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Abstract: In this investigation, we explore the existence and intriguing features of matter-wave
smooth positons in a non-autonomous one-dimensional Bose–Einstein condensate (BEC) system
with attractive interatomic interactions. We focus on the Gross–Pitaevskii (GP) equation/nonlinear
Schrödinger-type equation with time-modulated nonlinearity and trap potential, which govern
nonlinear wave propagation in the BEC. Our approach involves constructing second- and third-order
matter-wave smooth positons using a similarity transformation technique. We also identify the con-
straints on the time-modulated system parameters that give rise to these nonlinear localized profiles.
This study considers three distinct forms of modulated nonlinearities: (i) kink-like, (ii) localized or
sech-like, and (iii) periodic. By varying the parameters associated with the nonlinearity strengths, we
observe a rich variety of captivating behaviors in the matter-wave smooth positon profiles. These
behaviors include stretching, curving, oscillating, breathing, collapsing, amplification, and suppres-
sion. Our comprehensive studies shed light on the intricate density profile of matter-wave smooth
positons in BECs, providing valuable insights into their controllable behavior and characteristics in
the presence of time-modulated nonlinearity and trap potential effects.

Keywords: matter waves; positons; Bose–Einstein condensates; Gross–Pitaevskii equation; similarity
transformation

1. Introduction

Theoretical investigations into the nonlinear collective excitations of matter waves
have emerged as a highly intriguing and pertinent field, especially in light of the experimen-
tal observations of Bose–Einstein condensation (BEC) in vapors of alkali metal atoms [1,2].
Among the captivating manifestations of localized waves in atomic matter, solitons inspire
particular interest. The concept of a soliton was initially introduced to describe nonlinear
solitary waves that exhibit remarkable properties, such as non-dispersive behavior, pre-
serving their localized form and speeds both during propagation and after collisions [3–9].
These inherent advantages of solitons have sparked significant interest in the study of non-
linear systems across various fields of physics, particularly in high-rate telecommunications
involving optical fibers, fluid dynamics, capillary waves, hydrodynamics, plasma physics,
and so on [4,6,10–12]. On the other hand, BECs emit Faraday and resonant density waves
when subjected to harmonic driving [13]. The characteristics of density waves in dipolar
condensates at a temperature of absolute zero have been investigated using both mean-field
variational and full numerical approaches [13]. The breaking of symmetry resulting from
the anisotropy of the dipole–dipole interaction was found to be a crucial factor in this
phenomenon.
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From an experimental perspective, precise control over the existence of matter waves
in a BEC system can be achieved by effectively manipulating nonlinear atom interac-
tions using the Feshbach resonance (FR) technique as well as by varying the external trap
potential [14–17]. This flexibility permits us to consider that the coefficient of nonlinear-
ity and the external potential terms in the Gross–Pitaevskii (GP) equation/generalized
nonlinear Schrödinger (NLS) equation can vary as functions of both time and/or space.
Consequently, investigating the distinctive features of matter waves (solitons, breathers,
and rogue waves) becomes highly intriguing given their spatial and temporal localization,
particularly in the context of BEC experiments. Motivated by these achievements, extensive
research has been dedicated to investigating localized matter waves within quasi-one-
dimensional BECs [17–24]. Furthermore, studies focusing on the variable coefficient NLS
equation have unveiled the possibility of manipulating and enhancing these localized
profiles through the utilization of inhomogeneity parameters [5–7,25–31]. Moreover, in-
vestigations have explored the identification of soliton solutions in the generalized NLS
equation with spatially modulated parameters and an external potential [32–35]. Notably,
in [32], the authors identified alternate solitons and determined their stability regions
in both two-dimensional and one-dimensional BEC models. These investigations were
conducted in the presence of optical lattices created by laser beams illuminating the con-
densates. The analysis of soliton propagation in optical and condensed matter systems
with parity-time (PT ) symmetry, particularly in inhomogeneous setups, has received
significant attention. Accordingly, considerable efforts have been devoted to showcasing the
existence of stable bright solitons, dark solitons, and vortices within the NLS equation featur-
ing PT -symmetric potentials [36–38]. In the case of weakly interacting toroidal BECs, the
occurrence of rotational fluxons (commonly known as Josephson vortices) is linked to the
spontaneous disruption of the rotational symmetry within the tunneling superflows [39].
To explore the impact of controllable symmetry breaking on the resulting state of merged
counter-propagating superflows, a weakly dissipative mean-field model was employed.
In line with this research trajectory, our aim is to construct an intriguing type of local-
ized solution known as smooth positons within the GP equation. We further endeavor to
explore the effects of the time-dependent modulation of nonlinearity parameters on the
characteristics of smooth positon profiles.

