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Abstract: The coefficient of quartile variation is a valuable measure used to assess data dispersion
when it deviates from a normal distribution or displays skewness. In this study, we focus specifically
on the delta-lognormal distribution. The lognormal distribution is characterized by its asymmetrical
nature and comprises exclusively positive values. However, when these values undergo a logarithmic
transformation, they conform to a symmetrical (or normal) distribution. Consequently, this research
aims to establish confidence intervals for the difference between coefficients of quartile variation
within lognormal distributions incorporating zero values. We employ the Bayesian, generalized
confidence interval, and fiducial generalized confidence interval methods to construct these intervals,
involving data simulation using RStudio software. We evaluate the performance of these methods
based on coverage probabilities and average lengths. Our findings indicate that the Bayesian method,
employing Jeffreys’ prior, performs well in low variability, while the generalized confidence interval
method is more suitable for higher variability. Therefore, we recommend using both approaches to
construct confidence intervals for the difference between the coefficients of the quartile variation in
lognormal distributions that include zero values. Furthermore, we apply these methods to rainfall
data in Thailand to illustrate their alignment with actual and simulated data.

Keywords: delta-lognormal distribution; coefficient of quartile variation; Bayesian; generalized
confidence interval; rainfall

1. Introduction

Climate change significantly impacts weather patterns worldwide, including in Thai-
land, where changes in rainfall dispersion have become particularly noticeable [1]. Thailand
has a tropical climate characterized by a rainy season from May to October and a dry season
from November to April [2]. However, recent years have witnessed irregular and extreme
weather conditions, causing disruptions to traditional rainfall patterns. Several researchers
have investigated rainfall dispersion in Thailand, such as Kumphon et al. [3], Szyniszewska
and Waylen [4], and Thodsan et al. [5]. Additionally, studies on statistical inference for rain-
fall distribution in Thailand have been reported by Maneerat et al. [6], Khooriphan et al. [7],
Yosboonruang et al. [8,9], and Thangjai et al. [10]. Previous research on statistical inference
has primarily focused on measuring rainfall dispersion using variance and coefficient of
variation. However, when rainfall dispersion is highly skewed, the coefficient of quartile
variation (CQV) becomes a more appropriate tool for analyzing this data type.

The CQV, which stands for the quartile coefficient of dispersion, is a statistical measure
that assesses the relative dispersion or variability within a dataset. It quantifies the spread
of the data concerning its central tendency, represented by the median. A higher coefficient
indicates a more significant variability or dispersion in the dataset, indicating that the
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values are more spread out from the median. Conversely, a lower coefficient suggests
less variability, indicating that the values are closer and more tightly clustered around the
median. When the data follow a non-normal distribution, the CQV performs better than the
coefficient of variation in measuring relative dispersion. Additionally, when outlier values
are present, the CQV is a more appropriate measure for quantifying data dispersion [11].
The CQV has been applied in various subject areas. For instance, Hussein and Morgan [12]
used the CQV to measure intravertebral density heterogeneity. Marcoulaki et al. [13] em-
ployed the CQV to assess dispersion in computer simulation data for designing central
pipeline systems. Chatterjee et al. [14] compared land surface temperature and radiant
temperature images at notable coal fire locations using the CQV. Antonetti et al. [15] incor-
porated water temperature simulations into a fish habitat model and measured thermal
heterogeneity using the CQV. Furthermore, researchers have examined statistical inferences
regarding the quartile coefficient of variation. Bonett [16] constructed confidence intervals
for the CQV, which applied to normal and non-normal distributions. Ambati et al. [17] in-
troduced ratio- and regression-type estimators for estimating the CQV in finite populations.
Javed et al. [18] proposed a class of ratio estimators for estimating population variance,
utilizing the CQV of an auxiliary variable. Altunkaynak and Gamgam [19] recommended
the bootstrap method to establish confidence intervals for the CQV in non-normal dis-
tributions. Singh et al. [20] and Ahmed and Shabbir [21] identified an error in the mean
squared error of Ambati et al. [17] and rectified it using auxiliary information. Ahmed and
Shabbir [21] also presented the Rao regression-type estimator for estimating the CQV with
an auxiliary variable. In 2022, Eppen et al. [22] proposed naïve, Rao, and regression estima-
tors for estimating the CQV with an auxiliary variable. Singh and Usman [23] expanded
upon the methods introduced by Ambati et al. [17] to estimate the CQV for missing data.
Furthermore, Yosboonruang et al. [24] developed a confidence interval for the CQV of a
zero-inflated lognormal distribution.

The lognormal distribution plays a significant role in climate change studies due to its
ability to model skewed data, analyze extreme events, quantify uncertainty, and facilitate
econometric analyses. According to the rainfall data, several researchers have reported
that the data follow a lognormal distribution with zero values, also known as a delta-
lognormal distribution [8,9,25–28]. The delta-lognormal distribution consists of positive
values following a lognormal distribution and actual zero values following a binomial dis-
tribution. The lognormal distribution is asymmetrical in shape. Nevertheless, if the values
of the lognormal random variable undergo a logarithmic transformation, they conform to a
symmetrical distribution, commonly known as the normal distribution. This distribution
has attracted significant interest from researchers studying statistical inference related to
it. For example, Li et al. [29] presented generalized and fiducial inference approaches
for estimating the mean of a lognormal distribution with excess zeros, with the fiducial
approach demonstrating superior performance. Wu and Hsieh [30] constructed a general-
ized confidence interval (GCI) for the mean of the delta-lognormal distribution using an
asymptotic generalized pivotal quantity (GPQ), and their method showed excellent perfor-
mance. Hasan and Krishnamoorthy [31] introduced fiducial confidence intervals and the
method of variance estimate recovery (MOVER) to estimate the mean of a delta-lognormal
distribution, receiving recognition for the effectiveness of their proposed methods. In their
2022 study, Zhang et al. [32] proposed the fiducial generalized pivotal quantity (FGPQ) and
employed MOVER with FGPQ to construct simultaneous confidence intervals for ratios
of means in zero-inflated lognormal distributions, which were also highly recognized for
their effectiveness. Furthermore, Yosboonruang et al. [9] introduced various methods to
estimate the ratio of coefficients of variation of lognormal distributions with excess zeros,
including the fiducial generalized confidence interval (FGCI), Bayesian methods, and the
Wald and Fieller log-likelihood methods, with the Bayesian method proving to be the most
effective. Recently, in 2023, Thangjai et al. [10] employed the FGCI, Bayesian, and bootstrap
methods to establish confidence intervals for the ratio of percentiles of delta-lognormal
distributions, with the Bayesian method demonstrating superior performance. Various
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studies have addressed estimating parameters for lognormal distributions with excess zero
values. In this article, we focus on estimating the dispersion of a dataset that follows a
delta-lognormal distribution. One effective method for estimating this dispersion is the
CQV, building upon the methodology proposed by Yosboonruang and Niwitpong [24]
to examine and compare the dispersion between two datasets. Specifically, we aim to
construct the highest posterior density (HPD) and confidence intervals for the difference
between the CQVs of two delta-lognormal distributions.

The following section presents Bayesian approaches utilizing multiple priors, GCI,
and FGCI to construct HPD and confidence intervals. Section 3 provides the simulation re-
sults and an empirical study. The final section encompasses the discussion and conclusions
of the study.

2. Materials and Methods

Let Yij, i = 1, 2, j = 1, 2, . . . , ni be random variables from n observations of delta-
lognormal distributions denoted by Yij ∼ ∆(µi, σ2

i , δi0), where µi, σ2
i , and δi0 represent the mean,

variance, and probability of zero values, respectively. For Yij > 0, Xij = ln(Yij) ∼ N(µi, σ2
i )

follows a lognormal distribution while Yij = 0 follows a binomial distribution. Let ni0
and ni1 be the numbers of zero and positive values, respectively, such that ni = ni0 + ni1 .
Aitchison [33] derived the mean and variance of Yij as µY = δi1 exp(µi + σ2

i /2) and
σ2

Y = δi1 exp(2µi + σ2
i )
[
exp(σ2

i )− δi1
]
, where δi1 is the probability of positive values.

