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Abstract: The fundamental aim of this paper is to introduce the concept of poly-Jindalrae and poly-
Gaenari numbers and polynomials within the context of degenerate functions. Furthermore, we
give explicit expressions for these polynomial sequences and establish combinatorial identities that
incorporate these polynomials. This includes the derivation of Dobinski-like formulas, recurrence
relations, and other related aspects. Additionally, we present novel explicit expressions and identities
of unipoly polynomials that are closely linked to some special numbers and polynomials.
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1. Introduction and Definitions

Focusing on the theory of special polynomials, several mathematicians have exten-
sively studied the works and various generalizations of Bernoulli polynomials, Euler
polynomials, Genocchi polynomials, and Cauchy polynomials (see [1-6] for more infor-
mation). The importance of generalization of the special polynomials encompass a range
of specialized polynomial families, offering a unified methodology for addressing a wide
array of mathematical questions. They prove valuable not only in theoretical realms, but
also in practical applications, enhancing our grasp of fundamental mathematical concepts
and furnishing sophisticated resolutions to complex problems in disciplines like calculus,
number theory, and physics. Moreover, recent years have witnessed a surge in research on
various degenerate versions of special polynomials and numbers, reigniting the interest of
mathematicians in diverse categories of special polynomials and numbers [2,7-10]. Notably,
Kim and Kim [11] as well as Dolgy and Khan [12] revisited the polyexponential functions
in connection with polylogarithm functions, building upon the foundational work initiated
by Hardy [13].

The objective of this paper is to investigate the poly-Jindalrae and poly-Gaenari poly-
nomials and numbers in relation to the Jindalrae-Stirling numbers of the first and second
kinds, and to derive arithmetic and combinatorial findings concerning these polynomials
and numbers. Initially, we define the Jindalrae-Stirling numbers of the first and second
kinds as extensions of the degenerate Stirling numbers, and establish several polynomial
relationships involving these special numbers. Subsequently, we introduce the Jindalrae
and poly-Gaenari numbers and polynomials, providing explicit expressions and identities
associated with them.
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Let n be nonnegative integer. The Stirling numbers of the first kind can be characterized
(see [14,15]) as

x), = isl(l,n)xl , (1)
1=0

where (x)o=1,(x)p =x(x—1)--- (x —n+1),(n > 1).
The Stirling numbers of the second kind can also be characterized (see [4,16]) by

X = Y Sall,m) () @)
1=0
By (1) and (2), we obtain
1,, 4 & t
ale—1b :lg 2(lm)gy (n20) (3)
and l
(log(l +1)) 251 (I,n) ; (n>0). (4)
I=n

The generating function of the Bell polynomials are given (see [5]) by
x(e'=1) Z Bel,,( (5)

When x = 1, Bel, = Bel,,(1) are called the Bell numbers.
The degenerate exponential function is defined (see [4,5,9,14-18]) by

() = (14 A% ep(t) =el(t) = (1+AH)x AR (6)

Here we note that
tl’l

= ¥ Whagy. )

where (x)or =1, ()0 = x(x —A)(x =2A) - (x = (n = 1)A),(n > 1).
In [1,2], Carlitz introduced the Euler polynomials in their degenerate form, which can
be represented as
2 t”

PO RAA B ®)

On setting x =0, E,, \ = E,; 1(0) are called degenerate Euler numbers.
The degenerate Genocchi polynomials are defined (see [4,14]) by

2t t”

o 1100 = L G ©)

where x =0, G, , = G;,1(0) are called the degenerate Genocchi numbers.
For k € Z, the modified degenerate polyexponential function [4] is defined by Kim-

Kim to be
) (] 1 xn
Bita (1) = Y. o225 (1x|< ) (10)
n=1 :
Note that ) .,
. (1), 1%
Eija(x) = ) Z,A =e,(x)— 1. (11)
n=1 :

The degenerate poly-Bernoulli polynomials are defined (see [16]) by
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Eij 2 (log, (1+1)) , -
/\e;\(t))\— 1 ex(t) = n;):gn,/\(x)m (keZ). (12)

In the case when x = 0, ‘Bglk/)\ = ‘Bglk/)\(O) are called the degenerate poly-Bernoulli
numbers.
The degenerate poly-Genocchi polynomials are defined (see [4]) by

2B (logy (1+1) o & k), 1"
k);A(t>A+ 1 ex(t) = r;)Gn],{/\(x)E (k € 7). (13)

) _

In the case when x = 0, G(k
numbers.

