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Abstract: In this paper, we introduce a new type of contractions on a metric space (X, d) in which the
distance d(x, y) is replaced with a function, depending on a parameter λ, that is not symmetric in
general. This function generalizes the usual case when λ = 1/2 and can take bigger values than m1/2.
We call these new types of contractions λ-weak contractions and we provide some of their properties.
Moreover, we investigate cases when these contractions are Picard operators.
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1. Introduction

Fixed point theory plays an important role in pure and applied mathematics. Among
its applications, we mention nonlinear analysis, integral and differential equations, engi-
neering, game theory, economics and so on.

Banach’s famous theorem marks the beginning of the development of the metric fixed
point theory. In the following, we recall some well-known results.

We let (X, d) be a metric space and T : X → X be a mapping. We recall that T is a
Banach contraction if there exists λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λd(x, y), (∀)x, y ∈ X. (1)

S. Banach [1] proved that every self-mapping T defined on a complete metric space
satisfying (1) has a unique fixed point (i.e., Tu = u), and for every x ∈ X, sequence {Tnx}
converges to fixed point u. Due to its simplicity and wide range of applications, this result
was generalized in various ways. See, for example, book [2] and recent papers [3–6].

Definition 1. We assert that T is a Picard operator if T has a unique fixed point u in X and for
any x ∈ X, sequence {Tnx}n∈N converges to u (see [7,8] and book [2]) .

Using this definition, the Banach theorem states the following: If (X, d) is a complete
metric space, the Banach contraction T : X → X is a Picard operator.

After this remarkable result was obtained, a number of various generalizations ap-
peared. We mention here one of the most cited results in the fixed point literature, obtained
in 1969 by Meir and Keeler [9]. The authors introduced the notion of weakly uniformly
strict contraction, which later became known as the Meir–Keeler contraction. Also, they
extend Banach’s metric fixed point theorem by replacing the contraction condition with
this new type of contraction.

Definition 2. We assert that T is a Meir–Keeler contraction if for every ε > 0 there exists δ > 0
such that

(∀) x, y ∈ X, ε ≤ d(x, y) < ε + δ implies d(Tx, Ty) < ε.

Theorem 1. (Meir, Keeler [9]) We let (X, d) be a complete metric space and T be a Meir–Keeler
contraction. Then, T is a Picard operator.

Symmetry 2023, 15, 1442. https://doi.org/10.3390/sym15071442 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15071442
https://doi.org/10.3390/sym15071442
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3110-9805
https://doi.org/10.3390/sym15071442
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15071442?type=check_update&version=1


Symmetry 2023, 15, 1442 2 of 11

New classes of Meir–Keeler contractions were obtained recently by the first author
(see [10,11]).

In paper [12], S. Park and B.E. Rhoades provide fixed point results for weak Meir–
Keeler contractions. As a particular case of their theorem, we have the following result.
First, we denote

m(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}
.

Theorem 2. We let (X, d) be a complete metric space and T be a continuous mapping. We suppose
T satisfies the following condition: for ε > 0, there exists a δ > 0 such that

ε ≤ m(x, y) < ε + δ implies d(Tx, Ty) < ε. (2)

Then, T is a Picard operator.

Another generalization of Meir–Keeler contractions is given in the following theorem.
First, we remember the following definition:

Definition 3. [13] We assert that T is a CJMP contraction (cf. [14–17]) if the following conditions
hold:

(a) T is contractive (i.e., the following inequality d(Tx, Ty) < d(x, y) holds for x, y ∈ X, x 6= y);
(b) (The Matkowski–Wȩgrzyk condition [18]) for every ε > 0, there exists

δ = δ(ε) > 0 such that

(∀) x, y ∈ X, ε < d(x, y) < ε + δ =⇒ d(Tx, Ty) ≤ ε.

Lj. Ćirić [14] proved that the class of CJMP contractions contains the class of Meir–
Keeler contractions. In paper [13], we provided a pedagogical proof for the following
theorem:

Theorem 3. (see [14–17])
We let (X, d) be a complete metric space and T be a CJMP contraction on X. Then, T is a

Picard operator.

Also, in paper [13], we obtained two general theorems concerning the existence of the
Picard operators on complete metric spaces and some applications.

In this this paper, we obtain new classes of Picard operators on a complete metric
space (X, d), by replacing distance d(x, y) with a non-symmetric function. Many results in
the literature are obtained from our results by taking λ = 1/2. Our function is given by

mλ(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), λd(y, Tx) + (1− λ)d(x, Ty)}

and is used here for the first time in the context of fixed point theory. The reason for the
introduction of this function is the fact that mλ can take bigger values than m 1

2
= m.