The CQV is a descriptive statistic used to measure the dispersion between data sets
that have different units or to compare within data sets that have different mean values.
The CQV is defined by the first and third quartiles as follows:

ϕi =
Q3i −Q1i

Q3i + Q1i

, (1)

where Q1i and Q3i denote the first and third quartiles of Yij, respectively. The quartiles are
determined according to Hasan and Krishnamoorthy [31] as

Qri = exp

{
µi + Φ−1

[
ri
4 −

(
1− δi1

)
δi1

]
σi

}
, δi1 > 1− ri

4
, (2)

where Φ is the cumulative standard normal distribution. Since this study focuses on the
difference between CQVs, it is defined as

Ψ = ϕ1 − ϕ2. (3)

This study introduces Bayesian and GCI methods to establish HPD and confidence
intervals for the difference between CQVs.

2.1. Bayesian Method

Nowadays, research on statistical inferences and applications is focused on the Bayesian
approach because it relies on the population distribution to estimate the parameter of in-
terest [34]. In Bayesian inference, the parameters of interest are directly illustrated by the
probability distribution, which is defined as random variables [35].

Regarding the unknown parameters of the delta-lognormal distributions, namely
δi0 , µi, and σ2

i where δi0 = 1− δi1 , the joint likelihood function can be defined as

L
(

δi0 , µi, σ2
i | yij

)
∝

2

∏
i=1

{
δ

ni0
i0

(
1− δi0

)ni1

ni1

∏
j=1

1
σi

exp

[
− 1

2σ2
i

(
ln
(
yij
)
− µi

)2
]}

. (4)
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Using Equation (4), the Fisher information matrix of parameters θ =
(
δ10 , µ1, σ2

1 , δ20 , µ2, σ2
2
)

can be derived by taking the second-order derivative of the log-likelihood function:

I(θ) = diag
[

n1
δ10(1−δ10)

n11
σ2

1

n1(1−δ10)

2(σ2
1 )

2
n2

δ20(1−δ20)
n21
σ2

2

n2(1−δ20)
2(σ2

2 )
2

]
. (5)

To estimate the difference between CQVs, HPD intervals are constructed based on the
posterior distribution, which is updated using the concept of Bayes’ theorem defined as

p
(
θi|yi1, yi2, ..., yini

)
=

p(θi)p
(

yi1,yi2,...,yini
|θi

)
p
(

yi1,yi2,...,yini

) .

Since the parameters of interest in this study are δi0 , µi, and σ2
i , the posterior of

these parameters is computed by integrating the likelihood function in Equation (4) with
the prior density function for a delta-lognormal distribution, p

(
δi0 , µi, σ2

i |yij
)
. Therefore,

the posterior density of δi0 , µi and σ2
i can be derived as follows:

p
(
δi0 |yij

)
=
∫∫

p
(

δi0 , µi, σ2
i |yij

)
dµidσ2

i , (6)

p
(

µi|σ2
i , yij

)
=
∫

p
(

δi0 , µi, σ2
i |yij

)
dδi0 , (7)

and
p
(

σ2
i |yij

)
=
∫∫

p
(

δi0 , µi, σ2
i |yij

)
dδi0 dµi, (8)

respectively.
Furthermore, Bayesian deep learning can also serve as an alternative approach for

generating posterior distributions. By incorporating Bayesian inference techniques, this
approach provides several advantages, including robust uncertainty estimation and a
principled approach to mitigating overfitting issues. Estimating posterior distributions
allows a more comprehensive understanding of the uncertainty associated with the model’s
parameters, given the observed data. For a more in-depth exploration of the Bayesian deep
learning method, we recommend referring to the research conducted by Zhuang et al. [36].

This article selected three prior distributions, namely the normal gamma prior, Jeffrey’s
prior, and the uniform prior for the Bayesian method because these prior distributions
can return the closed-form solutions of the posterior distributions. But whenever choosing
priors in other forms, the posterior distributions may not have closed-form solutions or follow
regular distributions. Therefore, it is necessary to find alternative inference methods, such as
Bayesian variable sampling or Markov chain Monte Carlo sampling (MCMC) , etc. [37].

2.1.1. The Normal-Gamma Prior

Choosing hyperparameters in the normal-gamma prior involves determining appro-
priate values for the mean and precision parameters of the normal distribution and the
shape and rate parameters of the gamma distribution. These hyperparameters play a crucial
role in shaping the prior distribution and subsequently influence the posterior distribution
in Bayesian inference.

Maneerat et al. [6] utilized the conjugate families proposed by DeGroot [38] for a normal
random sample to derive the posterior distribution of parameters in the normal-gamma prior.
The posterior distributions of δi0 , µi, and σ2

i are as follows: p
(
δi0 |yij

)
∼ Beta

(
ni0 + di, ni1 + di

)
,

where di = 1
6

(
2 + z2

α
2

)
; p
(
µi|σ2

i , yij
)
∼ tni1

−1

µ̂i,
1
2 ∑

ni1
i=1(ln(yij)−µ̂i)

2(
ni1
−1

2

)
ni1

; and p
(
σ2

i |yij
)
∼

Inv− Gamma
[(

ni1 − 1
)
/2, 1

2 ∑
ni1
i=1

(
ln
(
yij
)
− µ̂i

)2
]
, respectively.
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2.1.2. Jeffreys’ Prior

According to the delta-lognormal distribution, which is a mixture of the lognormal and
binomial distributions, the parameters of interest are δi0 , µi, and σ2

i . Following the concept
of Jeffreys [39], the prior distributions for these parameters can be obtained by taking the
square root of the determinant of the Fisher information matrix (Equation (5)), resulting

in p(θi) =
√
|I(θ)|. Specifically, the Jeffreys prior for δi0 is p

(
δi0
)
=
(
δi0 δi1

)− 1
2 . For the log-

normal distribution, the prior distributions for µi and σ2
i are p(µi) ∝ exp

{
− ni1

2σ2
i
(µi − µ̂i)

2
}

and p
(
σ2

i
)
= σ−2

i [40]. Consequently, the posterior distributions of these parameters can
be computed using Equations (6) - (8) as follows: p

(
δi0 |yij

)
∼ Beta

(
ni0 + 0.5, ni1 + 0.5

)
,

p
(
µi|σ2

i , yij
)
∼ N

(
µ̂i, σ2

i /ni1
)
, and p

(
σ2

i |yij
)
∼ Inv− Gamma

[(
ni1 − 1

)
/2,
(
ni1 − 1

)
σ̂2

i /2
]
.

2.1.3. The Uniform Prior

According to the uniform prior, it represents a constant function of an a priori prob-
ability that assigns equal probabilities to all possible values [41,42]. Therefore, the uni-
form priors for the parameters of the binomial and lognormal distributions are propor-
tional to 1. By integrating the prior density function for a delta-lognormal distribution,
the posterior distributions of δi0 , µi, and σ2

i can be determined as follows: p
(
δi0 |yij

)
∼

Beta
(
ni0 + 1, ni1 + 1

)
, p
(
µi|σ2

i , yij
)
∼ N

(
µ̂i, σ2

i /ni1
)
, and

p
(
σ2

i |yij
)
∼ Inv− Gamma

[(
ni1 − 2

)
/2,
(
ni1 − 2

)
σ̂2

i /2
]
.

Using the posteriors of δi0 , µi, and σ2
i obtained for each prior, we substitute these poste-

rior distribution into Equation (2) to calculate the difference between CQVs. Subsequently,
we construct the HPD intervals for all methods using the HDInterval package in the R
statistical program, following the outlined Algorithm 1 below.

Algorithm 1 Steps to construct HPD intervals for the Bayesian method.
Step 1. Generate Yij, where i = 1, 2 and j = 1, 2, ..., ni, from the delta-lognormal distributions.
Step 2. Compute δ̂i0 , µ̂i, and σ̂2

i .
Step 3.Generate the posterior densities of δi0 , µi, and σ2

i using each prior.
Step 4. Compute Qri using Equation (2).
Step 5. Compute ϕi using Equation (1).
Step 6. Compute Ψ using Equation (3).
Step 7. Repeat Steps 3–6 for a total of 2000 times.
Step 8. Construct HPD intervals for Ψ using each prior.
Step 9. Repeat Steps 1–8 for a total of 10,000 times.

