed by the parameters that minimise (or maximise)
the value of a topological index, is hence a straightforward challenge [24–26].

Here, we present some topological indices related to our current work. In [27], the vari-
able sum connectivity index was explored as,

χα(G) = ∑
uv∈E(G)

(du + dv)
α,

with α ∈ R.
Note that ∑uv∈E(G)(du + dv) = ∑u∈V(G)(d2

u); consequently, χ1 and 2χ−1 denote the
M1 and (H harmonic index), respectively. See [28–31], etc., for more detail.

In 2004, Zhou et al. [32] developed the Hyper Zagreb index as

HM(G) = ∑
uv∈E(G)

(du + dv)
2,

which has been widely studied in different areas.
The Hyper Zagreb index and a number of the physicochemical characteristics of

alkanes have been well correlated: vapor pressure, boiling points, surface areas, etc. The en-
thalpy of vaporisation (HVAP), acentric factor, heat of fusion (DHVAP) of octane isomers,
and entropy are among the physicochemical parameters that have been assessed using the
Hyper Zagreb index HM(G) . In particular, the HM(G) highly correlates with the acentric
factor [33]. By ∆/δ, we mean the maximum/minimum degree of a graph G; in terms
of ∆ and δ, the extreme values on the Hyper Zagreb index of graph G have been exam-
ined [34]. In [35], the extreme values for the first and second Hyper Zagreb indices were
established. Additionally, using benzenoid hydrocarbons’ boiling points as inputs, linear
regression analysis was performed on degree-based indices. By comparison, the models
corresponding to the other distance-based indices performed worse than the Hyper Zagreb
index-based linear model.

In the current work, we characterize some nonsymmetric special classes of trees,
which maximise or minimise the Hyper Zagreb index with n-vertex trees for (i) all odd
degree vertices, (ii) fixed even degree vertices, and a (iii) fixed number of vertices of
maximum degree.

2. Methodology

The following method was adopted to perform the research:

Step 1: We categorized the family of tree graphs into three different classes say, OT, ETn,r,
and MTn,k.
Step 2: We constructed the lemmas to support our main results.
Step 3: Some graph operations were defined in lemmas to search our extremal graphs.
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Step 4: By using the contradiction method and the lemmas, we obtained our main theorems
in which we defined the exact formulas for the Hyper Zagreb index.

3. On the Minimum Hyper Zagreb Index of Trees with All Odd Degrees

Let OT be the collection of all n-vertex trees having an even number of vertices, and
each vertex has an odd degree. In this section, we characterize the class of trees from OT,
which contains the minimum value of the Hyper Zagreb index.

Lemma 1. Let Tmin ∈ OT be a tree having a minimum Hyper Zagreb index. Let P = x0x1 . . . ,
xi−1xi(= u)xi+1 . . . , xl be a path in Tmin, which contains the vertex u, where the vertex u
has the maximum degree among all xi; 0 ≤ i ≤ l, such that du ≥ 5. We also assume that
xi−1, xi+1, u1, u2 . . . , udu−2 are the vertices adjacent to u in Tmin, and w1 is a pendent vertex con-
nected to u via u1 (u1 may be equal to w1). We define T(1) = Tmin − uu2 − uu3 + u2w1 + u3w1,
as shown in Figure 1. Clearly, T(1) ∈ OT, and we have HM(Tmin) > HM(T(1)).

x0 x1 xl−1 xl

xi = u

xi+1xi−1

u
1

u
2

u
du−2

x0 x1 xl−1 xl

xi = u

xi+1xi−1

u
1

u
2

u
du−2

u
3

Tmin T
(1)

w
2

w
1

w
2

w
1

Figure 1. Tmin and T(1) in Lemma 1.

