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Abstract: In this work, an algorithm is introduced for the problem of finding a common fixed point
of a finite family of G-nonexpansive mappings in a real Hilbert space endowed with a directed
graph G. This algorithm is a modified parallel algorithm inspired by the inertial method and the
Mann iteration process. Moreover, both weak and strong convergence theorems are provided for the
algorithm. Furthermore, an application of the algorithm to a signal recovery problem with multiple
blurring filters is presented. Consequently, the numerical experiment shows better results compared
with the previous algorithm.
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1. Introduction

In the mathematical literature, the correlation between symmetry and fixed-point
problems is significant, as symmetries can be viewed as fixed points of transformation.
For example, consider the problem of finding the fixed points of a reflection or rotation
transformation. The fixed points of a reflection transformation are the points on the
reflection axis and the symmetry concerning the reflection. Similarly, the fixed points of
a rotation transformation are the points that are unchanged after rotation, and so there is
symmetry concerning rotation.

A fixed-point problem is one of the problems that can be applied to various real-world
problems including signal recovery problems. In addition, the fixed-point problem can
be considered in the context of graph theory. In 2015, Tiammee et al. [1] developed some
iterative procedures for G-nonexpansive mappings in Hilbert spaces involving a directed
graph G. Furthermore, Tripak [2] estimated common fixed points of G-nonexpansive
mappings in a Banach space involving a directed graph G using the Ishikawa iteration
process. Subsequently, there has been numerous research studies involving iteration
processes; see refs. [3–5].

In 2015 and 2016, Anh and Hieu [6,7] proposed a parallel monotone hybrid algo-
rithm for a finite family of quasi φ-nonexpansive mappings in a Banach space. Recently,
Charoensawan et al. [8] presented an algorithm called the Inertial Ishikawa-type parallel
algorithm (IITPA) to estimate common fixed points of a finite family of G-nonexpansive
mappings in a real Hilbert space endowed with a directed graph G. This algorithm was
constructed according to the parallel monotone hybrid algorithm, the Ishikawa iteration,
and the inertial method. They obtained a weak convergence theorem for the algorithm.
There are numerous works related to parallel algorithms; see refs. [9–11].
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Furthermore, another approach to developing the algorithm is to achieve a higher rate
of convergence. Polyak [12] suggested an inertial extrapolation to accelerate the process of
solving smooth convex minimization problems. The inertial extrapolation-type algorithms
have been studied by several authors; see refs. [13–15].

Motivated by the previous research, our study suggests Algorithm 1 with the ideas
of the parallel monotone hybrid algorithm, the Mann iteration process, and the inertial
method. Then we prove some weak and strong convergence results for approximating a
common fixed point of a finite family of G-nonexpansive mappings in a real Hilbert space
endowed with a directed graph G under some suitable conditions. Finally, we apply our
results to a signal recovery problem involving multiple blurring filters and compare them
to the previous algorithms.

2. Preliminaries

First, let us recall some definitions in graph theory. To begin, assume throughout this
section that G = (V(G), E(G)) is a directed graph.

Definition 1. G is said to be transitive if (u, v), (v, z) ∈ E(G) implies (u, z) ∈ E(G) for any
u, v, z ∈ V(G).

Definition 2. Let C ⊆ V(G) and v ∈ V(G).

(i) C is said to be dominated by v if (v, c) ∈ E(G) for all c ∈ C;
(ii) C is said to dominate v if (c, v) ∈ E(G) for all c ∈ C.

Next, definitions of a metric space involving a directed graph are stated. These
definitions are common and often found in literature, for example, see [8].

Definition 3. A metric space X is said to be endowed with G if V(G) = X and {(v, v) : v ∈
X} ⊆ E(G), where G has no parallel edges.

Definition 4. Let C be a nonempty subset of a Hilbert spaceH. Assume that V(G) = C and S is
a self-mapping on C. Then S is said to be G-nonexpansive if

(i) S is edge-preserving, that is, for u, v ∈ V(G),

(u, v) ∈ E(G)⇒ (Su,Sv) ∈ E(G);

(ii) S non-increases weights of edges of G, that is, for u, v ∈ V(G),

(u, v) ∈ E(G)⇒ ‖Su− Sv‖ ≤ ‖u− v‖.