2.2. Generalized Confidence Interval

The concept of the GCI was introduced by Weerahandi [43]. It is based on the GPQs
of the parameters of interest. Furthermore, the construction of confidence intervals for
the model parameters using the generalized inference method is discussed in [44]. In this
context, the random variables Yij, where i = 1, 2 and j = 1, 2, ..., ni, follow delta-lognormal
distributions. Referring to Equations (1)–(3), the parameters of interest are δi1 , µi, and σi.
Let yij, where i = 1, 2 and j = 1, 2, ..., ni are the observed values of the random variables
Yij. The GPQs for these parameters possess two important properties: (1) the distribution
of GPQs is free from all unknown parameters, and (2) the observed values of GPQs do
not depend on the nuisance parameter. Following Wu and Hsieh [30], they computed
the variance stabilizing transformation of a binomial distribution using the concept of
DasGupta [45]. The GPQ for δi1 is given by

Rgci
δi1

= sin2
[

arcsin
√

δ̂i1 −
1

2
√

ni
Zi

]
, (9)
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where Zi ∼ N(0, 1). Moreover, they used the idea of Krishnamoorthy and Mathew [46] to
compute the GPQs for µi and σ2

i as follows:

Rµi = µ̂i − Zi

√√√√(
ni1 − 1

)
σ̂2

i
ni1 χ2

ni1−1

, (10)

where Zi ∼ N(0, 1), and

Rσi =

√√√√(
ni1 − 1

)
σ̂2

i
χ2

ni1−1

, (11)

The pivotal quantities Rgci
δi1

, Rµi , and Rσi are consistent with the properties of GPQs.

Therefore, we can express Rgci
Qri

as follows:

Rgci
Qri

= exp

Rµi + Φ−1

 ri
4 −

(
1− Rgci

δi1

)
Rgci

δi1

Rσi

, Rgci
δi1

> 1−
Rgci

δi1

4
. (12)

By substituting the pivotal quantity from Equation (12) into Equation (1), we obtain

Rgci
ϕi =

Rgci
Q3i
− Rgci

Q1i

Rgci
Q3i

+ Rgci
Q1i

. (13)

Hence, the pivotal quantity for the difference between CQVs is given by

Rgci
Ψ = Rgci

ϕ1 − Rgci
ϕ2 . (14)

Consequently, the (1− α)100% confidence interval for Ψ can be expressed as

CIgci
Ψ =

[
Rgci

Ψ (α/2), Rgci
Ψ (1− α/2)

]
, (15)

where Rgci
Ψ (α/2) and Rgci

Ψ (1− α/2) represent the 100(α/2)-th and 100(1− α/2)-th per-
centiles of RΨ, respectively. The steps for constructing confidence intervals using the GCI
method are presented in Algorithm 2.

Algorithm 2 Steps to construct confidence interval for the GCI method.
Step 1. Generate Yij, where i = 1, 2 and j = 1, 2, ..., ni, from the delta-lognormal distributions.
Step 2. Compute the estimates δ̂i1 , µ̂i, and σ̂2

i .
Step 3. Generate random variables Zi ∼ N(0, 1) and χ2

ni1−1
.

Step 4.Compute the pivotal quantities Rgci
δi1

, Rµi , and Rσi .

Step 5. Repeat Steps 3–4 for a total of 2000 times.
Step 6. Construct the confidence interval for Ψ.
Step 7. Repeat Steps 1–6 for a total of 10,000 times.

2.3. Fiducial Generalized Confidence Interval

We extended the FGCI method, as proposed by Yosboonruang et al. [24], to handle
the construction of the confidence interval for the difference between CQVs in the delta-
lognormal distribution. Consequently, the parameters of interest, based on Equation (2),
are δi1 , µi, and σi. The fiducial quantities for these parameters can be expressed as R f gci

δi1
∼

Beta
(
ni − ni1 , ni1 + 0.5

)
, while Rµi and Rσ are represented by Equations (10) and (11), re-
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spectively. Furthermore, by utilizing Equation (2), we can determine the fiducial quantity
for Qri as follows:

R f gci
Qri

= exp

Rµi + Φ−1

 ri
4 −

(
1− R f gci

δi1

)
R f gci

δi1

Rσi

, R f gci
δi1

> 1−
R f gci

δi1

4
. (16)

Substituting R f gci
Qri

into Equation (1), we can obtain the fiducial quantity for ϕi:

R f gci
ϕi =

R f gci
Q3i
− R f gci

Q1i

R f gci
Q3i

+ R f gci
Q1i

. (17)

Accordingly, the fiducial quantity for the difference between CQVs, denoted as R f gci
Ψ ,

can be represented as
R f gci

Ψ = R f gci
ϕ1 − R f gci

ϕ2 . (18)

Consequently, the (1− α)100% confidence interval for Ψ can be expressed as

CI f gci
Ψ =

[
R f gci

Ψ (α/2), R f gci
Ψ (1− α/2)

]
, (19)

where R f gci
Ψ (α/2) and R f gci

Ψ (1− α/2) represent the 100(α/2)-th and 100(1− α/2)-th per-
centiles of RΨ, respectively. Algorithm 3 outlines the procedure for constructing confidence
intervals using the FGCI method.

Algorithm 3 Steps to construct confidence interval for the FGCI method.
Step 1. Generate Yij, where i = 1, 2 and j = 1, 2, ..., ni, from the delta-lognormal distributions.
Step 2. Compute the estimates δ̂i1 , µ̂i, and σ̂2

i .
Step 3. Generate random variables Zi ∼ N(0, 1) and χ2

ni1−1
.

Step 4. Compute the pivotal quantities R f gci
δi1

, Rµi , and Rσi .

Step 5. Repeat Steps 3–4 for a total of 2000 times.
Step 6. Construct the confidence interval for Ψ.
Step 7. Repeat Steps 1–6 for a total of 10,000 times.

3. Results
3.1. Simulation Study

To compare the performance of various methods, including Bayesian methods based
on three different priors (normal-gamma prior—B.NG, Jeffreys’ prior—B.J, and uniform
prior—B.U), as well as the GCI and FGCI methods, we conducted simulation studies using
Monte Carlo simulation in RStudio version 2022.12.0+353. The goal was to compute the
coverage probabilities and average lengths of the HPD and confidence intervals. A fa-
vorable method would have coverage probabilities close to or greater than the nominal
confidence level of 0.95 and the narrowest intervals. The simulation settings were as fol-
lows: sample sizes of 5, 10, 15, 30, 50, 100 and 200; mean values following Hasan and
Krishnamoorthy [31] as −σ2/2; probabilities of positive values as 0.80, 0.85, 0.90, and 0.95
(aligned with Equation (2)); and population variances of 1, 2, 3, 5, and 10. We performed
10,000 replicates for all parameter combinations and 2000 replicates for the Bayesian and
GCI methods.

The results in Tables 1 and 2 provide the HPD and confidence intervals for the differ-
ence between CQVs. In cases with small sample sizes and low variance of all probabilities
of positive values using the B.NG and B.J methods, the coverage probabilities fall below
the nominal confidence level of 0.95. However, the coverage probabilities are either close to
or exceed 0.95 for other cases. Figure 1 displays the coverage probabilities of GCI for cases
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with equal sample sizes. It consistently demonstrates coverage probabilities around 0.95,
which are lower than the probabilities obtained from other methods when the sample sizes
exceed 5, irrespective of the probabilities of positive values. However, for a small sample
size of 5, the B.J method outperforms the other methods.

Figure 1. Comparison of the coverage probabilities and average lengths of proposed methods for
cases with varying sample sizes and probabilities of positive values, assuming equal sample sizes.
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Moving on to Figure 2, which depicts cases with unequal sample sizes, reveals that
the coverage probabilities of GCI are either close to or higher than 0.95 for at least one
sample size larger than 5, accompanied by probabilities equal to 0.8 or 0.85. Moreover,
as the sample size increases and the probability of positive values reaches or exceeds 0.90,
the performance of B.J becomes comparable to or better than that of GCI.