Positons, unlike exponentially decaying soliton solutions, are weakly localized non-
linear waves that hold significant importance in the field of nonlinear physics [40–43].
These solutions are obtained by constraining degenerate eigenvalues within the widely
recognized N-soliton algorithm. For positon solutions, the corresponding eigenvalue in
the spectral problem is positive and lies within the continuous spectrum. It has been
observed that when two positons collide, they retain their individual identities, whereas
a soliton remains unchanged following a collision with a positon. However, the positon
is influenced by the carrier wave and envelope, resulting in a finite phase shift [44,45].
Notably, Matveev’s positon solution to the Korteweg–de Vries (KdV) equation exhibited a
spectral singularity [42]. Building on this pioneering work, positon solutions have been
successfully derived for other nonlinear evolution equations; one may refer to [46–48]
for more information. Recent efforts by Cen et al. introduced the concept of smooth
positons or degenerate soliton solutions by allowing for the spectral parameter to take
complex values [49,50], thereby eliminating the singularity in the KdV equation. Following
these advancements, endeavors have been made to construct smooth positon solutions for
various nonlinear evolution equations, including the focusing mKdV equation [51], the
complex mKdV equation [52], the derivative NLS equation [53,54], the NLS–Maxwell–Bloch
equation [55], the higher-order Chen–Lee–Liu equation [56], and the Gerdjikov–Ivanov
equation [57]. More recently, smooth positons and breather positons have been derived
for the generalized NLS equation with higher-order nonlinearity along with higher-order
solutions for an extended NLS equation featuring cubic and quartic nonlinearity [58,59].
Inspired by these advancements in the field of positons, our research aims to construct
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smooth positon solutions within the GP equation, incorporating time-varying nonlinearity
and trap potentials.

The crucial step in this attempt involves utilizing a similarity transformation [5–8,20]
on a meticulously chosen ansatz solution. This transformation effectively converts the GP
equation with time-varying coefficients into the conventional NLS equation with constant
coefficients. By implementing this transformation, the modified variables allow us to
derive new solutions for the considered equation by expressing the known smooth positon
solutions in the altered coordinate system [6,8,20,23]. By leveraging the combination of
known positon solutions of typical NLS equations with similarity transformation functions,
one can derive novel (non-autonomous positon) solutions for the GP equation. The in-
tegrability requirements, which establish the relationship between variable parameters
(modulated nonlinearity and trap potentials), and the proposed ansatz solution, serve as
the underlying considerations for this procedure. However, despite the associated costs,
this approach holds significant value as it not only reveals new analytical solutions for
the GP equation but also empowers users to control outcomes by judiciously selecting
appropriate nonlinearity strengths and trap potentials [20,25,26].

Motivated by the experimental feasibility of studying BECs, our research focuses on
exploring the characteristics of matter-wave smooth positons. To achieve this objective, we
construct second- and third-order matter-wave positon solutions for the one-dimensional
GP equation, considering a variable nonlinearity parameter and an external trap potential.
The construction of these solutions involves transforming the time-modulated GP equation
into a constant coefficient NLS (ccNLS) equation using a similarity transformation. We es-
tablish that the trapping potential and nonlinearity-modulated parameter must satisfy a
constraint for the considered equation to be integrable and yield the desired solutions.
By leveraging the known smooth positon solutions (second- and third-order) of the ccNLS
equation, we present matter-wave smooth positon solutions of the GP equation. We inves-
tigate the controllable behavior of positon density profiles with respect to three different
forms of variable nonlinearity parameters, namely, (i) kink-like nonlinearity R(t) = R0 + R1
tanh (R2t + R3), (ii) localized or sech-type nonlinearity R(t) = R0 + R1 sech (R2t + R3),
and (iii) periodic nonlinearity R(t) = R0 + R1 sin (R2t + R3), for which R0, R1, R2 and R3
are arbitrary parameters. Our findings reveal that a range of nonlinear physical phenom-
ena, including stretching, curving, annihilation, breathing, oscillating, enhancement, and
suppression, are manifested in the underlying matter-wave positon density profiles. When
considering a kink-like modulated nonlinearity, the matter-wave positon density profiles
of a second- and third-order experience stretching, while their amplitudes can either be
enhanced or suppressed. It is important to note that these profiles vanish at different time
intervals, with disappearance occurring for t < 0 when the parameter R2 assumes positive
values and for t > 0 when R2 takes negative values. In the case of a localized or sech-type
modulated nonlinearity, the positon density profiles become compressed and curved within
the background density of the condensate. For periodic modulated nonlinearity, positons
exhibit a periodic behavior, and adjusting the strengths of nonlinearity leads to an increase
in their periodicity, as observed in our analysis. This observation provides valuable insights
for experimentalists analyzing novel density profiles in BECs.