Also, we need some known lemmas as follows.

Lemma 1 ([16]). Let {σn} and {θn} be sequences in R+ ∪ {0} satisfying σn+1 ≤ σn + θn and
∞

∑
n=1

θn < ∞. Then the sequence {σn} converges.

Lemma 2 ([17] Opial). Let C be a nonempty subset of a Hilbert space H, and let {κn} be a
sequence inH. Assume that:

(i) the sequence {‖κn −κ‖} converges for all κ ∈ C;
(ii) all weak sequential cluster points of {κn} belong to C.

Then {κn} converges weakly to some point in C.

Lemma 3 ([18]). Let C be a nonempty closed convex subset of a Hilbert space H. Assume that
V(G) = C and that S is a G-nonexpansive self-mapping on C. Given that {un} is a sequence in
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C satisfying un ⇀ u and {un − Sun} → v, where u ∈ C and v ∈ H, if there is a subsequence
{unk} of {un} satisfying (unk , u) ∈ E(G) for all k ∈ N, then (I − S)u = v.

For convenience, we define condition (SK) of a family of mappings.

Definition 5. Let C be a nonempty subset of a metric space (X, d). For each i = 1, 2, . . . , N,
assume that Si is a self-mapping on C. Then the set {Si : i = 1, 2, . . . , N} is said to satisfy
condition (SK) if there is a non-decreasing function ϕ : [0, ∞) → [0, ∞) with ϕ(0) = 0, and
ϕ(r) > 0 for r > 0 such that for each c ∈ C,

ϕ(d(c,F)) ≤ max
1≤i≤N

d(c, Sic), (1)

where F :=
N⋂

i=1
Fix(Si) and d(c,F) = inf

v∈F
d(c, v).

3. Results

To begin, assume throughout this section thatH is a real Hilbert space endowed with
a directed graph G, where E(G) is convex, and that Si : H → H is a G-nonexpansive

mapping for all i = 1, 2, . . . , N, where F :=
N⋂

i=1
Fix(Si) 6= ∅. Define the inertial Mann-type

parallel algorithm (IMTPA) as follows.

Algorithm 1 Inertial Mann-type parallel algorithm (IMTPA)

Initialization: Choose κ0, κ1 ∈ H, and let n := 1.
Iterative Steps: Construct a sequence {κn} as the following:
Step 1. Compute

vn = κn + ϑn(κn − κn−1),

where {ϑn} ⊂ [0, ∞).
Step 2. Compute

$i
n = λi

nSiκn + δi
nSivn + (1− λi

n − δi
n)vn,

where {λi
n}, {δi

n}, {λi
n + δi

n} ⊂ [0, 1] for all i = 1, 2, . . . , N.
Step 3. Define

κn+1 = arg max
{∥∥∥$i

n −vn

∥∥∥ : i = 1, 2, . . . , N
}

.

Repeat all steps by replacing n with n + 1.

Next, we prove some lemmas to support our main theorems. Assume that {κn} is a
sequence generated by IMTPA.

Lemma 4. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) {κn} and {vn} dominate κ for all κ ∈ F.

Then the sequence {κn} is bounded, and the limit lim
n→∞

‖κn −κ‖ exists for all κ ∈ F.

Proof. Let κ ∈ F. By assumption (ii), we have that (κn,κ), (vn,κ) ∈ E(G). Fix i for some
i = 1, 2, . . . , N. Since Si is edge-preserving, (Siκn,κ), (Sivn,κ) ∈ E(G). Moreover, using
the fact that Si is G-nonexpansive, we obtain the following result:
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∥∥$i
n −κ

∥∥ =
∥∥λi

n(Siκn −κ) + δi
n(Sivn −κ) + (1− λi

n − δi
n)(vn −κ)

∥∥
≤ λi

n‖Siκn −κ‖+ δi
n‖Sivn −κ‖+ (1− λi

n − δi
n)‖vn −κ‖

≤ λi
n‖κn −κ‖+ (1− λi

n)‖vn −κ‖
≤ ‖κn −κ‖+ ϑn‖κn − κn−1‖.