Kim-Kim [15] introduced the degenerate poly-Bell polynomials and numbers as fol-
lows

ik;\(O) are called the degenerate poly-Genocchi

1+ Eig o (x(ea(t) — 1)) = f;obezfjfj(x)f;. (14)

When x =1, bel(k) bel( ) 1,(0) are called the degenerate poly-Bell numbers.

Let log, (t) be the Composmonal inverse of e, (t), called the degenerate logarithm
function, such that log), (e, (t)) = e (log), t) = t. Then, we note that (see [3])

(141" ZA" 1 1ﬂ (15)

”An’

=] =

log,(1+1t) =

From (15), we obtain lim,_,olog, (1 + t) = log(1 4+ t).
In [10], the degenerate Stirling numbers of the first kind are defined by

O = Y S (m 1) (X (16)
1=0

As an inversion formula of (16), the degenerate Stirling numbers of the second kind
are defined (see [10]) by

(Or = 3 Sar(m k) (x)g, (1> 0). (17)
k=0

By (16) and (17), we obtain (see [16])

j
<logA1+z zsuf, Z, (k>0) (18)

and
1
(ea(z) 1 zszu, S k>0 (19)

The degenerate Bell polynomials B, ) are defined (see [5]) by

ex(e(t) =1) = ) Bua(x)—, (20)

so that

n

Bur = Y (x)kaS2(n,k) (n>0).
k=0

When x =1, B, , = B, 1(1) are called the degenerate Bell numbers.
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For k > 0, the Jindalrae-Stirling numbers of the first kind and second kind are given
(see [19]) by

00 n
(logA(log/\(l—i-t )+ 1)) =Y s (k) 17 (21)
n=k '
and
1
7 (ex(er —1) —1)F ZSM f. (22)

In [19], Kim et al. introduced Jindalrae and Gaenari polynomials defined by

ex(ea(er —1) —1)) Z Jua(x (23)
and . ;
¢3 (log, (log, (1+ 1) +1)) = ;}Gm(x);!. (24)

Whenx =1, J,» = Jua(1) and G, » = G, 1(1) are called the Jindalrae and Gaenari
numbers.
Kim-Kim [11] defined the unipoly function attached to polynomials p(x) b

u(x|p) = il ”fljj)x”, (k € 7). (25)
Moreover,
ue(x[1) = Y 7 = Lig(x) (26)
n=1

is the ordinary polylogarithm function (see [7]).
The degenerate unipoly function attached to polynomials p(x) is as follows (see [3])

[ee]

up A (xlp) = Y p( ’“ (27)

i=

—_

It is worthy to note that
) (¥[1/T) = Eiga (x) (28)

is the modified degenerate polyexponential function.

This paper is structured as follows. Section 1 provides an overview of essential con-
cepts that are fundamental, including the degenerate exponential functions, degenerate
logarithm function, degenerate Stirling numbers of the first and second kinds, and degener-
ate Bell numbers. It is important to note that the degenerate poly-Bell polynomials beli’f/)\ (x)
(refer to [15]) differ from the degenerate Bell polynomials bel, , (x) discussed in [5], and the
new type degenerate Bell polynomials Bel, , (x) introduced in [5].

In Section 2, we introduce poly-Jindalrae and poly-Gaenari polynomials as extensions
of the Jindalrae and Gaenari polynomials. We establish connections between these special
numbers, degenerate Stirling numbers of the first and second kinds, and degenerate
Bell numbers and polynomials. Furthermore, we define poly-Jindalrae numbers and
polynomials as extensions of the degenerate Bell numbers and polynomials. We derive
explicit expressions and identities involving these numbers and polynomials, Jindalrae—
Stirling numbers of the first and second kinds, degenerate Stirling numbers of the first and
second kinds, and degenerate Bell polynomials.

In Section 3, we introduce the degenerate unipoly-Jindalrae and unipoly-Gaenari
polynomials by utilizing the degenerate unipoly functions associated with polynomials
p(x). We provide explicit expressions and identities involving these polynomials.
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2. Degenerate Poly-Jindalrae and Poly-Gaenari Polynomials and Numbers

In this section, we define the degenerate poly-Jindalrae and poly-Gaenari polynomials
by using of the degenerate polyexponential functions and represent the Jindalrae and
Gaenari numbers (more precisely, the values of ordinary degenerate Bell polynomials at 1)
when k = 1. At the same time, we give explicit expressions and identities involving those
polynomials.