We have structured our work as follows. In Section 2, we account for the GP equa-
tion with time-modulated nonlinearity and trap potentials. The second and third-order
smooth positon solutions are deduced for this equation using a similarity transformation.
The integrability requirement between the modulated nonlinearity and trap potential is
obtained while applying the integrable technique to the considered equation. In Section 3,
by suitably choosing the different forms of the variable nonlinearity parameter, we explore
the various characteristics in the density of matter-wave smooth positon profiles. Finally,
in Section 4, we provide conclusions based on our observations.
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2. BEC Model and Similarity Transformation

The behavior of a BEC confined within an external potential can be effectively char-
acterized using the renowned NLS equation derived from mean field theory, which is
commonly referred to as the GP equation. In the specific scenario of a cigar-shaped trap-
ping potential, where simplicity and physical significance coincide, the radial degree of
freedom in the three-dimensional GP equation can be eliminated through integration,
leading to the derivation of a dimensionless quasi-one-dimensional equation [1,2,8,17,20]

i
∂ψ

∂t
+

1
2

∂2ψ

∂x2 + R(t)|ψ|2ψ +
1
2

λ2(t)x2ψ = 0, (1)

where ψ(x, t) is the condensate wave function and t and x represent dimensionless temporal
(propagation direction) and spatial (transverse) coordinates, respectively. The atom–atom
interaction term (i.e., the scattering length between atoms) denoted by the representation,
R(t), can be tuned using the FR technique. In a series of exquisite experiments using sodium
and rubidium condensates, FRs were investigated [14,15]. They have also been employed in
a variety of significant experimental studies, such as the creation of bright and dark matter-
wave solitons, among others. The time-modulated trap potential is denoted by λ2(t). In the
study of trapped BECs, the trap potential along the elongated axis has been intentionally
selected to vary with time, t, in order to investigate the characteristics of the BECs within the
trap. As a result, both the coefficient of nonlinearity (R) and the potential parameter (λ) can
exhibit time dependence. By appropriately selecting these two time-dependent parameters,
the GP Equation (1) can effectively capture the dynamics and manipulation of BECs. These
parameters serve as powerful tools for controlling and manipulating localized matter
waves in BECs, which can be achieved through the adjustment of external magnetic fields
and optically controlled interactions using techniques such as the FR method [16,20,23].
It is worth noting that such an analysis can be extended to study the influence of space-
dependent parameters on solitons/positons in the system under consideration (1) or
in the context of the generalized NLS equation with the presence of optical lattices. A
noteworthy and unique characteristic of solitons in the presence of nonlinear lattices
is the existence of a finite threshold value of the soliton norm, which is necessary for
the lattices’ formation [32]. This property does not occur in the absence of nonlinear
lattices. In nonlinear lattices, solitons are created directly as opposed to bifurcating from
Bloch modes as seen in linear lattices. This distinction highlights the unique nature and
behavior of solitons in the presence of spatially modulated nonlinearity [32,33]. As a
consequence of these observations, substantial progress have been made with regard
to investigating the localized solutions in the generalized NLS equation with spatially
modulated parameters and the external potential [32–35]. This opens up promising avenues
for future investigations with respect to understanding the behavior and dynamics of
solitons and positons in spatially modulated systems.

In this work, to study the matter-wave smooth positons in (1), we adopt the similarity
transformation mentioned below to map the time-modulated GP Equation (1) to the ccNLS
equation [5–8,20,38]:

ψ(x, t) = s(t)φ(η(x, t), τ(t)) exp[iθ(x, t)]. (2)

In Equation (2), the unknown functions, namely, s(t), η(x, t), τ(t), and θ(x, t), are the
amplitude, similarity spatial variable, the dimensionless time, and the phase factor, respectively,
which are to be computed. Upon involving the substitution of (2) into (1), we obtain the
following set of partial differential equations that are related to the unknown functions:

ηxx = 0, (3a)

ηt + ηxθx = 0, (3b)

η2
x − R(t)s2(t) = 0, (3c)
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s′ (t) + s(t)
1
2

θxx = 0, (3d)

τ′ (t)− R(t)s2(t) = 0, (3e)

θ′ (t) +
1
2

θ2
x −

λ2(t)
2

x2 = 0. (3f)

The explicit expressions of the unknown functions can be acquired by solving the afore-
mentioned set of equations, and they take the following form

s(t) =s0

√
R(t), (4a)

η(x, t) =s0R(t)x− bs3
0

∫
R2(t)dt, (4b)

θ(x, t) =− R(t)t

2R(t)
x2 + bs2

0R(t)x− 1
2

b2s4
0

∫
R2(t)dt, (4c)

τ(t) =
1
2

s2
0

∫
R2(t)dt. (4d)

where b and s0 are arbitrary constants. Additionally, we have found an integrability
condition that imposes a connection between the time-modulated nonlinearity and the trap
potential parameter, as shown in [8,20,38].

d
dt

(
Rt

R

)
−
(

Rt

R

)2
+ λ2(t) = 0. (5)

Using Equation (5), one can find the λ(t) by fixing the R(t), and vice versa. In this
work, we consider the physically intriguing function R(t) and determine the λ(t) via the

following expression: λ(t) =
√

R′ (t)2 + R′ (t)− R(t)R′′ (t)
R(t)

.

In Equation (2), the function φ(η, τ) was found to fulfill the ccNLS equation:

i
∂φ

∂τ
+

1
2

∂2φ

∂η2 + |φ|2φ = 0. (6)

The equation under consideration (6) exhibits a wide range of localized solutions,
including solitons, breathers, rogue waves, and their corresponding profiles [6,20,43].
In this study, we focus on the smooth positon solutions of the NLS equation to investigate
matter-wave positons in quasi-one-dimensional BECs.