Note that the above inequality is true for all i = 1, 2, . . . , N. By the definition of κn+1,
κn+1 = $

j
n for some j = 1, 2, . . . , N. Thus,

‖κn+1 −κ‖ ≤ ‖κn −κ‖+ ϑn‖κn − κn−1‖.

By assumption (i) and Lemma 1, we conclude that lim
n→∞

‖κn − κ‖ exists. Hence, {κn}
is bounded.

Lemma 5. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) 0 < lim inf
n→∞

δi
n ≤ lim sup

n→∞
δi

n < 1− λi
n for all i = 1, 2, . . . , N;

(iii) {κn} and {vn} dominate κ for all κ ∈ F;
(iv) G is transitive and {vn} is dominated by κ for all κ ∈ F.

Then lim
n→∞

‖Siκn − κn‖ = 0 for all i = 1, 2, . . . , N.

Proof. Let κ ∈ F. From Lemma 4, we have that lim
n→∞

‖κn −κ‖ exists, and {κn} is bounded.

This implies that {vn} and {$i
n} are bounded for all i = 1, 2, . . . , N. Next, by using

assumption (iii) and some known equality in Hilbert spaces, see equality (8) in [19], we
can gain the result below for all i = 1, 2, . . . , N:∥∥$i

n −κ
∥∥2

=
∥∥λi

nSiκn + δi
nSivn + (1− λi

n − δi
n)vn −κ

∥∥2

=
∥∥λi

n(Siκn −κ) + δi
n(Sivn −κ) + (1− λi

n − δi
n)(vn −κ)

∥∥2

= λi
n‖Siκn −κ‖2 + δi

n‖Sivn −κ‖2 + (1− λi
n − δi

n)‖vn −κ‖2

−λi
n(1− λi

n − δi
n)‖Siκn −vn‖2 − δi

n(1− λi
n − δi

n)‖Sivn −vn‖2

−λi
nδi

n‖Siκn − Sivn‖2

≤ λi
n‖κn −κ‖2 + (1− λi

n)‖vn −κ‖2 − δi
n(1− λi

n − δi
n)‖Sivn −vn‖2

≤ ‖κn −κ‖2 + 2ϑn〈κn − κn−1, vn −κ〉 − δi
n(1− λi

n − δi
n)‖Sivn −vn‖2.

By rearranging the terms, the following inequality holds for some M1 > 0:

δi
n(1− λi

n − δi
n)‖Sivn −vn‖2 ≤ ‖κn −κ‖2 −

∥∥∥$i
n −κ

∥∥∥2
+ M1ϑn‖κn − κn−1‖. (2)

Note that Inequality (2) is true for each i = 1, 2, . . . , N. Then there exists in ∈ {1, 2, . . . , N}
such that

δin
n (1− λin

n − δin
n )‖Sin vn −vn‖2 ≤ ‖κn −κ‖2 − ‖κn+1 −κ‖2 + M1ϑn‖κn − κn−1‖.

Since lim
n→∞

‖κn − κ‖ exists, by assumption (i), all terms on the right-hand side of the

inequality approach zero as n goes to infinity. Notice that, by assumption (ii), the term on
the left-hand side of the inequality is nonnegative. Consequently,

lim
n→∞
‖Sin vn −vn‖ = 0. (3)
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Since (κn,κ) ∈ E(G), by assumption (iv), (κn, vn) ∈ E(G) for all n ∈ N. Notice that

‖κn+1 −vn‖ =
∥∥∥λin

n (Sin κn −vn) + δin
n (Sin vn −vn)

∥∥∥
≤ ‖Sin κn − Sin vn‖+ 2‖Sin vn −vn‖
≤ ‖κn −vn‖+ 2‖Sin vn −vn‖
= ϑn‖κn − κn−1‖+ 2‖Sin vn −vn‖.