Figure 2. Comparison the coverage probabilities and average lengths of proposed methods for cases
with varying sample sizes and probabilities of positive values, assuming unequal sample sizes.
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Table 1. The coverage probabilities and average lengths of two-sided 95% HPD and confidence
intervals for the difference between CQVs in delta-lognormal distributions are presented for cases
with equal sample sizes.

n1, n2 δ1, δ2 σ2
1 , σ2

2
B.NG B.J B.U GCI FGCI

CP AL CP AL CP AL CP AL CP AL

5, 5 0.80, 0.80 1, 1 0.9350 0.8378 0.9306 0.8452 0.9693 0.9323 0.9589 0.8671 0.9605 0.8649
2, 2 0.9405 0.7103 0.9355 0.7250 0.9725 0.6698 0.9550 0.7480 0.9578 0.7408
3, 3 0.9466 0.6136 0.9428 0.6321 0.9768 0.6797 0.9553 0.6546 0.9570 0.6449
5, 5 0.9639 0.4840 0.9577 0.5048 0.9852 0.5387 0.9539 0.5267 0.9563 0.5157

10, 10 0.9808 0.3029 0.9787 0.3224 0.9929 0.3419 0.9565 0.3439 0.9577 0.3328

0.85, 0.85 1, 1 0.9381 0.8147 0.9331 0.8154 0.9671 0.8959 0.9558 0.8196 0.9606 0.8292
2, 2 0.9437 0.6965 0.9381 0.7082 0.9677 0.7603 0.9549 0.7170 0.9594 0.7192
3, 3 0.9505 0.6047 0.9438 0.6214 0.9751 0.6600 0.9533 0.6315 0.9581 0.6305
5, 5 0.9662 0.4740 0.9586 0.4952 0.9839 0.5194 0.9569 0.5063 0.9605 0.5019

10, 10 0.9835 0.2963 0.9791 0.3176 0.9928 0.3286 0.9558 0.3306 0.9605 0.3247

0.90, 0.90 1, 1 0.9396 0.8161 0.9363 0.8166 0.9664 0.8978 0.9572 0.8208 0.9608 0.8306
2, 2 0.9426 0.6960 0.9364 0.7078 0.9694 0.7600 0.9553 0.7166 0.9602 0.7191
3, 3 0.9519 0.6073 0.9424 0.6237 0.9764 0.6628 0.9562 0.6339 0.9598 0.6331
5, 5 0.9621 0.4766 0.9552 0.4977 0.9823 0.5223 0.9545 0.5088 0.9583 0.5048

10, 10 0.9844 0.2918 0.9800 0.3134 0.9948 0.3240 0.9575 0.3262 0.9633 0.3203

0.95, 0.95 1, 1 0.9400 0.8168 0.9359 0.8172 0.9656 0.8985 0.9553 0.8214 0.9600 0.8310
2, 2 0.9454 0.6975 0.9377 0.7093 0.9694 0.7611 0.9574 0.7182 0.9614 0.7205
3, 3 0.9499 0.6079 0.9444 0.6246 0.9751 0.6633 0.9535 0.6346 0.9580 0.6338
5, 5 0.9635 0.4748 0.9570 0.4959 0.9822 0.5204 0.9546 0.5075 0.9581 0.5032

10, 10 0.9813 0.2956 0.9786 0.3170 0.9911 0.3278 0.9566 0.3298 0.9604 0.3239

10, 10 0.80, 0.80 1, 1 0.9560 0.6576 0.9494 0.6571 0.9644 0.6857 0.9646 0.6692 0.9675 0.6678
2, 2 0.9611 0.5398 0.9534 0.5474 0.9696 0.5617 0.9661 0.5614 0.9698 0.5559
3, 3 0.9669 0.4438 0.9629 0.4548 0.9753 0.4624 0.9667 0.4694 0.9689 0.4618
5, 5 0.9792 0.3159 0.9746 0.3286 0.9864 0.3301 0.9668 0.3429 0.9696 0.3342

10, 10 0.9925 0.1599 0.9897 0.1705 0.9939 0.1684 0.9644 0.1834 0.9669 0.1762

0.85, 0.85 1, 1 0.9591 0.6430 0.9533 0.6355 0.9660 0.6704 0.9628 0.6362 0.9674 0.6438
2, 2 0.9581 0.5391 0.9492 0.5422 0.9662 0.5602 0.9604 0.5481 0.9654 0.5490
3, 3 0.9656 0.4492 0.9604 0.4576 0.9751 0.4672 0.9619 0.4657 0.9678 0.4632
5, 5 0.9795 0.3239 0.9727 0.3359 0.9844 0.3377 0.9637 0.3457 0.9692 0.3405

10, 10 0.9912 0.1685 0.9874 0.1796 0.9942 0.1767 0.9651 0.1895 0.9712 0.1841

0.90, 0.90 1, 1 0.9590 0.6384 0.9527 0.6286 0.9683 0.6654 0.9617 0.6264 0.9670 0.6367
2, 2 0.9610 0.5364 0.9523 0.5385 0.9699 0.5578 0.9619 0.5423 0.9677 0.5452
3, 3 0.9678 0.4497 0.9581 0.4575 0.9737 0.4677 0.9621 0.4639 0.9681 0.4629
5, 5 0.9779 0.3256 0.9700 0.3371 0.9834 0.3395 0.9604 0.3459 0.9671 0.3416

10, 10 0.9921 0.1699 0.9878 0.1809 0.9950 0.1783 0.9629 0.1903 0.9691 0.1853

0.95, 0.95 1, 1 0.9610 0.6155 0.9520 0.5958 0.9689 0.6436 0.9563 0.5784 0.9649 0.6029
2, 2 0.9593 0.5316 0.9493 0.5274 0.9661 0.5529 0.9538 0.5214 0.9638 0.5335
3, 3 0.9610 0.4505 0.9512 0.4539 0.9712 0.4687 0.9518 0.4530 0.9628 0.4588
5, 5 0.9717 0.3324 0.9616 0.3418 0.9784 0.3462 0.9522 0.3456 0.9618 0.3458

10, 10 0.9882 0.1768 0.9803 0.1878 0.9920 0.1852 0.9512 0.1948 0.9613 0.1915

15, 15 0.80, 0.80 1, 1 0.9661 0.5599 0.9616 0.5517 0.9715 0.5741 0.9690 0.5537 0.9724 0.5588
2, 2 0.9634 0.4636 0.9564 0.4642 0.9691 0.4746 0.9641 0.4701 0.9683 0.4698
3, 3 0.9700 0.3772 0.9621 0.3824 0.9761 0.3867 0.9670 0.3897 0.9702 0.3868
5, 5 0.9802 0.2614 0.9742 0.2694 0.9838 0.2683 0.9670 0.2774 0.9703 0.2730

10, 10 0.9932 0.1224 0.9901 0.1295 0.9947 0.1262 0.9667 0.1367 0.9709 0.1327

0.85, 0.85 1, 1 0.9641 0.5515 0.9577 0.5404 0.9699 0.5656 0.9651 0.5392 0.9700 0.5470
2, 2 0.9659 0.4600 0.9592 0.4593 0.9696 0.4711 0.9641 0.4629 0.9689 0.4646
3, 3 0.9731 0.3790 0.9656 0.3831 0.9772 0.3883 0.9684 0.3886 0.9729 0.3873
5, 5 0.9792 0.2646 0.9712 0.2718 0.9837 0.2717 0.9673 0.2787 0.9709 0.2753

10, 10 0.9895 0.1267 0.9863 0.1337 0.9928 0.1306 0.9635 0.1403 0.9683 0.1367
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Table 1. Cont.

n1, n2 δ1, δ2 σ2
1 , σ2

2
B.NG B.J B.U GCI FGCI

CP AL CP AL CP AL CP AL CP AL

15, 15 0.90, 0.90 1, 1 0.9687 0.5342 0.9589 0.5182 0.9718 0.5491 0.9613 0.5110 0.9684 0.5243
2, 2 0.9660 0.4561 0.9576 0.4522 0.9703 0.4677 0.9622 0.4515 0.9683 0.4572
3, 3 0.9670 0.3795 0.9584 0.3816 0.9721 0.3892 0.9594 0.3838 0.9670 0.3854
5, 5 0.9791 0.2689 0.9711 0.2752 0.9829 0.2760 0.9636 0.2801 0.9696 0.2784

10, 10 0.9923 0.1303 0.9859 0.1372 0.9939 0.1343 0.9645 0.1429 0.9700 0.1400

0.95, 0.95 1, 1 0.9628 0.5033 0.9548 0.4812 0.9698 0.5193 0.9546 0.4658 0.9630 0.4866
2, 2 0.9606 0.4431 0.9520 0.4347 0.9676 0.4555 0.9539 0.4281 0.9638 0.4394
3, 3 0.9621 0.3755 0.9537 0.3742 0.9701 0.3858 0.9529 0.3722 0.9629 0.3782
5, 5 0.9726 0.2721 0.9632 0.2765 0.9776 0.2797 0.9532 0.2786 0.9621 0.2796