We consider that our results can be applied in the study of Ulam’s type stability and
in the theory of integral equations.

2. Main Results

In this paper, we introduce and investigate a new type of contraction named λ-weak
contraction. First, we denote for 0 < λ < 1 and for all x, y ∈ X

mλ(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), λd(y, Tx) + (1− λ)d(x, Ty)}.

Definition 4. We assert that T is a λ-weak contraction if the following conditions hold:
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(C1) d(Tx, Ty) < mλ(x, y), if mλ(x, y) > 0 (T is λ-weak contractive)
(C2) (∀) ε > 0, (∃) δ = δ(ε) > 0 such that

(∀) x, y ∈ X, ε < mλ(x, y) < ε + δ =⇒ d(Tx, Ty) ≤ ε.

We remark that function mλ is not symmetric in general. It is a symmetric function if
and only if λ = 1

2 . Another motivation for the introduction of this function is the fact that
mλ can take bigger values than m 1

2
= m.

We provide an example inspired by paper [19] that justifies the introduction of these
new types of contractions.

Example 1. We consider M = [0, 1], 0 < λ < 1 and mapping T : M→ M is defined as follows:

Tx =

{
λx, x 6= 0
1, x = 0

.

M is a complete metric space with the usual metric. In this case,

mλ(x, 0) = max{1, λ2x + (1− λ)(1− x)} =

λ2x + (1− λ)(1− x), if
√

5− 1
2

< λ < 1

1, otherwise.

We observe that for

√
5− 1
2

< λ < 1, mλ(x, 0) > m1/2(x, 0).

In 1975, J. Matkowski [16] proved that if T is 1
2 -weak contraction on a complete metric

space and T is continuous or given ε > 0, (∃)µ, 0 < µ < ε such that for all x, y ∈ X

0 < d(Tx, x),
d(Tx, y) + d(x, Ty)

2
≤ ε

0 < d(x, y), d(y, Ty) < µ

 =⇒ d(Tx, Ty) < ε− µ,

then T is a Picard operator.

In the following, we provide some properties of λ-weak contractions and we prove
that if T is a λ-weak contraction and T is continuous or verifies the condition

(C3) given ε > 0, there exists a µ, 0 < µ ≤ ε such that for x, y ∈ X,

0 < d(Tx, x), λd(y, Tx) + (1− λ)d(x, Ty) ≤ ε

0 < d(x, y), d(y, Ty) < µ

 =⇒ d(Tx, Ty) < ε− µ.

Then, T is a Picard operator.
Also, we prove that T is a Picard operator if T verifies conditions (C2) and

(C4) given ε > 0, (∃) µ, 0 < µ < ε such that if mλ(x, y) = ε, then d(Tx, Ty) ≤ ε− µ.

Proposition 1. If T is λ-weak contractive and Tx 6= T2x, then

d(Tx, T2x) < d(x, Tx).

Proof. We have

mλ(x, Tx) = max{d(x, Tx), d(Tx, T2x), (1− λ)d(x, T2x)},
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hence
mλ(x, Tx) ≥ d(Tx, T2x) > 0.

In the following, we use the proof by contradiction to prove that d(Tx, T2x) < d(x, Tx).
We suppose that d(Tx, T2x) ≥ d(x, Tx). We obtain

d(x, T2x) ≤ d(x, Tx) + d(Tx, T2x)

≤ 2d(Tx, T2x),

hence
mλ(x, Tx) ≤ max{1, 2(1− λ)}d(Tx, T2x) = d(Tx, T2x)

if λ ≥ 1
2

. It follows that

d(Tx, T2x) < mλ(x, Tx) = d(Tx, T2x),

which is absurd. Hence, for λ ≥ 1
2

, we have d(Tx, T2x) < d(x, Tx).

Let λ <
1
2

. We suppose that d(Tx, T2x) ≥ d(x, Tx). Then,

mλ(y, x) = max{d(x, y), d(y, Ty), d(x, Tx), λd(x, Ty) + (1− λ)d(y, Tx)},

mλ(Tx, x) = max{d(x, Tx), d(Tx, T2x), λd(x, T2x)}.

Because d(Tx, T2x) ≥ d(x, Tx), it follows that

d(x, T2x) ≤ d(x, Tx) + d(Tx, T2x) ≤ 2λd(Tx, T2x).

We obtain

mλ(Tx, x) ≤ max{d(Tx, T2x), 2λd(Tx, T2x)}
= d(Tx, T2x).