By selecting an appropriate functional form for the time-modulated nonlinearity
function R(t) while ensuring the satisfaction of condition (5), we can derive matter-wave
positon solutions for the GP Equation (1) in the following form:

ψ(x, t) =s0

√
R(t)φ(η, τ) exp

[
i
(
−1

2
b2s4

0

∫
R(t)2 dt + bs2

0xR(t)− x2R′ (t)
2R(t)

)]
, (7)

where φ(η, τ) is the smooth positon solution of the ccNLS Equation (6). The solution (7) has
the potential to generate a multitude of novel positon structures that can be experimentally
realized. To summarize the current progress, one can generate several solutions (positons)
for the GP model (1) by first obtaining solutions for the ccNLS Equation (6) while satisfying
the mentioned relationships. An intriguing advantage of and potential new perspective
regarding the similarity transformation is worth emphasizing, as it allows for the extension
of this approach to models featuring variable nonlinearity and external trap potential
coefficients dependent on both longitudinal and spatial coordinates. By appropriately
tailoring and imposing constraints, the resulting dynamics of physical systems can be
attainable. Consequently, in Section 3, we construct smooth positon solutions for the ccNLS
Equation (6) to analyze matter-wave positons in quasi-one-dimensional BECs.
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3. Characteristics of Matter-Wave Smooth Positons in BECs

In this section, we investigate the characteristics of matter-wave positons using solution
(7) by considering three different forms of the time-varying nonlinearity parameter and the
associated trap potentials. For this investigation, in the following, we first derive the second-
order and third-order smooth positon solution for the ccNLS Equation (6).

3.1. Second-Order Matter-Wave Smooth Positons

Now, we explore the various novel density profiles of second-order matter-wave
smooth positons in BECs. For this objective, we first derive the second-order smooth
positon solution for the ccNLS Equation (6) as provided by

φ[2] =
P11

Q11
, (8)

where

P11 =4(α1 − α∗1)e
2iα1(2α1τ+η)

(
−α1(η − 4α∗1τ) + α∗1η − 4α2

1τ − i
)

+ 4(α∗1 − α1)e
2iα∗1(2α∗1 τ+η)

(
−α1(4α∗1τ + η) + α∗1η + 4(α∗1)

2τ + i
)

, (9a)

Q11 =− 2e(2i(α1+α∗1)η+4i(α2
1+α∗21 )τ)

(
−1 + 2

(
α1 − α∗21

)
η2 + 32α1α∗1(α1 − α∗1)

2τ2

+8ητ(α1 + α∗1)
(

α1 − α∗21

))
+ e4iα1(2α1τ+η) + e4iα∗1(2α∗1 τ+η), (9b)

where α1 is the eigenvalue of the spectral parameter, α∗1 is the complex conjugate of α1,
and η and τ are provided in Equation (4). The above-mentioned second-order smooth
positon solution (8) can be obtained from the material presented in [58] by considering
ν = 0. Substituting this solution into (7) along with the suitable form of R(t), we obtain the
second-order matter-wave smooth positon solution of (1).

Now, utilizing the above mentioned solution, we move to investigate its control-
lable behaviors through three different forms of a time-modulated nonlinearity param-
eter, namely, (i) kink-like nonlinearity R(t) = R0 + R1 tanh (R2t + R3), (ii) localized or
sech-type nonlinearity R(t) = R0 + R1 sech (R2t + R3), and (iii) periodic nonlineaity
R(t) = R0 + R1 sin (R2t + R3), where R0, R1, R2, and R3 are arbitrary parameters. More-
over, it is important to mention that this investigation can be extended to study the impact
of spatially modulated coefficients [32–35] on the matter-wave smooth positons of (1),
which will provide fruitful directions for future investigations. In the following, we provide
a comprehensive demonstration of the impact of time-modulated nonlinearity parameters
on the positon density profiles.

To begin, we employ the kink-like nonlinearity parameter, that is, R(t) = R0 + R1
tanh (R2t + R3), to reveal the novel features in BECs. Substituting this nonlinearity term
into the generalized solution (7) yields

ψ(x, t) =s0

√
R1 tanh(R2t + R3) + R0φ(η, τ) exp

[
− i

4R2

(
b2s4

0

(
−2R2

1

× tanh(R2t + R3) + (R0 − R1)
2 log(tanh(R2t + R3) + 1)− (R0 + R1)

2

× log(1− tanh(R2t + R3)))− 4bs2
0x(R1 tanh(R2t + R3) + R0)

+
2R1R2x2sech2(R2t + R3)