10, 10 0.9878 0.1349 0.9774 0.1414 0.9892 0.1390 0.9503 0.1457 0.9586 0.1439

30, 30 0.80, 0.80 1, 1 0.9775 0.4570 0.9743 0.4519 0.9783 0.4616 0.9796 0.4551 0.9806 0.4572
2, 2 0.9777 0.3618 0.9739 0.3624 0.9796 0.3656 0.9786 0.3677 0.9804 0.3665
3, 3 0.9804 0.2831 0.9764 0.2858 0.9828 0.2858 0.9805 0.2916 0.9810 0.2890
5, 5 0.9870 0.1800 0.9827 0.1838 0.9880 0.1819 0.9794 0.1892 0.9817 0.1863

10, 10 0.9952 0.0709 0.9928 0.0738 0.9955 0.0717 0.9810 0.0776 0.9841 0.0755

0.85, 0.85 1, 1 0.9757 0.4362 0.9729 0.4276 0.9784 0.4411 0.9756 0.4270 0.9785 0.4326
2, 2 0.9716 0.3565 0.9676 0.3547 0.9739 0.3603 0.9722 0.3573 0.9767 0.3586
3, 3 0.9768 0.2840 0.9732 0.2853 0.9776 0.2871 0.9748 0.2890 0.9776 0.2883
5, 5 0.9802 0.1859 0.9777 0.1892 0.9819 0.1880 0.9727 0.1934 0.9750 0.1914

10, 10 0.9913 0.0766 0.9880 0.0796 0.9926 0.0776 0.9726 0.0829 0.9752 0.0811

0.90, 0.90 1, 1 0.9692 0.4077 0.9642 0.3970 0.9712 0.4133 0.9649 0.3929 0.9682 0.4015
2, 2 0.9702 0.3455 0.9650 0.3421 0.9712 0.3498 0.9688 0.3420 0.9715 0.3456
3, 3 0.9690 0.2813 0.9643 0.2812 0.9713 0.2846 0.9671 0.2830 0.9713 0.2839
5, 5 0.9757 0.1899 0.9706 0.1923 0.9773 0.1922 0.9659 0.1954 0.9699 0.1944

10, 10 0.9871 0.0814 0.9847 0.0843 0.9894 0.0825 0.9656 0.0872 0.9699 0.0857

0.95, 0.95 1, 1 0.9638 0.3574 0.9585 0.3464 0.9670 0.3632 0.9576 0.3407 0.9627 0.3497
2, 2 0.9584 0.3228 0.9520 0.3178 0.9618 0.3277 0.9542 0.3155 0.9597 0.3208
3, 3 0.9586 0.2727 0.9533 0.2714 0.9614 0.2766 0.9545 0.2710 0.9595 0.2737
5, 5 0.9676 0.1917 0.9604 0.1934 0.9706 0.1945 0.9569 0.1949 0.9628 0.1952

10, 10 0.9787 0.0877 0.9729 0.0904 0.9808 0.0890 0.9561 0.0926 0.9610 0.0916

50, 50 0.80, 0.80 1, 1 0.9825 0.3979 0.9805 0.3940 0.9829 0.3997 0.9836 0.3974 0.9845 0.3987
2, 2 0.9834 0.3035 0.9804 0.3037 0.9829 0.3052 0.9849 0.3082 0.9866 0.3072
3, 3 0.9860 0.2290 0.9840 0.2305 0.9861 0.2301 0.9863 0.2349 0.9873 0.2331
5, 5 0.9881 0.1369 0.9845 0.1391 0.9876 0.1376 0.9826 0.1429 0.9839 0.1408

10, 10 0.9950 0.0483 0.9935 0.0498 0.9955 0.0486 0.9827 0.0520 0.9844 0.0508

0.85, 0.85 1, 1 0.9776 0.3628 0.9770 0.3560 0.9790 0.3652 0.9761 0.3552 0.9789 0.3603
2, 2 0.9766 0.2939 0.9745 0.2919 0.9777 0.2958 0.9773 0.2934 0.9798 0.2950
3, 3 0.9799 0.2294 0.9772 0.2296 0.9807 0.2308 0.9787 0.2320 0.9805 0.2319
5, 5 0.9830 0.1445 0.9815 0.1461 0.9850 0.1454 0.9794 0.1488 0.9812 0.1477

10, 10 0.9910 0.0546 0.9888 0.0560 0.9916 0.0549 0.9802 0.0579 0.9818 0.0570

0.90, 0.90 1, 1 0.9700 0.3184 0.9689 0.3116 0.9728 0.3212 0.9689 0.3087 0.9707 0.3149
2, 2 0.9688 0.2746 0.9633 0.2716 0.9682 0.2766 0.9655 0.2713 0.9692 0.2743
3, 3 0.9723 0.2232 0.9702 0.2226 0.9733 0.2249 0.9712 0.2236 0.9745 0.2248
5, 5 0.9731 0.1469 0.9693 0.1479 0.9748 0.1479 0.9678 0.1497 0.9711 0.1494

10, 10 0.9824 0.0593 0.9783 0.0607 0.9832 0.0598 0.9673 0.0623 0.9701 0.0615

0.95, 0.95 1, 1 0.9629 0.2717 0.9577 0.2667 0.9644 0.2745 0.9590 0.2650 0.9620 0.2692
2, 2 0.9618 0.2500 0.9565 0.2475 0.9633 0.2522 0.9596 0.2471 0.9621 0.2498
3, 3 0.9599 0.2118 0.9577 0.2110 0.9615 0.2137 0.9578 0.2116 0.9606 0.2130
5, 5 0.9603 0.1476 0.9578 0.1484 0.9617 0.1488 0.9528 0.1497 0.9557 0.1498

10, 10 0.9712 0.0650 0.9695 0.0663 0.9742 0.0655 0.9583 0.0676 0.9600 0.0671
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Table 1. Cont.

n1, n2 δ1, δ2 σ2
1 , σ2

2
B.NG B.J B.U GCI FGCI

CP AL CP AL CP AL CP AL CP AL

100, 100 0.80, 0.80 1, 1 0.9877 0.3289 0.9871 0.3262 0.9880 0.3298 0.9871 0.3287 0.9885 0.3300
2, 2 0.9856 0.2396 0.9846 0.2394 0.9858 0.2401 0.9874 0.2422 0.9881 0.2419
3, 3 0.9879 0.1733 0.9862 0.1739 0.9880 0.1736 0.9888 0.1765 0.9889 0.1757
5, 5 0.9917 0.0962 0.9902 0.0972 0.9909 0.0965 0.9891 0.0993 0.9901 0.0983

10, 10 0.9945 0.0293 0.9933 0.0299 0.9947 0.0294 0.9885 0.0309 0.9889 0.0304

0.85, 0.85 1, 1 0.9809 0.2736 0.9792 0.2695 0.9813 0.2744 0.9785 0.2690 0.9795 0.2726
2, 2 0.9765 0.2205 0.9743 0.2190 0.9768 0.2212 0.9765 0.2198 0.9779 0.2212
3, 3 0.9812 0.1694 0.9795 0.1691 0.9813 0.1699 0.9805 0.1703 0.9816 0.1708
5, 5 0.9823 0.1019 0.9820 0.1025 0.9826 0.1022 0.9808 0.1038 0.9816 0.1035

10, 10 0.9870 0.0350 0.9855 0.0355 0.9870 0.0351 0.9793 0.0364 0.9800 0.0360

0.90, 0.90 1, 1 0.9680 0.2210 0.9652 0.2184 0.9675 0.2220 0.9657 0.2181 0.9665 0.2206
2, 2 0.9646 0.1945 0.9639 0.1934 0.9662 0.1953 0.9668 0.1937 0.9684 0.1951
3, 3 0.9697 0.1587 0.9684 0.1583 0.9706 0.1592 0.9708 0.1590 0.9723 0.1597
5, 5 0.9714 0.1032 0.9700 0.1036 0.9710 0.1036 0.9690 0.1046 0.9702 0.1045