But T is λ-weak contractive, hence

d(T2x, Tx) < mλ(Tx, x) = d(Tx, T2x),

which is absurd.

Corollary 1. If T is λ-weak contractive and x ∈ X is such that Tx 6= T2x, then

◦ if λ ≥ 1
2

, it follows that mλ(x, Tx) = d(x, Tx);

◦ if 0 < λ <
1
2

, it follows that mλ(Tx, x) = d(x, Tx).

Proof. ◦ If λ ≥ 1
2

, it follows that

mλ(x, Tx) = {d(x, Tx), d(Tx, T2x), (1− λ)d(x, T2x)}.

From Proposition 1, it follows that

d(x, T2x) ≤ d(x, Tx) + d(Tx, T2x) ≤ 2d(x, Tx).

Hence,
mλ(x, Tx) ≤ max{d(x, Tx), 2(1− λ)} ≤ d(x, Tx),
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because 2(1− λ) ≤ 1⇐⇒ λ ≥ 1
2 .

◦ If 0 < λ <
1
2

, we have

mλ(Ty, y) = max{d(Ty, y), d(Ty, T2y), λ(y, T2y)}.

From Proposition 1,
d(Ty, T2y) < d(y, Ty).

Using the triangle inequality, we obtain

λd(y, T2y)λd(y, Ty) + λd(Ty, T2y) ≤ 2λd(y, Ty).

Hence,
mλ(Ty, y) = max{d(Ty, y), 2λd(y, Ty)} = d(Ty, y)

if 1 < 2λ⇐⇒ λ <
1
2

.

Proposition 2. We let T : X → X be a λ-weak contraction as in Definition 4 and

η = η(ε) ≤ δ(ε)

2
=

δ

2
.

If d(x, Tx) < η, d(y, Ty) < η and d(x, y) ≤ η + ε, then d(Tx, Ty) ≤ ε.

Proof. If x = y, it is obvious. If x 6= y, then mλ(x, y) > 0 and

d(y, Tx) ≤ d(y, x) + d(x, Tx) ≤ ε + 2η,

and, respectively,

d(x, Ty) ≤ d(x, y) + d(y, Ty) ≤ ε + 2η.

We have
λd(y, Tx) + (1− λ)d(x, Ty) ≤ ε + 2η,

Hence,
mλ(x, y) ≤ ε + 2η < ε + δ.

If mλ(x, y) ≤ ε, from (C1), it follows that d(Tx, Ty) < mλ(x, y) ≤ ε.
If mλ(x, y) > ε, from (C2), it follows that d(Tx, Ty) ≤ ε.

Proposition 3. We let T : X → X be an arbitrary mapping. If

λd(x, y) + (1− λ)d(x, Ty) ≤ (1− λ)d(x, Tx),

then mλ(x, y) = d(x, Tx).

Proof. From the definition of mλ, it follows that d(x, Tx) ≤ mλ(x, y). Using the triangle
inequality, we have

d(y, Tx) ≤ d(y, x) + d(x, Tx);

hence,

λd(y, Tx) + (1− λ)d(x, Ty) ≤ λd(x, y) + λd(x, Tx) + (1− λ)d(x, Ty)

≤ (1− λ)d(x, Tx) + λd(x, Tx) = d(x, Tx).
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In the following Theorem, we provide a generalization of the theorem of Matkowski [16]
(see also [15]) by taking, instead of

d(y, Tx) + d(x, Ty)
2

,

a convex combination of d(y, Tx) + d(x, Ty), i.e.,

λd(y, Tx) + (1− λ)d(x, Ty).

Also, we assign new conditions (C2) and (C4) for T to be a Picard operator.

Theorem 4. We let (X, d) be a complete metric space and T : X → X be a mapping. We suppose
that T verifies one of the conditions:

(1) T is a λ-weak contraction and T is continuous;
(2) T verifies conditions (C2) and (C4);
(3) T is a λ-weak contraction and verifies condition (C3).

Then, T is a Picard operator.

Proof. Step I. We prove that in sequence {xn} defined by xn+1 = Tnxn, n ∈ N has the limit
of 0.

We can suppose that
d(xn, xn+1) > 0, (∀)n ∈ N.

Indeed, if there exists n such that d(xn, xn+1) = 0, it follows that xn = Txn, hence xn is
a fixed point.

From Proposition 1, it follows that {d(xn, xn+1)} is strictly decreasing and bounded
below by 0. Hence, {d(xn, xn+1)} is convergent.