Motivated and inspired by Equation (23), for k € Z, we consider the degenerate
poly-Jindalrae polynomials by

1+ Eiga(x(er(ea(t) —1) = 1) = ¥ 1N (1) = (29)

and ]éfc)z(x) =1

In the special case whenx =1, | V(lk/)\ = }Ski(l) are called the degenerate poly-Jindalrae
numbers.

By k = 1in (29), we note that

14 Big s (x(er (ex (1) = 1) — 1)) = 1+ i (Dnal(x(er(ea(d) —1) —1)))"

= (n—1)n!
_ 5 Maallxlealea®) ~1) D)) 0)
= (n—1)n!
(e ) tn
=) Jaa(x)—.
ngb " n!
Combining with (29) and (30), we have
I (%) = Jup (x):
When A — 0,
. (1) o (k)
Eig(x(e -1))+1= Z%)]n (x)ﬁ (31)
n=
are called the poly-Jindalrae polynomials.
When x =1, ],Sk) = ],Sk) (1) are called the poly-Jindalrae numbers.
Theorem 1. For k € 7, we have
n m le
Z Z = SZA m,1)S; 5 (n,m). (32)
Proof. From (9) and (29), we note that
= (1) % ! [ex(en(t) — 1) — 1]
Eica(x(ea(ea(1) ~ 1) ~ 1) = 3 S el =
* (1) 41 & er(t) —1
DL S (3)
1=1 m=I :
ad 1), 121 ad "
=) Z( )15:1 Soa(m,1) Y 52)\(”,”1)5
m=1I[=1 n=m

tn
n!

00 n o m 1
=Y | X Z%SM(W 1)SyA(n, m)) .



Symmetry 2023, 15, 1587 6 of 19

Therefore, by Equations (29) and (33), we obtain the result. O

Theorem 2. Let k € Z and n > 0; we have

ad X! e, (e -1) -1
Eiga(x(ea(er(1) =1) = 1)) = ) (1)131 Ll A(t)lv e
/ !

ST LSl (35)

d (35), we obtain the result. [

- =
A>—‘

Therefore, by Equations (29

Theorem 3. Let k € Z and n > 0; we have

bel™) (x) = Y 18 (x)S1 0 (n, m). (36)

=0

Proof. Replacing t with log, (1 + t) in (29), we obtain

L+ Biga(x((ea() ~ 1) = 1 15 (o B0 0L

!
[ tn
=Y @) Y Sialnm)
=0 n=I n
o] n tn
=Y Y N @S0 m) .
n=01=0 n
On the other hand,
(e tn
1+ Eig ) (x((ex (t) — 1)) = Z el ( (%)= (see[15)). (37)

Therefore, by comparing the coefficients of ¢ on both sides of equations, we obtain the
result. [J

Theorem 4. Let k € Z and n > 0; we have

2 bel ) (x)S.0 (1, 1). (38)

Proof. Replacing t with e, (t) — 1 in (37), we obtain

00 e ol
1+ Eiga(x(er(er(1) 1) = 1)) = lzobez,g’jm)w
= i belnk/)\(x) i Soa(n, l)t—n' (39)
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(o) n tn
=Y Y bel™) (x)Sp(n, 1)
n=01=1 :
Therefore, by (29) and (39), we obtain the result. O
Theorem 5 (Dobinski-like formulas). For n > 0, we have
& m o (Dpax
= 2 53 (1) v s s 6 (40)
m=11=1s=0 \°
Proof. From (29), we note that
k) e (Diax I
= H—1)—1
S ()
= Soa(m, 1) —(ex(t) — 1)
l; (I — 1)k Zl 2 ]
o m (1)1 1 Mmoo
= Z Z K 1?11' So A (m,1) Z ( )(—1)S "es (¥)
m=11=1 5=0
o m (1) xl m m B 00 #
=¥ s - (1) 0 Ko (a1)
m=11=1 5=0 n=0
( 1

0 0 m M 1 n
FE N (1) o s o

By comparing the coefficients of t on both sides of Equation (41), we obtain the result.