By assumption (i) and Equation (3), we have that lim
n→∞

‖κn+1 − vn‖ = 0. Due to the

definition of κn+1, we conclude that for all i = 1, 2, . . . , N,

lim
n→∞

‖$i
n −vn‖ = 0. (4)

Now, reconsider Inequality (2) as follows:

δi
n(1− λi

n − δi
n)‖Sivn −vn‖2 ≤ ‖κn −κ‖2 −

∥∥$i
n −κ

∥∥2
+ M1ϑn‖κn − κn−1‖

≤
(
‖κn −κ‖+

∥∥$i
n −κ

∥∥)∥∥$i
n − κn

∥∥+ M1ϑn‖κn − κn−1‖
≤ M2

(∥∥$i
n − κn

∥∥+ ϑn‖κn − κn−1‖
)

≤ M2
(∥∥$i

n −vn
∥∥+ 2ϑn‖κn − κn−1‖

)
for some M2 > 0. Similarly, by using Equation (4), and assumptions (i) and (ii), we get that
lim

n→∞
‖Sivn −vn‖ = 0 for all i = 1, 2, . . . , N. It remains to show that lim

n→∞
‖Siκn − κn‖ = 0.

Observe that
‖Siκn − κn‖ ≤ 2‖κn −vn‖+ ‖Sivn −vn‖

= ϑn‖κn − κn−1‖+ ‖Sivn −vn‖.

Since lim
n→∞
‖Sivn −vn‖ = 0, by assumption (i), lim

n→∞
‖Siκn − κn‖ = 0 for all i = 1, 2, . . . , N.

From the proof of Lemma 5, it can be observed that if (κn, vn) ∈ E(G) for all n ∈ N,
then we can omit assumption (iv) and still obtain the same result.

Lemma 6. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) 0 < lim inf
n→∞

δi
n ≤ lim sup

n→∞
δi

n < 1− λi
n for all i = 1, 2, . . . , N;

(iii) {κn} and {vn} dominate κ for all κ ∈ F;
(iv) (κn, vn) ∈ E(G) for all n ∈ N.

Then lim
n→∞
‖Siκn − κn‖ = 0 for all i = 1, 2, . . . , N.

3.1. Weak Convergence Theorem

In this part, we provide some weak convergence theorems for IMTPA.

Theorem 1. Let {κn} be a sequence generated by IMTPA. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) 0 < lim inf
n→∞

δi
n ≤ lim sup

n→∞
δi

n < 1− λi
n for all i = 1, 2, . . . , N;

(iii) {κn} and {vn} dominate κ for all κ ∈ F;
(iv) G is transitive, and {vn} is dominated by κ for all κ ∈ F;
(v) if there is a subsequence {κnk} of {κn}, κnk ⇀ ν for some ν ∈ H, then (κnk , ν) ∈ E(G).

Then the sequence {κn} converges weakly to an element in F.

Proof. First notice that, by Lemmas 4 and 5, lim
n→∞

‖κn − κ‖ exists for all κ ∈ F, and that

lim
n→∞
‖Siκn − κn‖ = 0 for all i = 1, 2, . . . , N, respectively. Next, we show that F contains all



Symmetry 2023, 15, 1464 6 of 11

weak sequential cluster points of {κn}. Let κ̄ be a weak sequential cluster point of {κn}.
Then there exists a subsequence {κnk} such that {κnk}⇀ κ̄. By assumption (v), we obtain
that (κnk , κ̄) ∈ E(G). Therefore, by Lemma 3, κ̄ ∈ F. Hence, by Opial’s lemma (Lemma 2),
{κn} converges weakly to an element in F.

Similarly, we can replace assumption (iv) in Theorem 1 with assumption (iv) in
Lemma 6 and obtain the following theorem.

Theorem 2. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) 0 < lim inf
n→∞

δi
n ≤ lim sup

n→∞
δi

n < 1− λi
n for all i = 1, 2, . . . , N;

(iii) {κn} and {vn} dominate κ for all κ ∈ F;
(iv) (κn, vn) ∈ E(G) for all n ∈ N;
(v) if there is a subsequence {κnk} of {κn}, κnk ⇀ ν ∈ H, then (κnk , ν) ∈ E(G).

Then the sequence {κn} converges weakly to an element in F.