Proof of Lemma 1. We first find the difference Tmin - T(1) for the Hyper Zagreb index. Note
that u and w1 are the only vertices whose degrees differ in Tmin and T(1). Therefore,

HM(Tmin)− HM(T(1)) = (du + du2)2 + (du + du3)2 + (dw1 + dw2)2 + ∑
t∈N(u)
t 6=u2,u3

(du + dt)
2

− ∑
t∈N(u)
t 6=u2,u3

(du − 2 + dt)
2 − (dw1 + 2 + dw2)2

−(dw1 + 2 + du3)2 − (dw1 + 2 + du2)2

= 2dudu2 + 2(du)
2 + 2dudu3 − 30 + 4du

+4 ∑
t∈N(u)
t 6=u2,u3

dt − 4dw2 − 6du3 − 6du2

= 2dudu2 − 6du2 + 2dudu3 − 6du3 + 2(du)
2 − 30

+4 ∑
t∈N(u)
t 6=u2,u3

(du + dt)− 4dw2 > 0.

Since du ≥ dw2 , du2 ≥ 3, du3 ≥ 3, ∑ t∈N(u)
t 6=u2,u3

dt ≥ 3, a contradiction arises with our assump-

tion.
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Theorem 1. If T ∈ OT, then HM(T) ≥ 26n− 56, and the sign of equality holds, if and only if T
possesses the degree sequence

(3, 3, . . . , 3, 3︸ ︷︷ ︸
n−2

2

, 1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
n+2

2

).

Proof of Theorem 1. Let T ∈ OT minimize the Hyper Zagreb index. We claim that there
exist only the vertices of degree 1 and degree 3 in T. Suppose that on the contrary, there
exists at least one vertex v of a degree greater or equal to 2t+ 1, i.e., dv ≥ 2t+ 1, t = 2, 3, 4 . . ..
According to Lemma 1, we obtain a tree T(1), such that HM(T(1)) < HM(T), which
contradicts the choice of T, when we apply the transformation defined in Lemma 1 to every
vertex v of degree dv ≥ 2t + 1 successively. In every step from a tree T(j), we obtain a
tree T(j+1) that contains a lower Hyper Zagreb index than its predecessor. We apply this
transformation successively to obtain T(k). Clearly, T(k) ∈ OT, and HM(T(k)) < HM(T),
where Tk has the degree sequence

(3, 3, . . . , 3, 3︸ ︷︷ ︸
n−2

2

, 1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
n+2

2

),

and the proof is complete.

4. On the Minimum and Maximum Hyper Zagreb Index of Trees with Fixed Even
Degree Vertices

Let ETn,r denote the set of all n-vertex trees in which every tree has a fixed number of
even degree vertices. Let the cardinality of the even degree vertices be denoted by r, such
that r ≥ 1 and n ≥ 5.

Lemma 2. Let Tmin ∈ ETn,r be a tree having a minimum Hyper Zagreb index. Let P =
x0x1 . . . , xi−1 xi(= u)xi+1 . . . , xl be a path in Tmin, which contains the vertex u, where u has the
maximum degree in Tmin ∈ ETn,r, such that du ≥ 4, and du ≥ dxi ; 0 ≤ i ≤ l. We also assume
that xi−1, xi+1, u1, u2, u3 . . . , udu−2 are the vertices adjacent to u, and x0, xl are pendent vertices
in Tmin. We define T(1) = Tmin − uu1 − uu2 + u1xl + u2xl (xl may be equal to xi+1), as shown
in Figure 2. Clearly, T(1) ∈ ETn,r; then, HM(Tmin) > HM(T(1)).

x0 x1 xl−1 xl

xi = u

xi+1xi−1

u
1

u
2

u
du−2

x0 x1 xl−1 xl

xi = u

xi+1xi−1

u
1

u
2

u
du−2

u
3Tmin T

(1)

Figure 2. Tmin and T(1) in Lemma 2.