o mom s ;
2 2 2 <S> (lizllr);,:' (_1)57"152,/\(711,[) =0

m=11=1s=0
and o
=5 55 (1) e e s 6 02 1),
m=11=1s=0
O

Theorem 6. Let k € Zand n > 0; we have

m=0

Proof. Differentiating with respect to ¢ in (29), the left hand side of (29) is

2 1+ Big(x(ea(en(t) 1) ~ 1))

oy (A TANIVE N Zi( )= Niasaa G R )

(n—1)nk

1_
_ & )\(

B e)\(e ( n=1 )'T’lk 1

i JuaX"(ex(ex(t) = 1) —

(42)

(43)
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ey Mealt) - 1)

~eale ()

1) -
_ G
EA(EA( 1)-1

On the other hand, we have

7Bk (x(ealea(t)

)A() 1) i];g,{;l)(x)ﬁ

-1)-1)

at (Z ]n/\ > Z ]r(zk/)\ 20],S+1/\ (44)
From (43) and (44), we obtain
(ea(ea(t) ) ]r(1+1A ) SG 1)), ];(m ﬁ
n=0 n=1 n
tm
2 ]")‘nl Z ]151](11/\
- pa-n a0
© n 4
n;()mgo (:1) ]”—m,)\]r(rizl,/\(x)a
0o j
=) 2 (1= 2)inS2a (i) an
j=0i=0
o n—1 tYl
; ZO( )]n m/\]m+1/\( )n!
© & J (k= "
- 2 E (1) a- sl R
n=1j=1i=0 :
O

By comparing the coefficients of * on both sides, we obtain the result

Theorem 7. Letk € Zandn > 1. Then

Proof. From (10) and (22), we observe that

[e)

1, . . .
( )7,1/\Sl,)\(h/m)sgrz/%(]rhlx)s2,/\(1/])52,)\(nrl)'

mA (log, (141t))™

Eii 1 (log), (14 1) Z

(Dma

-y

m=1 mk7
[ n
; n;l mgl mk1

Replacing t by eX (ex(ex(t) —1) —1) —1in

(1)m,/\

k-1
h=1m=1 M

o h
Eik,)L(X(EA(e/\(t) - 1) - 1)) = Z Z

(1)m,?\ Sl,A (n, m)> E

—1)'mk

L (log, (1+1)”

tn

(46), we obtain

[e3 (ealea(t) =1) —1) —

Sia(h,m) i
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o] j h 00 _ i
Yy Y (1)m'A51,A(h/m)5§,2/\)(j/h|x)252,/\(1./]')%(?.7'1)
i=j :

n
n!

i=1j=1h=1m=1 mkil n=i :
co n i Jj h (1) A 2N . o N
-y Yy o sm(h,m)S;’)a(],h|x)52,)\(1,])52,/\(n,z)ﬁ.
n=1i=1j=1h=1m=1 ’

Therefore, by Equations (29) and (47), we obtain the result. [

For next theorem, we observe that (see [16])

o (k) 1" Eiga(logy(14+14))
ngb‘B”"\(x)n! - ex(t) —1 at)
_ v gl 1§ "
= mZ::0 ﬁm,)\ﬁ nzo(x)n,)\a

o n n k tn
B (£ (0 )

By comparing the coefficients on both sides of (48), we obtain

B0 = X (0 )Br @

m=0

Theorem 8. Letk € Zandn > 1. Then

1 (x) = Yy

i
j=1

Proof. From (10), (12) and (49), we observe that

. > ()t

Bk (08, (14+6) = (ex() = 1) L B3
j=0 )

Replacing t by eX (er(ex(t) — 1) — 1) — 1 in (51), we obtain

j
3 (B ) = B ) S, h1x)S2,0 (i ) S22 ().
h=1

(47)

(48)

(50)

(51)

[eX(ealea(t) —1) —1) = 1)]"

Eipa (r(ea(ea ()~ 1) — 1)) = Y- (B)(1) — ) .
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= i i (/3/(3(1) - ﬁ;ﬁ)sﬁ(ﬁhm (EA(EA(t)j!— 1) —1)f

- . a (e (t) = 1)
= 3 2 (BB~ BE) S G M) Y52y AU (52)

j=1h=1 i=j :

o i j ‘ o [} ) n
=12 L (Ba ) = B SIAG x)S24 (1) L Saaln, )y
I . . N
> (BI(1) = B ) S h1x)Sa,0 (i f)S2 ().
r .
Therefore, by (29) and (52), we obtain the result. O

Theorem 9. Let k € Z and n > 1. Then

e =Y

n h
i=1

i J h k . . .