Additionally, we have the following weak convergence theorem for a family of nonex-
pansive mappings in a real Hilbert space.

Theorem 3. Let {Si : i = 1, 2, . . . , N} be a family of nonexpansive mappings on a real Hilbert
spaceH such that F 6= ∅, and let {κn} be a sequence generated by IMTPA. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) 0 < lim inf
n→∞

δi
n ≤ lim sup

n→∞
δi

n < 1− λi
n for all i = 1, 2, . . . , N.

Then the sequence {κn} converges weakly to an element in F.

Proof. First, we show that Si is a G-nonexpansive mapping for each i = 1, 2, . . . , N. Define
G = (V(G), E(G)) as a directed graph by V(G) = H and E(G) = {(x, y) : x, y ∈ H} such
that E(G) contains no parallel edges. Furthermore, Si is a G-nonexpansive mapping for all
i = 1, 2, . . . , N. Note that, by the definition of G, conditions (iii)–(v) in Theorem 1 hold. As
a consequence, {κn} converges weakly to an element in F.

3.2. Strong Convergence Theorem

In this subsection, we present some strong convergence theorems for a family of
G-nonexpansive mappings in a real Hilbert space endowed with a directed graph G. To
prove the theorem, the condition (SK) is needed as follows.

Theorem 4. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) {κn} and {vn} dominate κ for all κ ∈ F;
(iii) 0 < lim inf

n→∞
δi

n ≤ lim sup
n→∞

δi
n < 1− λi

n for all i = 1, 2, . . . , N;

(iv) G is transitive, and {vn} is dominated by κ for all κ ∈ F;
(v) {Si : i = 1, 2, . . . , N} satisfies the condition (SK), where F is closed.

Then the sequence {κn} converges strongly to an element in F.

Proof. From Lemma 4, we have that lim
n→∞

‖κn −κ‖ exists for all κ ∈ F, and so lim
n→∞

d(κn,F)
exists. By assumption (v), there exists a nondecreasing function ϕ : [0, ∞)→ [0, ∞) such
that ϕ(0) = 0, ϕ(r) > 0 for all r > 0 and ϕ(d(κn,F)) ≤ max

1≤i≤N
‖Siκn − κn‖. From Lemma 5,

we get that lim
n→∞
‖Siκn − κn‖ = 0 for all i = 1, 2, . . . , N. Consequently, lim

n→∞
ϕ(d(κn,F)) = 0.
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By the property of ϕ, we obtain that lim
n→∞

d(κn,F) = 0. Thus, we can find a subsequence

{κnj} of {κn} and a sequence {κj} in F such that ‖κnj − κj‖ ≤ 2−j. Let nj+1 = nj + p for
some p ∈ N. From the proof of Lemma 4, recall ‖κn+1 −κ‖ ≤ ‖κn −κ‖+ ϑn‖κn − κn−1‖.
Furthermore, it follows that

‖κnj+1 −κj‖ = ‖κnj+p −κj‖
≤ ‖κnj+p−1 −κj‖+ ϑnj+p−1‖κnj+p−1 − κnj+p−2‖
...
≤ ‖κnj −κj‖+ ϑnj‖κnj − κnj−1‖+ · · ·+ ϑnj+p−1‖κnj+p−1 − κnj+p−2‖
≤ 2−j + ϑnj‖κnj − κnj−1‖+ · · ·+ ϑnj+p−1‖κnj+p−1 − κnj+p−2‖.

As a consequence,

‖κj+1 −κj‖ ≤ 3 · 2−(j+1) + ϑnj‖κnj − κnj−1‖+ · · ·+ ϑnj+p−1‖κnj+p−1 − κnj+p−2‖.

By assumption (i), it is easy to see that the right-hand side of the inequality tends to zero as
j→ ∞. Then it follows that {κj} is a Cauchy sequence in F. Given the fact that F is closed,
there exists an κ̂ ∈ F such that lim

j→∞
κj = κ̂. Since ‖κnj − κj‖ ≤ 2−j, lim

j→∞
‖κnj − κ̂‖ = 0.