Proof of Lemma 2. We first find the difference Tmin − T(1) for the Hyper Zagreb index.
Note that u and xl are the only vertices whose degrees differ in Tmin and T(1). Therefore,

HM(Tmin)− HM(T(1)) = (du + du1)2 + (du + du2)2 + ∑
t∈N(u)
t 6=u1,u2

(du + dt)
2 + (dxl + dxl−1)

2

− ∑
t∈N(u)
t 6=u2,u3

(du − 2 + dt)
2 + (dxl + 2 + du1)2

+(dxl + 2 + du2)2 + (dxl + 2 + dxl−1)
2

= 2dudu1 + 2(du)
2 + 2dudu2 − 30 + 4du
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+4 ∑
t∈N(u)
t 6=u2,u3

dt − 6du1 − 6du2 − 4dxl−1 > 0,

and since du2 ≥ 1, du3 ≥ 1, ∑ t∈N(u)
t 6=u2,u3

dt ≥ 3, is a contradiction.

Lemma 3. (a) Let u, z, v, and w be the vertices of a tree T ∈ ETn,r such that uz, zv, and vw ∈
E(T), and du(T) = 1, dz(T) = 2, dw(T) = 3, and dv(T) = 3. We define T

′
from T as T

′
=

T − uz− vw + zw + uv; then, HM(T
′
) < HM(T).

(b) Let u, y, z, v, w, and t be the vertices of tree T ∈ ETn,r such that uy, yz, zv, and wt ∈ E(T),
and dv(T) = dw(T) = dt(T) = du(T) = 3, and dy(T) = dz(T) = 2 (v may coincide with w).
We define T

′
as T

′
= T − yz− zv− wt + zw + zt + yv; then, HM(T

′
) < HM(T).

Proof of Lemma 3. (a) From the structure of T and T
′

we have,

HM(T)− HM(T
′
) = 2(1− dw)(dz − dv) > 0,

and since dw = 3, dz = 2, and dv = 3, this implies HM(T) > HM(T
′
).

(b) From the structure of T and T
′
, we have,

HM(T)− HM(T
′
) = 2(dydz + dzdv + dwdt − dydv − dzdt − dwdz) > 0,

and since dy = 2, dz = 2, dv = 3, dw = 3, and dt = 3, this implies HM(T) > HM(T
′
).

Thus, by Lemma 3, we conclude that in order to minimise the Hyper Zagreb index,
we need to place the vertices of degree 2 between the vertices of degree 3, so that there
is at least one vertex of degree 2 between any two vertices of degree 3 and the remaining
vertices of degree 2 or one vertex of degree 2 and one vertex of degree 3. So, we conclude
that the collection of all those trees, which contain n vertices with the degree sequence

(3, 3, . . . , 3, 3,︸ ︷︷ ︸
n−r−2

2

2, 2, . . . , 2, 2,︸ ︷︷ ︸
r

1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
n−r+2

2

),

must contain a particular arrangement of vertices of degree 2 as described above. Note
that if n > 3r + 2, there are not enough vertices of degree 2 to be placed between any two
vertices of degree 3. If n ≤ 3r + 2, in order to minimise the Hyper Zagreb index, we have
to first put at least one vertex of degree 2 between any two vertices of degree 3 (if it is
possible), and the remaining vertices of degree 2 are placed arbitrarily between two vertices
of degree 2 or between a vertex of degree 3 and a vertex of degree 2.

Theorem 2. If T ∈ ETn,r, where 1 ≤ r < n− 2, and n ≡ r(mod 2), then HM(T) ≥ 25n− 9r−
50 when n ≤ 3r + 2, and HM(T) ≥ 26n− 12r− 56 when n > 3r + 2. The sign of equality holds
if and only if T possesses the degree sequence

(3, 3, . . . , 3, 3,︸ ︷︷ ︸
n−r−2

2

2, 2, . . . , 2, 2,︸ ︷︷ ︸
r

1, 1, 1 . . . , 1, 1︸ ︷︷ ︸
n−r+2

2

).