33 3 (1) OB SR MG ) Saalm ). (50)

j=1h=1m=1

Proof. From (10) and (12), we observe that

Kt
i

Eiy ) (log, (1+1t)) = (ex(t) — 1) ioﬁj(g]
=

_ ( = (1)m,/\tm> iﬁ](,k)z]ﬂ; (54)

!
m! =

() <1>m,A/3;k_)m,A> "

) —1) — 1in (54), we obtain

=~
o)
ae]
—
jo¥]
0
.
=]
aQ
-~
:
=
i)
>R
—
)
>
—
)
>~
—
~~
— =
|
—_

h <h> (1) [eX (ex(ex(t) —1) —1) —1)]"

m h—m,A h!

— i i Xh: <h>(1)m,Aﬁ§,k)m,A5§,2;z(j,h|x) (eA(eA(t)j| 1) —1)

o ] h 00 R Y
=58 % () bl G0 S oot = s

i=j

n=i :

h . Lo Nk
() B LG 0S267) X Saa(m,)

" . . .
33 () OBl S 0826052 ()

Therefore, by (29) and (55), we obtain the result. O

Theorem 10. Letk € Z and n > 1. Then

i h h
IM(OEDIIPIDY (m) ((DmaGL2,, 1 +2G15) S G hlx)S20 (i) S2. (). (56)

n
i=1j=1h=1m=1
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Proof. From (10) and (13), we observe that
2Eig , (log, (14 1)) = (ex(t) +1) 3 G0
iga(logy (1 +1)) = (ex(t) +1) Z(:) ]',Aﬁ
]:
oo ( VH/\ §m
=<Zl ZﬁM f2 Zﬁ]r (57)

00 n n k k tn
(£ (3) mactn e 260, )5

n
Replacing t with e} (ey(e)(t) — 1) — 1) — 1in (57), we obtain

w eX(er(en(t) —1) —1) —1))"
Eia(r(er(e(t) =1 -1) = 35 1 (1) (a6, +2617) O D=0 = D)

h=1m=1 \"

= Z Z Z <m> ((1)m,AG;(lk_)m,/\ +2G}(l];)\) 55’2)3 (],h\x) (3/\(6/\( )]' ) )
h=1j=hm=1 1
o Johosyp o
:X;hz:l Z:1 <m)< ) ﬁh mA ]/\ ]’h‘ 252/\1] () ) (58)
=1 h=1m=
Sy 3 (! (k) (k) @) g
= Z th 2 (m) ((1)m'/\Gh—m,A+2Gh,A>S (j, h|x)Sa,A (1, ]) 252/\ n, 1)77
i=1j=1h=1m=1 ~

A "ok k k , . N
a3 IIDY <m> (( )maGy A+2G( )) §,2A)(],h|x)52,)\(1,])52,)\(n,1)m-
Therefore, by (29) and (58), we obtain the result. O

Motivated and inspired by Equation (24), we define the degenerate poly-Gaenari
polynomials given by

Tl

1+ Eij  (x(log, (log, (1 + 1)) 2 ®)( (kezZ), (59)

and G(k)( x)=1, Gi(qk))\ = Gr(zk/)\(l) are called the poly-Gaenari numbers.

For k = 1 in (59), we note that
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Theorem 11. Letk € Z and n > 1. Then

SR

o
SiA(, DS (1, ).

Proof. From (18) and (60), we observe that

) l

Eij 1 (x(log, (log, (1 +1)) +1)) :12 zk A= ~[log, (log, (1+1)) +1)]
=1
ol xl )
ZZZ% (11231 lelA(]/l)] [log, (1+ 1))
= =

In view of (59) and (62), we obtain the desired result. [

Theorem 12. Letk € Z and n > 1 Then

no( xl
6 x) = Y- A 1),

In view of (59) and (64), we obtain the desired result. [

Theorem 13. Letk € Zand n > 1. Then

n l

n
Z G (1)Sy,0 (1, m) = Z lkl Sia(n ).

Proof. By replacing t with e, (f) — 1 in (59), we obtain

1+ Eigp (x(log, (14 1)) = i ijj,a(x)w
= m!
= i an)/\(X) i 52/\(7’1,711):7”!