We denote by ε0 = lim
n→∞

d(xn, xn+1) and we show that ε0 = 0. We assume that ε0 > 0.

Because T is a λ-weak contraction, there exists δ = δ(ε0) > 0 such that

ε0 < mλ(x, y) < ε0 + δ =⇒ d(Tx, Ty) ≤ ε0.

We have ε0 < d(xn, xn+1) < ε0 + δ, for n ≥ n0. From Corollary 1, we have

d(xn, xn+1) = mλ(xn, Txn),

hence
ε0 < mλ(xn, Txn) < ε0 + δ.

From (C2), it follows that
d(Txn, T2xn) ≤ ε0,

hence
d(xn+1, xn+2) ≤ ε0

for n ≥ n0, which is absurd.

Step II.We prove that {xn} is a Cauchy sequence.

From Step I, we have that for all ε > 0, n1 = n1(ε) exists such that

d(xn−1, xn) < γ := min
{

ε,
δ

2

}
, n ≥ n1.
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We use induction to prove that d(xn, xn+p) ≤ ε, p ∈ N. We suppose that

d(xn, xn+p) ≤ ε

and we prove that d(xn, xn+p+1) ≤ ε.

For p = 1, we have d(xn, xn+1) < d(xn−1, xn) < γ ≤ ε. If the induction hypothesis is
true, it follows that

d(xn−1, xn+p) ≤ d(xn−1, xn) + d(xn, xn+p) < γ + ε.

From Proposition 2, it follows that

d(Txn−1, Txn+p) ≤ ε, n ≥ n1.

Step III. We prove that T is a Picard operator.
From Step II, we have that {xn} is a Cauchy sequence. Since (X, d) is a complet metric

space, it follows that {xn} is convergent. We denote p = lim
n→∞

xn.

• If T is continuous, we have lim
n→∞

Txn = Tp.

From the uniqueness of the limit, we obtain p = Tp; hence, p is a fixed point.
• If T verifies conditions (C2) and (C4), it is obvious that T is a λ-weak contraction. In

this case, we prove also that p = Tp. If p 6= Tp,

mλ(p, xn) = d(p, Tp) = ε1.

From (C4) it follows that d(Tp, Txn) ≤ ε1 − µ < ε1. By taking the limit as n moves to
infinity, we obtain d(Tp, p) ≤ ε1 − µ < ε1, which is a contradiction.

• If T is a weak contraction and verifies (C3), we suppose that Tp 6= p.
We denote by ε = d(p, Tp) > 0. Since xn → p, we have the following inequality:

λd(p, xn) + (1− λ)d(p, xn+1) ≤ (1− λ)µ

for a large enough n. Then,

λd(Tp, xn) + (1− λ)d(p, Txn) ≤ λ[d(Tp, p) + d(p, xn)] + (1− λ)d(p, xn+1)

≤ λd(Tp, p) + [λd(p, xn) + (1− λ)d(p, xn+1)]

≤ λε + (1− λ)µ < λε + (1− λ)ε = ε.

Hence, from (C3), it follows d(Tp, Txn) < ε− µ and so

d(Tp, p) ≤ d(Tp, Txn) + d(Txn, p) < ε− µ + µ = ε,

which is a contradiction; therefore, Tp = p.

Now, we prove that the fixed point is unique in each case.
We suppose that there exists another fixed point q such that Tq = q, with p 6= q. Since

T is λ-weak contractive, we obtain

d(Tp, Tq) < mλ(p, q).

But we also have d(Tp, Tq) = d(p, q) and

mλ(p, q) = max{d(p, q), d(p, Tp), d(q, Tq), λd(q, Tp) + (1− λ)d(p, Tq)}
= max{d(p, q), d(p, q), d(q, q), λd(q, p) + (1− λ)d(p, q)}
= max{d(p, q), d(p, q)} = d(p, q).
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It follows that d(p, q) < d(p, q), which is absurd.

We apply Theorem 4 to obtain new fixed point theorems, generalizing the idea from
paper [13].

Definition 5. ([13]) We let E, F be two real functions defined on (0, ∞). We assert that (E, F) is a
compatible pair of functions if the following conditions hold:

(E1) for t, s ∈ (0, ∞), t ≤ s⇒ E(t) < F(s);
(E2) given t > 0 and {tn}n∈N ⊂ (t, ∞), a sequence with lim

n→∞
tn = t, for any sequence {sn}n∈N,

t < sn < tn, n ∈ N, we have

lim sup
n→∞

(F(sn)− E(tn)) > 0.

Here, we introduce a new type of contraction called (λ, E, F)-weak contraction.