R1 tanh(R2t + R3) + R0

)]
, (10)

where φ(η, τ) is the second-order smooth positon solution of the ccNLS Equation provided
in Equation (8). Utilizing this solution (10), we conduct a thorough analysis of the positon
density profiles, investigating their diverse characteristics as we vary the strength of the
time-modulated nonlinearity parameter.
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Figure 1a–f illustrate the qualitative profiles of a second-order matter-wave smooth
positon in BECs corresponding to a kink-like nonlinearity modulated parameter
R(t) = R0 + R1 tanh (R2t + R3). By selecting specific parameter values, i.e., R0 = 1.05,
R1 = 0.01, R2 = 1.05, and R3 = 0.5, we obtain a well-localized second-order smooth
positon profile associated with the eigenvalue α1 = 0.2 + 0.5i, as depicted in Figure 1a.
Notably, the orientation of the smooth positon density profile changes when varying the
eigenvalue associated with the solution. For instance, when modifying the eigenvalue
to α1 = 0.3 + 0.6i, Figure 1b clearly demonstrates a shift in the orientation of the positon
profile accompanied by an enhancement of its amplitude. Furthermore, we investigate the
effects of adjusting the strengths of the nonlinearity parameters, specifically R0, R1, and
R2. For example, when R0 is changed to 1.85, the positon profile’s orientation relocates
while experiencing a slight increase in amplitude, as depicted in Figure 1c. Additionally,
Figure 1d illustrates that increasing the value of R1 to 0.5 leads to the collapse of the con-
densate profile on one side of the positon profile (t < 0). Conversely, when R1 assumes
a negative value, such as R1 = −0.5, the reverse phenomenon occurs, resulting in the
disappearance of the density profile in the corresponding plane (t > 0) as represented in
Figure 1e. Moreover, increasing the value of R2 to 3.5 yields a well-localized positon profile
that exhibits a compression within the condensate density background. Additionally, as
depicted in Figure 1f, the width of the crest of the positon profile widens over time.

Next, we consider localized-type or sech-type nonlinearity, namely, R(t) = R0 + R1
sech (R2t + R3), in order to investigate the distortion of positon profiles in the condensate
density background. By inserting this form of R(t) into (7), we obtain the matter positon
solution in the following form

ψ(x, t) = s0

√
R1sech(R2t + R3) + R0φ(η, τ) exp

[
i

2R2

(
−b2s4

0

(
R2R2

0t

+R2
1 tanh(R2t + R3) + 2R1R0 tan−1(sinh(R2t + R3))

)
(11)

+bs2
0x(R1sech(R2t + R3) + R0) +

R1R2x2 tanh(R2t + R3)

2(R0 cosh(R2t + R3) + R1)

)]
,

where φ(η, τ) is the positon solution of the ccNLS Equation, which is provided in Equation (8).
Figure 2a–f represent the density profiles of a second-order matter-wave smooth

positon with a modulated nonlinearity function yielded by R(t) = R0 + R1 sech (R2t + R3).
In this study, we consider specific parameter values, i.e., R0 = 1.05, R1 = 0.01, R2 = 1.05,
and R3 = 0.5, aiming to investigate the intriguing properties exhibited by the positon
density profiles. With these initial parameter values, we obtain the second-order smooth
positon profile, as shown in Figure 2a. By increasing R0 to 1.85, we observe a stretching
of the positon and an enhancement in its amplitude, as depicted in Figure 2b. Similarly,
when we tune the parameter R1 to 0.85, a curvature appears in the condensate profile, as
shown in Figure 2c. Notably, when R1 assumes a negative value, we observe the formation
of two peaks at the center (t = 0), which is accompanied by a suppression in amplitude,
as demonstrated in Figure 2d. Additionally, in the case where R0 = 1.85 and R1 = 1.75,
we observe a gradual increase in amplitude, the further stretching of the positon, and
the formation of a curved profile, as shown in Figure 2e. At R0 = 2.5 and R2 = 1.5, a
compressed density profile with an identical amplitude is obtained, as depicted in Figure 2f.
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(a) (b)

(c)
(d)

(e) (f)
Figure 1. Density profile of second-order matter-wave smooth positons for (1) with the kink-like
nonlinearity modulated function R(t) = R0 + R1 tanh (R2t + R3). The parameters are (a) R0 = 1.05,
R1 = 0.01, R2 = 1.05, R3 = 0.5; (b) α1 = 0.3 + 0.6i, α∗1 = 0.3− 0.6i; (c) R0 = 1.85; (d) R1 = 0.5;
(e) R1 = −0.5; (f) R2 = 3.5. In (b–f), the mentioned parameters are varied, while the remaining
parameters are maintained as they are in (a). The other parameters are α1 = 0.2+ 0.5i, α∗1 = 0.2− 0.5i,
s0 = 1.0, and b = 0.01.