(62)

(64)

(66)
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On the other hand, we have

1+ Eig (x(log, (1+1))) = 1+2 'lk

1), 5! t"
(la(lf\l Sualn )

© n (1)1,/\xl m
=Y ) T Sialm D)5
In view of (66) and (67), we obtain the result. [

Theorem 14. Letk € Z and n > 1. Then

n X 1 x"
ZO Gy ()52 (n,m) = Dnpx" 2;{1’}1 ,

Proof. By replacing t with e, (e, (t) — 1) — 1 in (59), we obtain

(1—|—t))

— 1)m

ad ey(er(t) —1
1+Eiga(xt) = Y G (x) (ealea( )m| )
m=0 '

Z n)\xn t?’l
nk=1 nl’

In view of (69) and (70), we obtain the result. [

Theorem 15. Letk € Z and n > 1. Then

4 1 (Dpax"
Z S” (n,m) = an :

Proof. By replacing t with log, (log, (1 +t) + 1) in (29) and using (21), we obtain

(log, (log, (1 +¢t)+1))™

1+E1k?\ xt 2]7(:))\

[
= m!

o

(67)

(69)

(70)
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tn
_ 2 <2 ](k 551)3(”,711)) —

=0
In view of (70) and (72), we obtain the result. [

Theorem 16. Letk € Z and n > 1. Then
Tk k
> @S m) = Y I (0SE (n,m). (73)

Proof. By using (70) and (72), the complete proof the theorem. [J

3. Degenerate Unipoly-Jindalrae and Unipoly-Gaenari Polynomials

In this section, we define the degenerate unipoly-Jindalrae and unipoly-Gaenari
polynomials by using of the degenerate unipoly functions attached to polynomials p(x)
and we give explicit expressions and identities involving those polynomials.

Here, we define the degenerate unipoly-Jindalrae polynomials attached to polynomials

p(x) by

0 i’n

T+ uga(x(ea(er(t) —=1) =1)[p) = Z I (x (74)

In the case when x =1, ]

", /\ » ]n 1 p( ) are called the degenerate unipoly-Jindalrae

numbers attached to p.
From (74), we see

g)fffi,ur,t; — 14 upp(x(er(en(t) — 1) — [1/T) = i (1)7,A(eAr£e(i(t>1—)!1) —1) (75)
_1+E1kA((eA(€A(t)_1) 1)) = i)]’sk))‘iln'

Theorem 17. For k € Z, we have
n m
= Z Z ~So A (m,1)Sp 0 (1, m). (76)
m=11=1
Proof. From (19) and (74), we note that

Xl! _ _ 11l
uya(x(ea(er(l) —1) =1)[p) = Zp M : [eA(eA(t)ly DR

Iy o0

UL PC GRS &

(77)

I op(l x'! "
2227P(>(l?€/\ SZ/\ml ZSz)LI’lWl)
n=m
n
!

— 5 (3 5 POWTts sy, m))jl

74) and (77), we obtain the result. O

—~ =

Therefore, by Equations
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Theorem 18. Let k € Z and n > 0; we have

= 3 POL g, )

m=1

Proof. From (22) and (74), we have

ad x! ey (e -1 -1y
uk,A(x(e/\<e/\(1) _1) _1)|p) _ E p(l)(1>l,)\ ! [ /\( /\(t) . 1) 1]

© p(1)(1); 1 x ! & t"
_ Mzsﬁ(m)a (79)

Therefore, by Equations (74) and (79), we obtain the result. [

Theorem 19. Let k € Z and n > 0; we have

n xl;
ZIMP x)S1a(n, 1) = Zp(l)(ll#su(” ). (80)

1=0

Proof. Replacing t with log, (1 + t) in (74), we obtain

T+ua(x((er(t) —1))lp) = Z]Mp W

[ee) (o) tl’l
=Z¥&4w§fMWMar (81)

n i’l

= ZZII(];\);J )S1.(1, l)

n=01=0
On the other hand,

——4—iiamm% (52)

Therefore, by comparing the coefficients of ¢ on both sides of Equations (81) and (82),
we obtain the result. [

Theorem 20. Let k € Z and n > 0; we have

n o j Pl
I ) BRAC L) (53)
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Proof. Replacing t with e, (t) — 1in (74), we obtain