Note that lim
n→∞

‖κn − κ̂‖ exists. Therefore, lim
n→∞

‖κn − κ̂‖ = 0. Hence, the sequence {κn}
converges strongly to κ̂ ∈ F.

Similarly, it can be noted from the proof of Theorem 4 that assumption (iv) can be
replaced by assumption (iv) in Lemma 6. Accordingly, we have Theorem 5.

Theorem 5. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) {κn} and {vn} dominate κ for all κ ∈ F;
(iii) 0 < lim inf

n→∞
δi

n ≤ lim sup
n→∞

δi
n < 1− λi

n for all i = 1, 2, . . . , N;

(iv) (κn, vn) ∈ E(G) for all n ∈ N;
(v) {Si : i = 1, 2, . . . , N}satisfies the condition (SK), where F is closed.

Then the sequence {κn} converges strongly to an element in F.

Similar to Theorem 3, we have the strong convergence theorem for a family of non-
expansive mappings in a real Hilbert space. Remarkably, the common fixed point set of
nonexpansive mappings is closed. Thus, the following theorem is obtained.

Theorem 6. Let {Si : i = 1, 2, . . . , N} be a family of nonexpansive mappings on a real Hilbert
spaceH such that F 6= ∅, and let {κn} be a sequence generated by IMTPA. Assume that:

(i)
∞

∑
n=1

ϑn‖κn − κn−1‖ < ∞;

(ii) 0 < lim inf
n→∞

δi
n ≤ lim sup

n→∞
δi

n < 1− λi
n for all i = 1, 2, . . . , N;

(iii) {Si : i = 1, 2, . . . , N} satisfies the condition (SK).

Then the sequence {κn} converges strongly to an element in F.

4. Application to Signal Recovery Problem

Symmetry considerations can be related to signal processing, especially when signals
satisfy certain symmetries. In this section, we focus on applying IMTPA to signal recovery
problems and then compare its numerical result to that of IITPA. Recall the definition of
IITPA [8] shown as Algorithm 2 below.
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Algorithm 2 Inertial Ishikawa-type parallel algorithm (IITPA)

Initialization: Select arbitrary elements κ0, κ1 ∈ H and set n := 1.
Iterative Steps: Construct {κn} by using the following steps:
Step 1. Define

ωn = κn + ϑn(κn − κn−1),

where {ϑn} ⊂ [0, ∞).
Step 2. Compute, for all i = 1, 2, . . . , N,

ζ i
n = (1− αi

n)ωn + αi
nSi

[
(1− βi

n)ωn + βi
nSiωn

]
,

where {αi
n}, {βi

n} ⊂ [0, 1].
Step 3. Compute

κn+1 = arg max
{∥∥∥ζ i

n −ωn

∥∥∥ : i = 1, 2, . . . , N
}

.

Replace n by n + 1 and then repeat Step 1.

Consider a signal recovery problem with various types of noises mathematically
interpreted as:

bi = Aix + εi,

where x ∈ RP represents the initial signal, bi ∈ RM is the observed signal with noise εi, and
Ai ∈ RM×P (M < P) is a filter matrix for each i = 1, 2, . . . , N. This problem is equivalently
expressed below:

minx∈RP
1
2‖A1x− b1‖2

2 + ‖x‖1;
minx∈RP

1
2‖A2x− b2‖2

2 + ‖x‖1;
minx∈RP

1
2‖A3x− b3‖2

2 + ‖x‖1;
...

minx∈RP
1
2‖AN x− bN‖2

2 + ‖x‖1

(5)

To apply Algorithms 1 and 2, this problem can be established as a common fixed-point
problem as follows. Let H = RP and Si(·) = proxζi‖·‖1

(I − ζi∇ri)(·), where ri(·) =
1
2‖Ai(·)− bi‖2

2 and ζi > 0 for each i = 1, 2, . . . , N. With this setting, Si is a nonexpansive

mapping when ζi ∈
(

0, 2
‖Ai‖2

2

)
.