Finally, we investigate the influence of a periodically modulated nonlinearity given by
R(t) = R0 + R1 sin (R2t + R3) on the positon density profiles. By inserting this R(t) into
(7), we obtain the explicit form of a matter-wave positon solution yielded in the following
expression:

ψ(x, t) =s0

√
R1 sin(R2t + R3) + R0φ(η, τ) exp

(
− i

8R2

(
b2s4

0

(
4R2

0(R2t + R3)

+R2
1(2R2t− sin(2(R2t + R3)) + 2R3)− 8R1R0 cos(R2t + R3)

)
−8bs2

0x(R1 sin(R2t + R3) + R0) +
4R1R2x2 cos(R2t + R3)

R1 sin(R2t + R3) + R0

))
, (12)

where φ(η, τ) is the positon solution of the ccNLS Equation given in (8).
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The second-order matter-wave smooth positon density profiles are displayed in
Figure 3 for a periodic nonlinearity-modulated function R(t) = R0 + R1 sin (R2t + R3)
in the context of BECs. By appropriately tuning the parameters R0, R1, and R2, we can
achieve periodic positon solutions. In Figure 3a, using initial parameter values of R0 = 1.5,
R1 = 0.05, R2 = 1.25, and R3 = 0.5, we can observe a periodic behavior in the positon
condensate profile. Subsequently, when the nonlinearity strength R0 is increased to 2.25, the
oscillation of the positon becomes more elongated, and the amplitude is raised, as shown
in Figure 3b. Moreover, as we increase the value of R1 to 0.55, the periodicity of the positon
profile increases along with an increase in amplitude, which can be seen in Figure 3c. This
trend is further amplified when the value of R1 is increased, as depicted in Figure 3d. When
the parameters R2 = 2.75 and 5.25 are chosen, the oscillation in the positon profile increases
and retains a similar orientation, as evident in Figure 3e,f, respectively.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Density profile of second-order matter-wave smooth positons for (1) with localized-type
modulated nonlinearity R(t) = R0 + R1 sech (R2t + R3). The parameters are (a) R0 = 1.05, R1 = 0.01,
R2 = 1.05, R3 = 0.5; (b) R0 = 1.85; (c) R1 = 0.85; (d) R1 = −0.85; (e) R0 = 1.85, R1 = 1.75;
(f) R0 = 2.5, R2 = 1.5. In (b–f), the mentioned parameters are varied, while the remaining parameters
are kept as they are in (a). The other parameters are the same as in Figure 1.
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(a) (b)

(c) (d)

(e) (f)
Figure 3. Density profile of second-order matter-wave smooth positons for (1) with the periodic
nonlinearity modulated function R(t) = R0 + R1 sin (R2t + R3). The parameters are (a) R0 = 1.5,
R1 = 0.05, R2 = 1.25, R3 = 0.5; (b) R0 = 2.25; (c) R1 = 0.55; (d) R1 = 0.85; (e) R2 = 2.75; (f) R2 = 5.25.
In (b–f), the mentioned parameters are varied, while the remaining parameters are maintained as
they are in (a). The other parameters are the same as in Figure 1.

3.2. Third-Order Matter-Wave Smooth Positons

In the previous sub-section, we investigated the modifications of second-order matter-
wave smooth positon profiles by varying the distributed coefficients (the nonlinearity
function) in the GP Equation (1). In this sub-section, we delve into the deformations of
third-order matter-wave smooth positons in condensates as we manipulate the strength
of the modulated nonlinearity parameter. To explore these intriguing characteristics, we
consider the third-order smooth positon solution for the ccNLS Equation (6), which takes
the following form:

φ[3] =
P2

Q2
, (13)

where

P2 =e−i(2τ(α2
1+α∗21 )+η(α1+α∗1))

(
P21e2i(α1−α∗1)(η+2τ(α1+α∗1))

+P22e−2i(α1−α∗1)(η+2τ(α1+α∗1)) + P23

)
, (14)
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with

P21 =− 4(α1 − α∗1)
(
−3 + 2η(3i + 8τα1(α1 − α∗1) + 2η2(α1 − α∗1)

2

+32τ2α2
1(α1 − α∗1)

2 − 4iτ(α1 − α∗1)(−7α1 + α∗1)
)

,

P22 =− 4(α1 − α∗1)
(
−3 + 4iτ(α1 − 7α∗1)(α1 − α∗1) + 2η2(α1 − α∗1)

2

+32τ2(α1 − α∗1)
2α∗21 − 2η(α1 − α∗1)(3i + 8τα∗1(−α1 + α∗1)

)
,

P23 =8(α1 − α∗1)
(

3 + 4η2(α1 − α∗1)
2 − 2η4(α1 − α∗1)

4 + α2
1 − 512τ4α2

1(α1 − α∗1)
4α∗21

+8iηα∗31 − 4η2α∗41 − 8ηα3
1(−i + ηα∗1)− 2α1α∗1(−3 + 4iηα∗1 + 4η2α∗21 )

+16τ(α1 − α∗1)
2(−i + iη2(α1 − α∗1)

2 + η(α1 + α∗1)− η3(α1 − α∗1)
2(α1 + α∗1))

+8τ3(α1 − α∗1)
3(α1 + α∗1)(−iα∗1 + α1(−i + 4ηα∗1))

+8τ2(α1 − α∗1)
2(α2

1 − 8iηα2
1α∗1 + η2(1 + 24α2

1α∗21 ))
)