1t ua(xestea) ~1) -1l = 5 1 POGs, @ 210
j=01=0 :
:i”ip(l)(ll)lﬂlsn jl 252/\ "l])i1 (84)
j=0i=0 =

o n J xl n
=YYy MSZA(]J)SZ,A(”J’)%'

Therefore, by (74) and (84), we obtain the result. 0O

Now, we define the degenerate unipoly-Gaenari polynomials given by

1+ 1 (x(log, (log, (14 ) + lp) = - G (x () (85)

n=0

)

When x =1, c® = G}(q, A,p(l) are called the unipoly-Gaenari numbers attached to p.

mAp

Theorem 21. Letk € Zand n > 1. Then

] n
L. Z G A GD)S1a (). (86)

Proof. From (18) and (85), we observe that

1/\xl 1

g (x(log, (log, (1+1)) +1)|p) = Z 7illog, (log, (1+ 1) +1)]'
= i PO Mxll, isu (. 1) i 10&(1 +1)Y (87)
=1

[ l (o] Tl
:Zp( lle Zsm], 251)\”]*

SR Ry UIUIFE: NG
=y X Z p(likAsl AU DS, )
In view of (85) and (87), we obtain the desired result. [

Theorem 22. Letk € Zand n > 1. Then
op(D)(D)Ax' T
- l; POM l,)(' s (n,1). (88)

Proof. From (21) and (85), we observe that

/\Xll' 1

i (x(1og, (log, (1 + 1)) + 1)) =i l0g,(log, (1-+6) + 1)

[e9)

f “x n Y50, 1) (89)

n=lI
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ll|

o n n
_ (1) t
= ZZ k SM(n’l)E'
In view of (85) and (89), we obtain the desired result. [

Theorem 23. Letk € Zand n > 1. Then

n

Z GiSf,)A,p( 52/\ n, m

m=0

X
” PR s (). (90)

I M:

Proof. By replacing t with e, () — 1 in (85), we obtain

1+ u ) (x(log, (1+1))|p) = i G}%/p(x)w

m=0 m!
o o n
m;o G (%) n;m Sz,A(n,m)E (91)
o [ n n
g(EonAp )S2,4(n, m)) ok

On the other hand, we have

1t (x(logy (14 )]p) = 1 +li”<”“l?f”l“<lo&<1 oy
=1

[e'e) l (e} Yl
:HZP( il ZSlAnl—' (92)
=1
o n xll n
:1+Zzp ” Sia(m1)
n=1I[=1
o n xll! M
=) Z%SM(”J)E‘

n=01=0

In view of (91) and (92), we obtain the result. [

Theorem 24. Letk € Z andn > 1. Then

On the other hand, we have

2 p(n)(1)pax"nl! "
T ugaetlp) =14+ 3 PO Wnadnt 2

n=1
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ad n)(1),, \x"n! "
s ) @

= n n!
o p(n)(1)\x"n! "
nk nl

(95)

n=0
In view of (94) and (95), we obtain the result. [

Theorem 25. Letk € Zand n > 1. Then

L 1), Ax"n!
3 it (11573 ) = LD (%6)

Proof. By replacing ¢t with log), (log A1 +1) + 1) in (74) and using (21), we obtain

T+ ug(xtlp)) =

In view of (95) and (97), we obtain the result. [

Theorem 26. Letk € Z and n > 1. Then
"k 1 k 2
Y T p (ISR nm) = 32 GIF (x)S n,m).
m=0

Proof. By using (94) and (97), we complete the proof of the theorem. [

4. Conclusions

Inspired by the contributions of Kim et al., as shown in [19], we have introduced the
poly-Jindalrae and poly-Gaenari polynomials via an innovative utilization of the polyexpo-
nential function. Subsequently, we have meticulously derived explicit identities, encom-
passing the Jindalrae-Stirling numbers of the first and second categories, the degenerate
Stirling numbers of both kinds, and the degenerate Bell polynomials. Moreover, we have
extended our investigation to the realm of degenerate unipoly functions associated with
the polynomial p(x), resulting in the derivation of unipoly-Jindalrae and unipoly-Gaenari
polynomials, replete with explicit expressions.

As we conclude this work, we believe that this paper will have a potential applications
of our results in the realms of science, engineering, and other mathematical disciplines in
near future such as statistics, probability, differential equations, etc.
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