Proof of Theorem 2. Let T ∈ ETn,r minimise the Hyper Zagreb index. We claim that there
does not exist any vertex of degree greater than 3 in T. To prove this claim, we suppose
that on the contrary, there exists at least one vertex, say u, of a degree greater than 3 in
T. According to Lemma 2, we can find another tree T(1), such that HM(T) > HM(T(1)),
which contradicts the choice of T. When we apply this transformation successively on
every vertex u in T, we will find a sequence of trees T(1), T(2), T(3), . . . , T(r) with the relation
HM(T) > HM(T(1)) > HM(T(2)) > . . . > HM(T(r)). Having in mind Lemmas 2 and
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Lemma 3 and the previous discussion, we conclude that the tree which minimises the
Hyper Zagreb index contains the degree sequence with the particular arrangement of
vertices defined above. Hence, T(r) has the degree sequence,

(3, 3, . . . , 3, 3,︸ ︷︷ ︸
n−r−2

2

2, 2, . . . , 2, 2,︸ ︷︷ ︸
r

1, 1, 1 . . . , 1, 1︸ ︷︷ ︸
n−r+2

2

).

Now, we provide some lemmas, which help us to prove Theorem 3.

Lemma 4. Let Tmax ∈ ETn,r, with a maximum Hyper Zagreb index. Let P = x0x1 . . . , xi . . . , xl
be a path in Tmax containing the vertices u = xi and v = xj, where i, j ∈ {1, 2, 3, . . . , l − 1}, i 6= j,
such that for t = 2, 3, . . ., we have dv ≥ du ≥ 2t. Let xi−1, xi+1, u1, u2, . . . , udu−2 be the vertices
adjacent to the vertex u. We define T(1) = Tmax − ∑2

t=1 utu + ∑2
t=1 utv, as shown in Figure 3.

Clearly, T(1) ∈ ETn,r; then, HM(Tmax) < HM(T(1)).

T
(1)

Tmax

x0 x1 xl−1 xl

xi = u

xi+1xi−1

u
1

u
2

u
du−2

v

x0 x1 xl−1 xl

xi = u

xi+1xi−1

u
du−2

v

u
1

u
2 u

3

Figure 3. Tmax and T(1) in Lemma 4.

Proof of Lemma 4. We first find the difference Tmax − T(1) for the Hyper Zagreb index.
Note that u and v are the only vertices whose degrees differ in Tmax and T(1). Therefore,

HM(Tmax)− HM(T(1)) = ∑
t=∑2

j=1 uˆj

(du + dt)
2 + ∑

s∈N(u)
s 6=∑2

j=1uj

(du + ds)
2 + ∑

r∈N(v)
r 6=t=∑2

j=1

(dv + dr)
2

− ∑
t=∑2

j=1 uˆj

(dv + 2 + dt)
2 + ∑

s∈N(u)
s 6=∑2

j=1uj

(du − 2 + ds)
2 + ∑

r∈N(v)
r 6=t=∑2

j=1

(dv + 2 + dr)
2

= 2 ∑
t=∑2

j=1 uˆj

du(dt) + (du)
2 + 2 ∑

s∈N(u)
s 6=∑2

j=1uj

du(ds) + 2 ∑
r∈N(v)

r 6=t=∑2
j=1

dv(dr)

−4 + 4du − 2 ∑
s∈N(u)

s 6=∑2
j=1uj

(du − 2)ds − 4− 4dv − 2 ∑
t=∑2

j=1 uˆj

dt(dv + 2)

−(dv)
2 − 4− 4dv − 2 ∑

r∈N(v)
r 6=t=∑2

j=1uj

(dv + 2)dr,

and since du ≥ 4 and dv ≥ du, we conclude HM(Tmax) < HM(T(1)).