,

and

Q2 =4e−3i(α1−α∗1)+(η+2τ(α1+α∗1))
(

1 + Q21e4i(α1−α∗1)(η+2τ(α1+α∗1))

+Q22e2i(α1−α∗1)(η+2τ(α1+α∗1)) + e6i(α1−α∗1)(η+2τ(α1+α∗1))
)

, (15)

where

Q21 =3 + 1024τ4α2
1(α1 − α∗1)

4α∗21 + 48τ2(α1 − α∗1)
2(α2

1 − 6α1α∗1 + α∗21 )

+ 4η4(α1 − α∗1)
4 − 128iτ3(α1 − α∗1)

3(α1 + α∗1)(α
2
1 − 4α1α∗1 + α∗21 )

+ 8η3(α1 − α∗1)
3(i + 4τ(α2

1 − α∗21 )) + 4η2(α1 − α∗1)
2
(
−3 + 12iτ(α2

1 − α∗21 )

+16τ2(α1 − α∗1)
2(α2

1 + 4α1α∗1 + α∗21

)
− 16ητ(α1 − α∗1)

2
(

3α∗1 − 32τ2α4
1α∗1

+32τ2α3
1α∗21 + 8τα2

1α∗1(−3i + 4τα∗21 ) + α1(3 + 24iτα∗21 − 32τ2α∗41 )
)

,

Q22 =3 + 1024τ4α2
1(α1 − α∗1)

4α∗21 + 48τ2(α1 − α∗1)
2(α2

1 − 6α1α∗1 + α∗21 )

+ 4η4(α1 − α∗1)
4 + 128iτ3(α1 − α∗1)

3(α1 + α∗1)(α
2
1 − 4α1α∗1 + α∗21 )

+ 8η3(α1 − α∗1)
3(i + 4τ(α2

1 − α∗21 )) + 4η2(α1 − α∗1)
2
(
−3− 12iτ(α2

1 − α∗21 )

+16τ2(α1 − α∗1)
2(α2

1 + 4α1α∗1 + α∗21

)
− 16ητ(α1 − α∗1)

2
(

3α∗1 − 32τ2α4
1α∗1

+32τ2α3
1α∗21 + 8τα2

1α∗1(3i + 4τα∗21 ) + α1(3 + 768iτ3α∗61 )
)

.

It is important to note that the third-order smooth positon solution can be deduced from
the research in [58] by setting ν = 0. By substituting this third-order smooth positon solution of
the ccNLS Equation (13), along with the appropriate form of the modulated parameter R(t), into
Equation (7), we delve into an analysis of the underlying characteristics of the GP Equation (1).

Figure 4a–f present the condensate profiles of third-order smooth positons with a
kink-like nonlinearity-modulated function R(t) = R0 + R1 tanh (R2t + R3). By considering
the initial parameters R0 = 1.25, R1 = 0.01, R2 = 1.05, and R3 = 0.5, an appropriate
third-order positon profile is formed within the condensate density background, as shown
in Figure 4a. Notably, a decrease in R0 leads to a sudden rise in one of the subcrests, as
demonstrated in Figure 4b for R0 = 0.85. Furthermore, Figure 4c illustrates an increase in
amplitude when changing the value of R0 to 1.75. On the other hand, in Figure 4d, when
the parameter R1 is increased to 1.25, the positon tends to disappear within the condensate
profile when t < 0. Interestingly, a reverse scenario occurs when R1 = −0.65, resulting in
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a higher peak in one of the profiles and an increased amplitude, as depicted in Figure 4e.
Similarly, an increase in R2 to 3.75 yields a compressed three-positon profile with the same
amplitude as Figure 4a, as shown in Figure 4f.

(a)
(b)

(c)

(d)

(e) (f)

Figure 4. Density profile of third-order matter-wave smooth positons for (1) with R(t) = R0 + R1

tanh (R2t + R3). The parameters are (a) R0 = 1.25, R1 = 0.01, R2 = 1.05, R3 = 0.5; (b) R0 = 0.85;
(c) R0 = 1.75; (d) R1 = 1.25; (e) R1 = −0.65; (f) R2 = 3.75. In (b–f), the mentioned parameters are
varied, while the remaining parameters are maintained as they are in (a). The other parameters are
α1 = 0.2 + 0.75i, α∗1 = 0.2− 0.75i, s0 = 1.0, and b = 0.01.