10, 10 0.9784 0.0398 0.9771 0.0403 0.9791 0.0399 0.9705 0.0410 0.9712 0.0407

0.95, 0.95 1, 1 0.9597 0.1916 0.9577 0.1898 0.9610 0.1926 0.9588 0.1901 0.9596 0.1916
2, 2 0.9554 0.1776 0.9528 0.1767 0.9572 0.1785 0.9577 0.1775 0.9585 0.1784
3, 3 0.9586 0.1507 0.9570 0.1504 0.9587 0.1513 0.9583 0.1513 0.9594 0.1518
5, 5 0.9587 0.1040 0.9567 0.1043 0.9606 0.1044 0.9562 0.1053 0.9584 0.1053

10, 10 0.9634 0.0437 0.9616 0.0442 0.9653 0.0439 0.9552 0.0449 0.9557 0.0447

200, 200 0.80, 0.80 1, 1 0.9919 0.2675 0.9907 0.2655 0.9920 0.2677 0.9911 0.2673 0.9914 0.2686
2, 2 0.9872 0.1880 0.9874 0.1875 0.9886 0.1882 0.9895 0.1894 0.9893 0.1896
3, 3 0.9891 0.1309 0.9889 0.1311 0.9897 0.1310 0.9900 0.1327 0.9908 0.1324
5, 5 0.9915 0.0683 0.9912 0.0687 0.9920 0.0684 0.9913 0.0698 0.9917 0.0694

10, 10 0.9939 0.0185 0.9932 0.0187 0.9929 0.0185 0.9898 0.0192 0.9904 0.0189

0.85, 0.85 1, 1 0.9804 0.1929 0.9790 0.1913 0.9810 0.1931 0.9801 0.1916 0.9807 0.1932
2, 2 0.9771 0.1575 0.9766 0.1568 0.9786 0.1577 0.9780 0.1574 0.9785 0.1582
3, 3 0.9796 0.1212 0.9787 0.1209 0.9808 0.1213 0.9804 0.1218 0.9811 0.1221
5, 5 0.9825 0.0720 0.9809 0.0722 0.9818 0.0721 0.9816 0.0729 0.9823 0.0728

10, 10 0.9868 0.0234 0.9851 0.0236 0.9851 0.0235 0.9808 0.0240 0.9812 0.0239

0.90, 0.90 1, 1 0.9686 0.1552 0.9684 0.1544 0.9678 0.1556 0.9684 0.1549 0.9704 0.1558
2, 2 0.9635 0.1377 0.9650 0.1372 0.9651 0.1380 0.9657 0.1381 0.9669 0.1386
3, 3 0.9679 0.1123 0.9669 0.1122 0.9683 0.1125 0.9684 0.1129 0.9693 0.1132
5, 5 0.9670 0.0727 0.9659 0.0728 0.9670 0.0727 0.9676 0.0735 0.9670 0.0734

10, 10 0.9754 0.0271 0.9736 0.0273 0.9758 0.0272 0.9691 0.0277 0.9707 0.0276

0.95, 0.95 1, 1 0.9582 0.1347 0.9568 0.1341 0.9572 0.1350 0.9588 0.1348 0.9593 0.1353
2, 2 0.9540 0.1258 0.9516 0.1255 0.9557 0.1261 0.9549 0.1263 0.9556 0.1266
3, 3 0.9561 0.1068 0.9561 0.1067 0.9581 0.1071 0.9586 0.1075 0.9599 0.1077
5, 5 0.9598 0.0734 0.9575 0.0735 0.9592 0.0736 0.9582 0.0742 0.9598 0.0742

10, 10 0.9608 0.0301 0.9611 0.0302 0.9619 0.0301 0.9574 0.0306 0.9585 0.0305

Note: The values shown in bold represent the shortest expected lengths.
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Table 2. The coverage probabilities and average lengths of two-sided 95% HPD and confidence
intervals for the difference between CQVs in delta-lognormal distributions are presented for cases
with unequal sample sizes.

n1, n2 δ1, δ2 σ2
1 , σ2

2
B.NG B.J B.U GCI FGCI

CP AL CP AL CP AL CP AL CP AL

5, 15 0.80, 0.80 1, 1 0.9457 0.7145 0.9407 0.7179 0.9696 0.7704 0.9627 0.7342 0.9654 0.7325
2, 2 0.9518 0.5935 0.9474 0.6040 0.9733 0.6371 0.9631 0.6220 0.9649 0.6156
3, 3 0.9598 0.4955 0.9556 0.5094 0.9790 0.5325 0.9655 0.5281 0.9674 0.5194
5, 5 0.9692 0.3713 0.9633 0.3872 0.9842 0.4015 0.9596 0.4060 0.9602 0.3967

10, 10 0.9872 0.2124 0.9848 0.2265 0.9940 0.2330 0.9648 0.2459 0.9669 0.2374

0.85, 0.85 1, 1 0.9476 0.6946 0.9433 0.6916 0.9699 0.7443 0.9591 0.6960 0.9630 0.7027
2, 2 0.9529 0.5857 0.9473 0.5934 0.9705 0.6235 0.9597 0.6016 0.9637 0.6020
3, 3 0.9608 0.4962 0.9531 0.5086 0.9761 0.5283 0.9628 0.5187 0.9659 0.5160
5, 5 0.9711 0.3691 0.9624 0.3850 0.9858 0.3949 0.9616 0.3967 0.9667 0.3920

10, 10 0.9857 0.2089 0.9819 0.2242 0.9919 0.2261 0.9595 0.2377 0.9643 0.2324

0.90, 0.90 1, 1 0.9454 0.6838 0.9412 0.6779 0.9639 0.7333 0.9569 0.6783 0.9617 0.6884
2, 2 0.9463 0.5833 0.9396 0.5889 0.9648 0.6213 0.9552 0.5949 0.9610 0.5980
3, 3 0.9529 0.4960 0.9472 0.5070 0.9705 0.5281 0.9576 0.5152 0.9638 0.5146
5, 5 0.9667 0.3740 0.9585 0.3890 0.9793 0.3997 0.9575 0.3996 0.9626 0.3960

10, 10 0.9850 0.2151 0.9795 0.2304 0.9922 0.2326 0.9586 0.2433 0.9630 0.2385

0.95, 0.95 1, 1 0.9377 0.6672 0.9345 0.6590 0.9580 0.7163 0.9523 0.6560 0.9577 0.6689
2, 2 0.9373 0.5754 0.9315 0.5796 0.9582 0.6135 0.9488 0.5830 0.9548 0.5882
3, 3 0.9439 0.4956 0.9410 0.5052 0.9626 0.5279 0.9520 0.5114 0.9569 0.5129
5, 5 0.9571 0.3767 0.9488 0.3907 0.9698 0.4025 0.9506 0.4002 0.9572 0.3979

10, 10 0.9775 0.2175 0.9699 0.2323 0.9871 0.2349 0.9509 0.2446 0.9561 0.2403

10, 50 0.80, 0.80 1, 1 0.9653 0.5416 0.9572 0.5408 0.9721 0.5581 0.9664 0.5496 0.9727 0.5490
2, 2 0.9666 0.4292 0.9596 0.4346 0.9722 0.4414 0.9667 0.4461 0.9705 0.4416
3, 3 0.9721 0.3418 0.9648 0.3495 0.9772 0.3515 0.9680 0.3622 0.9716 0.3565
5, 5 0.9827 0.2283 0.9759 0.2370 0.9859 0.2355 0.9649 0.2506 0.9706 0.2444

10, 10 0.9946 0.1034 0.9922 0.1099 0.9960 0.1073 0.9685 0.1224 0.9715 0.1177

0.85, 0.85 1, 1 0.9679 0.5177 0.9633 0.5110 0.9750 0.5339 0.9694 0.5115 0.9751 0.5178
2, 2 0.9655 0.4273 0.9579 0.4297 0.9723 0.4396 0.9654 0.4352 0.9716 0.4356
3, 3 0.9684 0.3479 0.9608 0.3538 0.9737 0.3577 0.9636 0.3615 0.9704 0.3596
5, 5 0.9794 0.2395 0.9731 0.2480 0.9834 0.2468 0.9652 0.2578 0.9725 0.2541