Lemma 5. Let Tmax ∈ ETn,r be a tree having a maximum Hyper Zagreb index. Let P = x0x1 . . . , xi−1
xi(= u)xi+1 . . . , xl be a path in Tmax containing the vertex u = xi ∈ V(Tmax), where du ≥ 2t and
dxl ≥ 2t + 1; t = 1, 2, 3, . . ., with 1 ≤ i ≤ l − 1. We also assume that xl−1, u1, u2, u3 . . . , udxl−1

are the vertices adjacent to xl in Tmax. We define T(1) = Tmax −∑
dxl−1
j=1 ujxl + ∑

dxl−1
j=1 uju (xl may

be equal to xi+1), as shown in Figure 4. Clearly, T(1) ∈ ETn,r; then, HM(Tmax) < HM(T(1)).
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T
(1)Tmax

x0 x1

xl

x0 x1 xl−1 xlxi+1

u
1

u
2u

1
u
2

u u

dxl
− 1 dxl

− 1

Figure 4. Tmax and T(1) in Lemma 5.

Proof of Lemma 5. We first find the difference Tmax − T(1) for the Hyper Zagreb index.
Note that u and xl are the only vertices whose degrees differ in Tmax and T(1). Therefore,

HM(Tmax)− HM(T(1)) = ∑
s∈N(u)

s 6=∑
dxl−1
j=1 uj

(du + ds)
2 +

dxl−1

∑
j=1

(duj + dxl )
2 + (dxl + dxl−1)

2

−
dxl−1

∑
j=1

(du + dxl − 1 + duj)2 − ∑
s∈N(u)

s 6=uj ,1≤j≤dxl−1

(du + dxl − 1 + ds)
2

−(1 + dxl−1)
2

= 2dxl (dxl−1 − 1)− (du − 1)(du − 1 + 2dxl )

−2
du−2

∑
j=1

(du − 1)duj − 1 + 2dxl − 2(du + ds)(dxl − 1)− 1− 2dxl−1 ,

and since 2dxl < 2dxl + du − 1 and dxl−1 − 1 ≤ du − 1, we conclude
HM(Tmax) < HM(T(1)).

Lemma 6. Let u, z, v, and w be the vertices of a tree T ∈ ETn,r, such that uz, zv, and vw ∈ E(T),
and du(T) = 1, dz(T) = 2t, with t = 2, 3, 4 . . . , dw(T) = 2, and dv(T) = 2. We define T

′
from T

as T
′
= T − uz− vw + zw + uv; then, HM(T

′
) > HM(T).

Proof of Lemma 6. From the structure of T and T
′
, we have,

HM(T)− HM(T
′
) = 2(du − dw)(dz − dv) < 0,

and since dw > du and dz > dv, this implies HM(T) < HM(T
′
).

Lemma 7. If there exists a pendent vertex adjacent to a branching vertex in the tree ETn,r then the
tree Tmax does not contain a vertex of degree two with both non-pendent neighbours.

Proof of Lemma 7. Suppose on the contrary that a pendent vertex u is adjacent to a vertex
v of a degree greater than two, and there exists a vertex w of degree two, such that
N(w) = {w1, w2}, and both w1 and w2 are non-pendent vertices. We define T(1) =
Tmax − ww1 − ww2 + uw + w1w2, and clearly, T(1) ∈ ETn,r.

HM(T)− HM(T(1)) = 2dw(dw1 + dw2)− 2dw1 dw2 − 2(du + dv)
2 + (dw)

2 − 2dwdu − (du)
2 − 1 < 0.

Hence, HM(T) < HM(T(1)).

Theorem 3. If T ∈ ETn,r, where 1 ≤ r < n− 2 and n ≡ r(mod 2), then

HM(T) ≤
{

k3 + 4k2 + 3k + 4r− 4 for n ≥ 2k + 1,
k3 + 3k2 − k2r + 3k− 2kr + 17r− 17 for n < 2k + 1,
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where k denotes the maximum degree of the vertex in T, the sign of equality can be easily obtained,
if and only if T possesses the degree sequence

(n− r, 2, 2, . . . , 2, 2,︸ ︷︷ ︸
r−1

1, 1, 1 . . . , 1, 1︸ ︷︷ ︸
n−r

),

where 1 ≤ r < n− 2.