In Figure 5a–f, we show the density profiles of third-order matter-wave smooth
positons for the sech-like nonlinearity-modulated function R(t) = R0 + R1 sech (R2t + R3)
for the GP model (1). Employing the following initial parameters, namely, R0 = 1.25,
R1 = 0.01, R2 = 1.05, and R3 = 0.5, we obtain the conventional smooth three-positon
profile, as shown in Figure 5a. By adjusting R0 to 1.85, the positon undergoes stretching,
resulting in an enhanced amplitude, as depicted in Figure 5b. Similarly, when R1 is modified
to 1.5, the positon exhibits curvature in one of its wave crests, as seen in Figure 5c. Figure 5d
illustrates a decrease in the soliton amplitude when R1 is set to 0.35. However, no significant
changes are observed in the smooth three-positon profile when altering the value of R2
compared to Figure 5a. This observation is displayed in Figure 5e. Finally, for R0 = 1.85
and R1 = 0.8, the three-positon profile becomes compressed, which is accompanied by a
decrease in its amplitude, as shown in Figure 5f.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Density profile of third-order matter-wave smooth positons for (1) with nonlinearity-
modulated function R(t) = R0 + R1 sech (R2t + R3). The parameters are (a) R0 = 1.25, R1 = 0.01,
R2 = 1.05, R3 = 0.5; (b) R0 = 1.85; (c) R1 = 1.5; (d) R1 = 0.35; (e) R2 = 2.75; (f) R0 = 1.85, R1 = 0.8.
In (b–f), the mentioned parameters are varied, while the remaining parameters are maintained as
they are in (a). The other parameters are the same as in Figure 4.

Finally, we investigate the density profiles of the third-order matter-wave smooth
positon in one-component BECs utilizing a periodic nonlinearity-modulated function,
denoted as R(t) = R0 + R1 sin (R2t + R3). Setting the initial nonlinearity strengths as
R0 = 1.5, R1 = 0.05, R2 = 0.85, and R3 = 0.5, we aim to obtain an appropriate periodic
third-order smooth positon density profile, as illustrated in Figure 6a. Notably, in the
results, a remarkable change occurs in the profile when the parameter R0 is selected as
0.85, resulting in the formation of a sharp ascent on one side of the profile, as depicted in
Figure 6b. Similarly, when we increase R0 to 1.75, the profile returns to its original position,
as displayed in Figure 6c. Furthermore, in Figure 6d, we observe that the periodicity of the
positon density profiles increases when R1 is set to 0.5. Moreover, raising the value of R2
to 2.25 leads to an increase in the oscillation amplitude of the positon, as demonstrated in
Figure 6e. Finally, when the value of R2 is further increased to 5.25, we observe no change
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in the positon amplitude, but there is a variation in the oscillation behavior, which is clearly
depicted in Figure 6f.

(a)
(b)

(c)

(d)

(e) (f)
Figure 6. Density profile of third-order matter-wave smooth positons for (1) with the nonlinearity-
modulated function R(t) = R0 + R1 sin (R2t + R3). The parameters are (a) R0 = 1.5, R1 = 0.05,
R2 = 0.85, R3 = 0.5; (b) R0 = 0.85; (c) R0 = 1.75; (d) R1 = 0.5; (e) R2 = 2.25; (f) R2 = 5.25.
In (b–f), the mentioned parameters are varied, while the remaining parameters are maintained as
they are in (a). The other parameters are the same as in Figure 4.

4. Conclusions

In our study, we have derived the second- and third-order matter-wave smooth positon
solutions of the GP equation. These solutions capture the features of one-component BECs
subjected to time-modulated nonlinearity (represented by the effective scattering lengths)
and external harmonic trap potentials. Through a similarity transformation technique,
we have mapped the time-modulated GP equation onto the ccNLS Equation, ensuring an
integrability condition between the nonlinearity coefficient and the external trap poten-
tial. We have investigated three distinct forms of modulated nonlinearities: (i) kink-like,
(ii) localized or sech-like, and (iii) periodic. By varying the parameters associated with the
nonlinearity strength, we observed various nonlinear phenomena in the positon density
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profiles. These phenomena include stretching, curving, oscillating, breathing, collapsing,
amplification, and suppression. In the case of a kink-like modulated nonlinearity, the
positon density profiles (represented by the second- and third-order matter-wave smooth
positons) undergo stretching, while their amplitudes can be enhanced or suppressed. It is
noteworthy that these profiles vanish for different time intervals, with disappearance oc-
curring for t < 0 and t > 0 when the parameter R2 takes positive and negative values,
respectively. For localized or sech-type modulated nonlinearity, the density profiles of the
positons become compressed and curved within the condensate density background. In the
case of periodically modulated nonlinearity, the positons exhibit a periodic nature, and we
observed an increase in periodicity as the nonlinearity strengths were adjusted. Our find-
ings contribute to a deeper understanding of the behavior of matter-wave positons in BECs
under different types of modulated nonlinearities. These results shed light on the intricate
interplay between nonlinearity, external trapping potentials, and the corresponding effects
on the density profiles of positons. The theoretical findings presented in this study, along
with those presented in previous research, offer a valuable groundwork for experimental
researchers to explore and validate the deformation of solitons/positons in PT -symmetric
systems with spatiotemporal modulation. These investigations can be extended to various
fields, such as BECs and nonlinear optics, which are currently of great interest. Additionally,
as a future direction, this theoretical study can be readily expanded to examine higher-order
solitons, breathers, and rogue waves. It can also encompass the exploration of combined
spatial and longitudinally varying trap potentials, nonlinear effects, and novel forms of
PT -symmetric potentials, potentially leading to the discovery of new applications.
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