Now we perform a numerical experiment on IMTPA using Matlab R2021a. First,
we choose the signal size P = 2048 and M = 1024 and generate x using the uniform
distribution on [−2, 2] with k nonzero elements. Then we obtain the Gaussian matrix Ai
using the command randn(M, P) and also the observation bi using white Gaussian noise
with a signal-to-noise ratio SNR=40 with ζi =

3
2‖Ai‖2

2
for all i = 1, 2, 3. Furthermore, select

vectors κ0 and κ1 randomly and apply them to IMTPA, where λi
n = 0.8, δi

n = n
10(n+1) , and

ϑn =

{
min

{
1

(n+100)2‖κn−κn−1‖2
, 0.3

}
if κn 6= κn−1;

0.3 otherwise

for each n ∈ N and i = 1, 2, 3. An easy observation is that all conditions in Theorem 3 are

satisfied. To be more specific, ϑn‖κn− κn−1‖ ≤
1

(n + 100)2 for all n ∈ N, and so assumption

(i) holds. Further, consider that 0 < lim
n→∞

δi
n = 0.1 < 1− λi

n. Furthermore, the assumption

(ii) of Theorem 3 is also true. This guarantees that the sequence {κn} converges to a solution
of such a common fixed-point problem in RP. In addition, for IITPA, set βi

n = 0.8 and
αi

n = n
10(n+1) for all n ∈ N and i = 1, 2, 3. Furthermore, the result is shown in Table 1. In this
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numerical test, we use four different numbers of nonzero elements: k = 50, 100, 150, 200.
From the table, notice that the CPU time (in seconds) of IMTPA is less than that of IITPA, at
least five seconds in each case. Moreover, the number of iterations of IMTPA is also less
than that of IITPA by at least a thousand iterations. Furthermore, we illustrate the recovery
signals for both algorithms in the case where k = 200 in Figure 1.

Table 1. Numerical results for IITPA and IMTPA.

k Nonzero Elements

k = 50 k = 100 k = 150 k = 200

IITPA No. of Iterations 1290 1332 1383 1474
CPU Time 5.9837 6.5560 6.4376 6.5130

IMTPA No. of Iterations 203 205 218 245
CPU Time 0.8378 1.0953 0.9076 1.0110

200 400 600 800 1000 1200 1400 1600 1800 2000

-2

0

2
Original signal

100 200 300 400 500 600 700 800 900 1000

-50

0

50

Measured values with SNR = 40 by using A
1

100 200 300 400 500 600 700 800 900 1000

-50

0

50

Measured values with SNR = 40 by using A
2

100 200 300 400 500 600 700 800 900 1000

-50

0

50

Measured values with SNR = 40 by using A
3

200 400 600 800 1000 1200 1400 1600 1800 2000

-2

0

2
Recovered signal by IITPA

200 400 600 800 1000 1200 1400 1600 1800 2000

-2

0

2
Recovered signal by IMTPA

Figure 1. The initial signal, the measurements, and the recovered signals by IITAPA and IMTPA for k = 200.

Additionally, we use the mean squared error MSEn = 1
P‖κn − x‖2

2 < 10−5 to measure
the restoration accuracy. The error of each reconstructed signal is displayed in Figure 2. As
can be seen in the figure, the error of IMTPA is less than that of IITPA. Overall, the signal
obtained from IMTPA in this experiment gives a better numerical result than the signal
obtained from IITPA.

10
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10
-5
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10
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10
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10
1

M
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E
n

IITPA IMTPA

Figure 2. Plots of MSEn over the number of iterations when k = 200.

5. Conclusions

Taking everything into account, we present an algorithm called IMTPA for finding a
common fixed point of a family of G-nonexpansive mappings on a Hilbert space endowed
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with a directed graph. This algorithm is a modified parallel algorithm with the inertial
method and the Mann iteration concept. Under some extra conditions, we prove weak and
strong convergence theorems for IMTPA. Lastly, we do a numerical experiment on a signal
recovery problem using IMTPA and the previous algorithm called IITPA. The results show
that the numerical outcome of IMTPA is better than that of IITPA. For future research, one
can study results from different types of distances besides metrics. Another approach is
that one can investigate a contraction in a Banach algebra instead of a Hilbert space.
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