Proof of Theorem 3. Let T ∈ ETn,r maximise the Hyper Zagreb index. We consider the
following two cases for completion of the proof of the above theorem.

Case 1

We claim that there does not exist any vertex of odd degree greater or equal to 3 in
T. We suppose, on the contrary, that there exists at least one vertex of odd degree, say
v, such that dv ≥ 3. According to the transformation defined in Lemma 4, we can find
another tree T(1)

1 ∈ ETn,r, such that HM(T) < HM(T(1)
1 ), which contradicts the choice of

T. If we apply this transformation successively on every vertex v, we find a sequence of
trees T(1)

1 , T(2)
1 , T(3)

1 , . . . , T(s)
1 with the relation HM(T) < HM(T(1)

1 ) < HM(T(2)
1 ) < . . . <

HM(T(s)
1 ). It is easy to understand that in T(s)

1 , there does not exist any branching vertex of
odd degree.

Case 2

We claim that there exists only one branching vertex of an even degree in T(s)
1 . To prove

this claim, we suppose, on the contrary, that there exists more than one branching vertex,
say u, of even degree in T(s)

1 . Then, by Lemma 5, we can find another tree T(s+1) ∈
ETn,r, such that HM(T(s)

1 ) < HM(T(s+1)
1 ), and we obtain a contradiction. If we apply

this transformation successively on every vertex having an even degree greater or equal
to 4 in T(s)

1 , we find a sequence of trees T(s+1)
1 , T(s+2)

1 , T(s+3)
1 , . . . , T(r)

1 with the relation

HM(T(s)
1 ) < HM(T(s+1)

1 ) < HM(T(s+2)
1 ) < . . . < HM(T(r)

1 ). It is easy to understand that

in T(r)
1 there exists only one branching vertex of an even degree, and the remaining even

degree vertices are of degree 2.
From the above discussion and Lemmas 4–7, it follows that a tree T ∈ ETn,r, which

maximises the Hyper Zagreb index, is a tree with only one branching vertex with degree k,
such that an arbitrary vertex of degree one in ETn,r is adjacent to a vertex of degree 2 (for
n ≥ 2k + 1), or there are exactly n− k− 1 pendent vertices with neighbours of degree 2 (for
n < 2k + 1).

Therefore, if T ∈ ETn,r, then HM(T) = k3 + 4k2 + 3k + 4r − 4 for n ≥ 2k + 1, and
HM(T) = k3 + 3k2 − k2r + 3k− 2kr + 17r− 17 for n < 2k + 1.

5. On the Minimum Hyper Zagreb Index of Trees with Fixed Vertices of
Maximum Degree

Suppose that MTn,k is the collection of all n-vertex trees, where k represents the number
of vertices of maximum degree. Here, we discover the graphs of trees that possess the lower
bound for the Hyper Zagreb index from MTn,k. Since Pn is only a member in MTn,n−2, we
consider MTn,k for 1 ≤ k ≤ n− 3.

Lemma 8. If T(1)
min ∈ MTn,k is a tree having a minimum Hyper Zagreb index, where 1 ≤ k ≤ n− 3,

then the maximum degree of a vertex in T(1)
min equals 3.

Proof of Lemma 8. We suppose that ∆ ≥ 4, and the vertex u has the maximum degree ∆
in T(1)

min. We assume that P = x0x1 . . . , xi−1xi(= u)xi+1 . . . , xl is the longest path in T(1)
min

containing the vertex u. We also assume that the vertices xi−1, xi+1, u1, u2 . . . , u∆−2 are the
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vertices adjacent to u in T(1)
min, and w1 is a pendent vertex connected to u via u1 (u1 may be

equal to w1). We define T(1) = T(1)
min − uu2 + u2w1, as shown in Figure 5.

x0 x1 xi−1 xi+1u xl

u
1 u

2

w
1

w
2

x0 x1 xi−1 xi+1u xl

u
1

w
1

w
2

u
2

T
(1)T

(1)
min

Figure 5. Tmax and T(1) in Lemma 8.