10, 10 0.9906 0.1110 0.9889 0.1182 0.9926 0.1150 0.9668 0.1284 0.9728 0.1247

0.90, 0.90 1, 1 0.9517 0.4969 0.9511 0.4890 0.9601 0.5140 0.9587 0.4870 0.9649 0.4956
2, 2 0.9540 0.4190 0.9510 0.4203 0.9612 0.4313 0.9628 0.4240 0.9679 0.4260
3, 3 0.9611 0.3458 0.9581 0.3511 0.9663 0.3558 0.9649 0.3574 0.9709 0.3568
5, 5 0.9652 0.2404 0.9642 0.2483 0.9728 0.2476 0.9630 0.2573 0.9690 0.2543

10, 10 0.9812 0.1145 0.9810 0.1216 0.9844 0.1185 0.9655 0.1312 0.9699 0.1278

0.95, 0.95 1, 1 0.9500 0.4688 0.9478 0.4546 0.9569 0.4866 0.9540 0.4456 0.9604 0.4621
2, 2 0.9466 0.4079 0.9478 0.4058 0.9548 0.4209 0.9573 0.4032 0.9643 0.4109
3, 3 0.9513 0.3433 0.9486 0.3465 0.9578 0.3537 0.9588 0.3482 0.9634 0.3515
5, 5 0.9529 0.2462 0.9524 0.2533 0.9594 0.2536 0.9542 0.2590 0.9608 0.2585

10, 10 0.9681 0.1225 0.9685 0.1298 0.9713 0.1266 0.9545 0.1378 0.9616 0.1355

15, 100 0.80, 0.80 1, 1 0.9563 0.4561 0.9416 0.4503 0.9611 0.4644 0.9450 0.4528 0.9546 0.4561
2, 2 0.9595 0.3624 0.9431 0.3636 0.9653 0.3688 0.9450 0.3688 0.9571 0.3684
3, 3 0.9638 0.2852 0.9503 0.2894 0.9702 0.2904 0.9451 0.2965 0.9557 0.2943
5, 5 0.9774 0.1861 0.9670 0.1917 0.9818 0.1895 0.9434 0.2005 0.9556 0.1973

10, 10 0.9933 0.0764 0.9865 0.0809 0.9951 0.0780 0.9422 0.0892 0.9542 0.0866

0.85, 0.85 1, 1 0.9647 0.4307 0.9514 0.4229 0.9683 0.4395 0.9564 0.4221 0.9656 0.4282
2, 2 0.9663 0.3557 0.9539 0.3556 0.9696 0.3624 0.9580 0.3587 0.9663 0.3600
3, 3 0.9685 0.2856 0.9591 0.2890 0.9716 0.2909 0.9587 0.2944 0.9655 0.2934
5, 5 0.9776 0.1907 0.9694 0.1960 0.9793 0.1943 0.9612 0.2037 0.9686 0.2012

10, 10 0.9886 0.0816 0.9857 0.0861 0.9908 0.0833 0.9590 0.0937 0.9683 0.0914
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Table 2. Cont.

n1, n2 δ1, δ2 σ2
1 , σ2

2
B.NG B.J B.U GCI FGCI

CP AL CP AL CP AL CP AL CP AL

15, 100 0.90, 0.90 1, 1 0.9634 0.4041 0.9567 0.3935 0.9672 0.4136 0.9627 0.3900 0.9691 0.3992
2, 2 0.9591 0.3457 0.9522 0.3436 0.9645 0.3528 0.9581 0.3440 0.9664 0.3477
3, 3 0.9617 0.2847 0.9570 0.2869 0.9671 0.2903 0.9601 0.2899 0.9696 0.2909
5, 5 0.9697 0.1933 0.9651 0.1982 0.9731 0.1970 0.9610 0.2041 0.9683 0.2028

10, 10 0.9804 0.0864 0.9779 0.0911 0.9817 0.0883 0.9604 0.0978 0.9683 0.0958

0.95, 0.95 1, 1 0.9529 0.3756 0.9479 0.3610 0.9587 0.3860 0.9495 0.3532 0.9591 0.3669
2, 2 0.9493 0.3346 0.9444 0.3295 0.9538 0.3425 0.9526 0.3256 0.9604 0.3331
3, 3 0.9504 0.2806 0.9463 0.2806 0.9570 0.2868 0.9514 0.2803 0.9605 0.2840
5, 5 0.9560 0.1964 0.9533 0.2004 0.9595 0.2006 0.9544 0.2041 0.9630 0.2045

10, 10 0.9677 0.0921 0.9677 0.0966 0.9698 0.0941 0.9566 0.1023 0.9625 0.1009

50, 200 0.80, 0.80 1, 1 0.9843 0.3442 0.9818 0.3422 0.9860 0.3455 0.9827 0.3462 0.9860 0.3463
2, 2 0.9834 0.2513 0.9804 0.2519 0.9834 0.2522 0.9820 0.2562 0.9845 0.2549
3, 3 0.9848 0.1823 0.9824 0.1837 0.9860 0.1829 0.9818 0.1879 0.9841 0.1864
5, 5 0.9879 0.1023 0.9844 0.1040 0.9882 0.1027 0.9803 0.1078 0.9835 0.1063

10, 10 0.9934 0.0321 0.9923 0.0331 0.9946 0.0323 0.9812 0.0354 0.9836 0.0346
0.85, 0.85 1, 1 0.9791 0.2905 0.9764 0.2860 0.9791 0.2920 0.9760 0.2867 0.9805 0.2903

2, 2 0.9762 0.2361 0.9723 0.2348 0.9769 0.2374 0.9745 0.2362 0.9772 0.2373
3, 3 0.9764 0.1821 0.9736 0.1823 0.9762 0.1829 0.9747 0.1843 0.9782 0.1844
5, 5 0.9798 0.1117 0.9775 0.1128 0.9804 0.1121 0.9747 0.1154 0.9775 0.1147

10, 10 0.9867 0.0395 0.9851 0.0405 0.9870 0.0397 0.9731 0.0425 0.9769 0.0419

0.90, 0.90 1, 1 0.9678 0.2488 0.9657 0.2442 0.9693 0.2506 0.9658 0.2436 0.9690 0.2478
2, 2 0.9613 0.2168 0.9606 0.2147 0.9634 0.2180 0.9641 0.2148 0.9660 0.2169
3, 3 0.9639 0.1760 0.9620 0.1756 0.9649 0.1770 0.9644 0.1764 0.9673 0.1773
5, 5 0.9721 0.1145 0.9708 0.1153 0.9716 0.1152 0.9696 0.1170 0.9722 0.1169

10, 10 0.9730 0.0443 0.9733 0.0452 0.9737 0.0446 0.9672 0.0469 0.9704 0.0465

0.95, 0.95 1, 1 0.9588 0.2137 0.9553 0.2104 0.9616 0.2155 0.9586 0.2099 0.9619 0.2127
2, 2 0.9553 0.1976 0.9502 0.1959 0.9563 0.1992 0.9551 0.1961 0.9583 0.1978
3, 3 0.9545 0.1672 0.9522 0.1666 0.9550 0.1684 0.9540 0.1674 0.9562 0.1682
5, 5 0.9600 0.1157 0.9580 0.1163 0.9604 0.1165 0.9585 0.1176 0.9610 0.1177

10, 10 0.9639 0.0489 0.9616 0.0498 0.9645 0.0493 0.9562 0.0512 0.9591 0.0509

100, 200 0.80, 0.80 1, 1 0.9890 0.3039 0.9889 0.3016 0.9892 0.3041 0.9892 0.3042 0.9895 0.3052
2, 2 0.9877 0.2159 0.9873 0.2157 0.9878 0.2163 0.9881 0.2184 0.9891 0.2181
3, 3 0.9845 0.1529 0.9843 0.1534 0.9859 0.1531 0.9846 0.1558 0.9865 0.1551
5, 5 0.9890 0.0822 0.9886 0.0829 0.9894 0.0823 0.9864 0.0848 0.9884 0.0841

10, 10 0.9944 0.0234 0.9932 0.0238 0.9941 0.0234 0.9882 0.0247 0.9893 0.0243

0.85, 0.85 1, 1 0.9832 0.2362 0.9802 0.2333 0.9824 0.2370 0.9802 0.2337 0.9816 0.2363
2, 2 0.9788 0.1917 0.9780 0.1906 0.9793 0.1922 0.9798 0.1912 0.9806 0.1925
3, 3 0.9817 0.1472 0.9793 0.1469 0.9824 0.1475 0.9814 0.1480 0.9822 0.1484
5, 5 0.9813 0.0878 0.9792 0.0882 0.9812 0.0880 0.9795 0.0894 0.9816 0.0892