Definition 6. We assert that T is a (λ, E, F)-weak contraction if (E, F) is a compatible pair of
functions such that

Tx 6= Ty⇒ F(d(Tx, Ty)) ≤ E(mλ(x, y)). (3)

Theorem 5. We let (X, d) be a complete metric space and T : X → X be a (λ, E, F)-weak
contraction. Moreover, we suppose that one of the following conditions holds:

(i) T is continuous;
(ii) T verifies condition (C3);
(iii) T verifies condition (C4).

Then, T is a Picard operator.

Proof. First, we prove that T is λ-contractive, i.e.,

d(Tx, Ty) < mλ(x, y), if mλ(x, y) > 0.

If Tx = Ty, the above inequality is obvious.
If Tx 6= Ty, we suppose that d(Tx, Ty) ≥ mλ(x, y). By condition (E1), we have

F(d(Tx, Ty)) > E(mλ(x, y)),

which is in contradiction with (3).

We prove that T verifies condition (C2). On the contrary, there is ε0 > 0 such that for
any δ > 0, there are xδ, yδ ∈ X such that

ε0 < mλ(x, y) < ε0 + δ and d(Txδ, Tyδ) > ε0.

We consider {γn}n∈N a sequence of strict positive numbers such that lim
n→∞

γn = 0. For

n ∈ N, we take δ = γn. Then, there are two sequences {xn}n∈N, {yn}n∈N ⊂ X such that

ε0 < mλ(xn, yn) < ε0 + γn (4)

and
d(Txn, Tyn) > ε0, n ∈ N. (5)

From the above relations, with notations

tn = mλ(xn, yn), sn = d(Txn, Tyn), n ∈ N,

we obtain that
{sn}n∈N, {tn}n∈N ⊂ (ε0, ∞);
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hence, lim
n→∞

tn = ε0, and since T is λ-contractive, we also have sn < tn, n ∈ N.

From condition (E2), we have

lim sup(F(sn)− E(sn)) > 0.

From relation (3), we have F(sn) ≤ E(tn), n ∈ N, so

lim sup
n→∞

(F(sn)− E(tn)) ≤ 0,

which is a contradiction.

3. Applications

In the following, we apply Theorem 5 for the case when

E(t) = F(t)− τ,

where τ > 0 is a constant and F is a nondecreasing function. Conditions (E1) and (E2) take
place. Indeed,

If t ≤ s, F(s)− E(t) = F(s)− F(t) + τ ≥ τ > 0, so condition (E1) is verified. To verify
condition (E2), we observe that

lim sup(F(sn)− E(tn)) = F(t + 0)− F(t + 0) + τ = τ > 0,

where (tn)n∈N ⊂ (t, ∞) is a sequence with lim
n→∞

tn = t and

(sn)n∈N, t < sn < tn, n ∈ N.

We obtain the following result, comparable with the main result of the paper [20]:

Theorem 6. We let (X, d) be a complete metric space and T : X → X be a mapping. We let τ > 0
and F : (0, ∞)→ R be a nondecreasing mapping. We suppose that

τ + F(d(Tx, Ty)) ≤ F(mλ(x, y))

for x, y ∈ X with d(Tx, Ty) > 0. If T verifies one of the following conditions,

(i) T is continuous;
(ii) T verifies condition (C3);
(iii) T verifies condition (C4);

Then, T is a Picard operator.

In the following, we provide a fixed point theorem for λ-weak Meir–Keeler contrac-
tions, which is a generalization of Theorem 2.

Definition 7. We assert that T is a λ-weak Meir–Keeler contraction if (∀)ε > 0, (∃)δ = δ(ε) > 0
such that

(∀) x, y ∈ X, ε ≤ mλ(x, y) < ε + δ

implies
d(Tx, Ty) < ε.

It is clear that every λ-weak Meir–Keeler contraction is a λ-weak contraction. Hence,
we have the following result:
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Theorem 7. We let (X, d) be a complete metric space and T : X → X. If T is a λ-weak Meir–
Keeler contraction and T is continuous or T verifies condition (C3) or condition (C4), then T is a
Picard operator.

4. Conclusions

In this this paper, we obtained new classes of Picard operators on a complete metric
space (X, d). These classes are provided by a weak type contraction by replacing distance
d(x, y) with a non-symmetric function. This function is given by

mλ(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), λd(y, Tx) + (1− λ)d(x, Ty)}

and is used here for the first time in the context of fixed point theory.
We consider that our results can be applied in the study of Ulam’s type stability and

in the theory of integral equations.
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