HM(T(1)
min)− HM(T(1)) = (du + du2)2 + ∑

s∈N(u)
s 6=u2

(du + ds)
2 + (dw1 + dw2)2

−(dw1 + 1 + dw2)2 − (dw1 + 1 + du2)2 − ∑
s∈N(u)

s 6=u2

(du − 1 + ds)
2

= (du)
2 − 2(2 + dw2) + du2(du2 + 2du)− (2 + du2)2 + 2(du + ds) > 0,

and since du ≥ dw2 and dw1 = 1, this implies that HM(T(1)
min) > HM(T(1)).

It is easy to observe that T(1) contains k− 1 vertices of degree ∆. In the same way, we
apply the transformation defined in Lemma 8 on every vertex of degree ∆. In every step
from a tree T(j), we obtain a tree T(j+1) that contains a lesser HM(T) than its predecessor.
We apply this transformation k times, and we reach a tree T(k) that contains k vertices of
the maximum degree ∆− 1. Clearly, T(k) ∈ MTn,k, and HM(T(k)) < HM(T(1)

min), which is

a contradiction of the choice of T(1)
min.

Theorem 4. If T ∈ MTn,k, then HM(T) ≥ 16n + 18k− 32 when n ≥ 3k + 2, and HM(T) ≥
14n− 24k− 32 when n < 3k + 2. The sign of equality holds if and only if T possesses the degree
sequence

(3, 3, . . . , 3, 3,︸ ︷︷ ︸
k

2, 2, . . . , 2, 2,︸ ︷︷ ︸
n−2k−2

1, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k+2

.

Proof of Theorem 4. Let Tmin
(1) ∈ MTn,k minimize the Hyper Zagreb index. According to

Lemma 8, the degree sequence of the tree Tmin
(1) is

(3, 3, . . . , 3, 3,︸ ︷︷ ︸
k

2, 2, . . . , 2, 2,︸ ︷︷ ︸
n−2k−2

1, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k+2

),

where k ≤ n − 3. The relation ∑v∈V(T(1)
min)

dv(T
(1)
min) = 2(n − 1) gives n1 + 2n2 + 3k =

2(n1 + n2 + k)− 2,

n1 = k + 2,

n2 = n− 2k− 2.
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Therefore,
for n ≥ 3k + 2, we have,

HM(T(1)
min) = 16n + 18k− 32,

and for n < 3k + 2, we have,

HM(T(1)
min) = 14n− 24k− 32.

Corollary 1. Let Tk be a tree with a minimum Hyper Zagreb index in the class of MTn,k and Tl

be a tree with a minimum Hyper Zagreb index in the class of MTn,l (k, l ≤ n− 3). If k > l, then
HM(Tk) > HM(Tl).

6. Conclusions

Finding the extremal values (lower/upper bounds) of topological indices of a molec-
ular structure has numerous applications in the field of chemical graph theory. These
numerical values give important information regarding the physicochemical properties
of the chemical compounds. In particular, investigating a topological index of a chemical
tree sometimes gives a very good correlation to a physicochemical property of the chemical
compound. The degree-based topological indices, such as the Hyper Zagreb index, have a
very good correlation with the boiling point of benzenoid hydrocarbons and the acentric
factor of some octane isomers. Therefore, in the current work, we computed the bounds of
the Hyper Zagreb index of some specific tree structures, and the corresponding graphs were
characterized. These extremal values not only help researchers to predict the properties of
the chemical compounds but also significantly reduce the experimental costs.

However, it remains an open problem to study different topological indices for differ-
ent classes of trees to predict the physicochemical properties of some chemical compounds.
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