10, 10 0.9866 0.0293 0.9859 0.0297 0.9862 0.0294 0.9795 0.0305 0.9802 0.0302

0.90, 0.90 1, 1 0.9674 0.1906 0.9662 0.1889 0.9674 0.1914 0.9666 0.1890 0.9680 0.1907
2, 2 0.9708 0.1685 0.9689 0.1676 0.9713 0.1691 0.9710 0.1682 0.9717 0.1693
3, 3 0.9685 0.1374 0.9667 0.1371 0.9677 0.1378 0.9681 0.1379 0.9700 0.1384
5, 5 0.9689 0.0890 0.9668 0.0893 0.9706 0.0893 0.9675 0.0902 0.9685 0.0902

10, 10 0.9747 0.0338 0.9741 0.0341 0.9756 0.0338 0.9698 0.0348 0.9707 0.0346

0.95, 0.95 1, 1 0.9596 0.1655 0.9578 0.1643 0.9605 0.1662 0.9601 0.1648 0.9623 0.1658
2, 2 0.9575 0.1539 0.9555 0.1532 0.9578 0.1545 0.9595 0.1540 0.9598 0.1547
3, 3 0.9559 0.1306 0.9528 0.1304 0.9557 0.1311 0.9566 0.1312 0.9568 0.1316
5, 5 0.9566 0.0898 0.9556 0.0900 0.9566 0.0901 0.9565 0.0909 0.9577 0.0909

10, 10 0.9650 0.0373 0.9629 0.0377 0.9629 0.0374 0.9580 0.0383 0.9602 0.0381

Note: The values shown in bold represent the shortest expected lengths.

In Figures 3 and 4, the Bayesian method based on Jeffrey’s prior exhibits good per-
formance regarding coverage probabilities for cases with small variances. In contrast,
the coverage probabilities of GCI are significantly lower than those of other methods for
cases with large variances. Furthermore, both the GCI and FGCI methods consistently show
similar coverage probabilities. Additionally, the average lengths of intervals show similar
results across all methods. Furthermore, it is worth noting that in Figures 1–4, the average
lengths tend to narrow for all methods as the variances or sample sizes increase.
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Figure 3. Comparison of the coverage probabilities and average lengths of proposed methods for
cases with varying variances and probabilities of positive values.
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Figure 4. Comparison of coverage probabilities and average lengths of proposed methods for cases
with varying variances and sample sizes.
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3.2. Empirical Study

The rainfall data collected from Bang Klam and Singhanakhon, Songkhla, Thailand,
between 2018 and 2022 conform to a delta-lognormal distribution. These data, consisting
of positive and zero values, are particularly interesting for the study. The Southern-East
Coast Meteorological Center provided the monthly rainfall data presented in Table 3. Both
datasets include positive and zero values, with the proportion of positive rainfall data in Bang
Klam and Singhanakhon being 53 out of 60 and 48 out of 60, respectively. Descriptive statistics
were calculated for the data from Bang Klam and Singhanakhon, resulting in the following
values: sample sizes (n1, n2) = (60, 60), proportions of positive values (δ̂11 , δ̂21) = (0.88, 0.80),
means (µ̂1, µ̂2) = (89.3717, 137.5783), and variances (σ̂2

1 , σ̂2
2) = (18,551.1790, 38,863.9817).

The positive values in both rainfall datasets exhibited right-skewness, as shown in
Figure 5. The minimum Akaike information criteria (AIC) and the Bayesian information
criteria (BIC) were utilized to confirm the distribution of the data. The results in Table 4
demonstrate that both datasets have lower AIC and BIC values for the lognormal distri-
bution, conforming their adherence to this distribution. Additionally, density and normal
Q-Q plots of the log-transformed rainfall data, as depicted in Figure 6, further validate their
lognormal distribution.

Figure 5. Density and normal Q-Q plots of monthly rainfall data in Bang Klam and Singhanakhon,
Songkhla, Thailand (2018–2022).
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Figure 6. Density and normal Q-Q plots of log-transformed monthly rainfall data in Bang Klam and
Singhanakhon, Songkhla, Thailand (2018–2022).

Table 3. Summary of monthly rainfall data for Bang Klam and Singhanakhon, Songkhla, Thailand
(2018–2022).

Month
Bang Klam Singhanakhon

2022 2021 2020 2019 2018 2022 2021 2020 2019 2018

Jan. 69 39 0 113.8 71.1 121.3 49.4 0 146.6 237.5
Feb. 211 0 24 0 0 193.1 0 50.2 0 0
Mar. 14.3 19 0 0 10 141.2 47.5 0 0 9.2
Apr. 24.4 10 17 30.5 27.5 290.4 21.2 0 0 45
May 82.5 112.4 9.5 0 47 250 28.2 0 12.5 39.8
Jun. 75.8 78.3 23.7 10.5 48 69 289.3 3 0 22.6
Jul. 32.7 52.5 93 56 7.5 75.7 175.6 28 89 0

Aug. 42 8.5 10 9 32.5 96 60.2 35.8 10.7 28.3
Sept. 21.7 10 37 44.5 17 61.6 0 20 28.4 41.9
Oct. 202.2 38 71.1 122.4 183 313 27.6 135.3 196.9 373.3
Nov. 353.6 500.6 442.8 236.9 109.5 344.5 738.2 729.7 150.2 383.7
Dec. 732.5 122.1 233.8 62 309.6 933.6 232 543.9 54.7 279.9
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Table 4. AIC and BIC values for monthly rainfall data in Bang Klam and Singhanakorn, Songkhla,
Thailand (2018–2022).

Areas Criteria
Distributions

Normal Cauchy Lognormal Gamma Weibull

Bang Klam
AIC 677.8336 627.4157 586.7384 598.2644 596.5048

BIC 681.7742 631.3562 590.6790 602.2050 600.4454

Singhanakorn
AIC 651.0329 632.7343 590.8083 593.3023 592.6424

BIC 654.7753 636.4767 594.5507 597.0447 596.3848
Note: The values shown in bold represent the minimum AIC and BIC.

Table 5 displays the 95% HPD and confidence intervals for the difference between
CQVs of the monthly rainfall data from Bang Klam and Singhanakhon. The interval lengths
of all methods are similar, consistent with the findings of the simulation study. However, it
should be noted that the HPD and confidence intervals generated by all methods exhibit
conflicting lower and upper bounds, indicating that these intervals contain zero values.
Therefore, there is no significant difference in the monthly rainfall dispersion between
both areas.

Table 5. The 95% HPD and confidence intervals for the difference in CQVs of monthly rainfall data
between Bang Klam and Singhanakorn, Songkhla, Thailand.

Methods Lower Bound Upper Bound Length

B.NG −0.2489 0.0591 0.3080
B.J −0.2472 0.0775 0.3247
B.U −0.2620 0.0545 0.3165
GCI −0.2542 0.0661 0.3203

FGCI −0.2560 0.0743 0.3303

4. Discussion and Conclusions

This study aimed to construct HPD and confidence intervals for the difference between
CQVs of delta-lognormal distributions. We proposed the Bayesian method based on three
priors: normal gamma, Jeffreys, and uniform priors, along with the GCI and FGCI methods.
To evaluate the performance of these methods, we assessed their coverage probabilities
and average lengths under various simulation scenarios.

The findings indicate that the Bayesian approach based on Jeffreys’ prior is suitable
for cases with slight variances or small sample sizes. Conversely, as the variance increases,
the GCI method outperforms the others. However, it is essential to note that this study
focuses on quartiles and specifically applies when the probabilities of positive values are 0.8
or higher. Furthermore, we computed the HPD and confidence intervals for the CQVs of
rainfall data from two areas, which followed a delta-lognormal distribution. The empirical
results align with the findings from the simulation study, demonstrating that the interval
lengths are similar across all methods. In conclusion, we recommend using the Bayesian
approach based on Jeffreys’ prior and the GCI method to construct HPD and confidence
intervals for the difference between CQVs of delta-lognormal distributions.
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