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Abstract: This article explores matter collineations (MCs) of static plane-symmetric spacetimes,
considering the stress–energy tensor in its contravariant and mixed forms. We solve the MC equations
in two cases: when the energy–momentum tensor is nondegenerate and degenerate. For the case of
a degenerate energy–momentum tensor, we employ a direct integration technique to solve the MC
equations, which leads to an infinite-dimensional Lie algebra. On the other hand, when considering
the nondegenerate energy–momentum tensor, the contravariant form results in a finite-dimensional
Lie algebra with dimensions of either 4 or 10. However, in the case of the mixed form of the energy–
momentum tensor, the dimension of the Lie algebra is infinite. Moreover, the obtained MCs are
compared with those already found for covariant stress–energy.

Keywords: matter collineations; static plane-symmetric spacetimes; contravariant and mixed
energy–momentum tensor

1. Introduction

General Relativity (GR) is an intriguing space, time, and gravitation theory. In this
theory, Einstein proposed that the presence of matter and energy induces the curvature of
spacetime. Mathematically, GR is described by a set of ten interconnected nonlinear partial
differential equations, known as Einstein field equations (EFE) [1]:

Gab = Rab −
R
2

gab = k Tab, (1)

where Gab, Rab, Tab, and gab correspond to Einstein, Ricci, energy–momentum, and metric
tensors, respectively. R denotes the Ricci scalar, while k defines the gravitational coupling
between geometry and matter. Solving EFEs for exact solutions is a huge challenge due
to their nonlinear nature. The literature contains only a limited number of physically
significant exact solutions of the EFEs. Equation (1) represents the covariant form of EFEs,
which can also be written in a contravariant form as:

Gab = kTab. (2)

Although these equations appear simple, they are highly nonlinear and pose significant
challenges in finding solutions. However, some physically interesting and exact solutions
of EFEs are studied in [1–3].

Spacetime symmetries are crucial for determining the exact solutions of EFEs and
understanding their physical implications. For instance, spherical symmetry plays a
significant role in deriving the Schwarzschild solution and explaining phenomena like
the absence of gravitational radiation in a pulsating spherical star. These symmetries
are characterized by specific vector fields that possess preservation properties, such as
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preserving spacetime geodesics, the metric tensor, the curvature tensor, or the energy–
momentum tensor.

Mathematically, a smooth vector field X on a spacetime manifold M is termed as a
matter collineation if it satisfies the condition:

LXTab = 0, (3)

where L stands for the Lie derivative operator, X is a collineation vector, and Tab is the
contravariant form of stress–energy tensor. In its explicit form, the preceding equation can
be written as:

Tab,c Xc − TacXb,c−TbcXa,c = 0. (4)

Studying the symmetries of the energy–momentum tensor serves a dual purpose.
First, there is mathematical interest in exploring the invariance properties of the Einstein
tensor, a geometric entity central to general relativity. This tensor relates to spacetime’s
matter content, Tab, through Einstein’s field equations (EFEs). Second, when seeking exact
solutions to EFEs, simplifying assumptions about symmetries of spacetime metric are
made. This gives rise to the “symmetry inheritance problem”, which essentially involves
understanding how physical fields reflect the metric’s symmetries. A key question emerges:
how does the existence of symmetry in the physical fields impact the metric tensor of
spacetime? To address this, we delve into the solutions of equation LXTab = 0 and explore
the effects of these vector fields on the spacetime metric. This study intersects with matter
and Ricci collinearity.

In [4], Sharif classified cylindrically symmetric static spacetimes using MCs, consid-
ering both degenerate and nondegenerate stress–energy tensors. In the case of a nonde-
generate stress–energy tensor, the dimension of the Lie algebra turns out to be three, four,
five, six, seven, or ten. In the case of a degenerate stress–energy tensor, a three-, four-, five-
or ten-dimensional Lie algebra was obtained. In 2007, Sharif [5] studied MCs for plane-
symmetric spacetimes. In this research, the author specifically examined the degenerate
case of the stress–energy tensor and identified three exciting issues. The results of these
cases led to a finite-dimensional group of MCs with dimensions four, six, and ten. Four ob-
tained MCs corresponded to isometries, while the rest were proper MCs. In [6], Camci and
Sahin classified Bianchi type-II spacetimes according to their MCs. In the nondegenerate
stress–energy tensor, they derived a finite-dimensional Lie algebra of MCs of dimensions
three, four, or five. For the case when the stress–energy tensor was degenerate, they mainly
obtained an infinite-dimensional Lie algebra. However, it was concluded that, in certain
cases, the dimension of the Lie algebra could be three, four, or five.

In 2003, Sharif [7] classified static plane-symmetric spacetimes based on the covariant
form of the stress–energy tensor. For the nondegenerate case of the stress–energy tensor,
the author determined four, five, six, seven, or ten independent MCs. Among these, four
were isometries, while the rest were proper MCs. In the case of a degenerate stress–energy
tensor, three interesting cases were discussed, revealing a finite-dimensional group of MCs.
In these instances, the dimension of the Lie algebra was either four, six, or ten—four of
them being isometries and the remaining representing proper matter collineations.

Camci and Sharif [8] examined MCs for Bianchi types I, III and Kantowski–Sachs
spacetimes in both cases where the stress–energy tensor is degenerate and nondegenerate.
In the case of a nondegenerate energy–momentum tensor, the dimension of Lie algebra
turned out to be 4, 6, or 10, while the degenerate case of Tab gave an infinite-dimensional
Lie algebra. Camci [9] studied a complete classification of Bianchi type V spacetimes based
on their matter collineations. In the majority of cases, the author obtained an infinite
number of MCs for these spacetimes when the energy–momentum tensor is supposed to
be degenerate, whereas the dimension of the Lie algebra of MCs was acquired to be four,
five, six, or seven when the energy–momentum tensor is nondegenerate. The classification
of some other spacetimes via matter collineations can be viewed in [10–18].
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In 2007, Sharif and Ismaeel [19] classified spherically symmetric spacetimes via MCs
in three different ways by considering the energy–momentum tensor in the covariant (Tab),
contravariant (Tab) and mixed (Ta

b ) forms. The authors compared their results of these three
cases and proved that they are not equivalent in general. An interesting observation of the
authors was that unlike the case of the covariant form of the energy–momentum tensor,
where the dimension of the algebra of MCs for the nondegenerate energy–momentum
tensor is always finite, this algebra was found to be infinite-dimensional for the mixed form
of the energy–momentum tensor. In the literature, such a comparison is not established
for any other spacetime. The present research aims to employ the same idea to investigate
MCs for static plane-symmetric spacetimes by considering the energy–momentum tensor
in contravariant and mixed forms. The MCs for the same spacetimes for covariant the
energy–momentum tensor have already been investigated in [7] .

In Section 2, we find MCs for the mentioned spacetimes by considering the energy–
momentum tensor in its contravariant form, while Section 3 presents MCs of these space-
times for mixed forms of energy–momentum tensor. The same section also presents a
comparison of the obtained results with those of the contravariant form of the energy–
momentum tensor. The Secion 4 shows a summary of the present work.

2. MCs for Contravariant Energy–Momentum Tensor

The metric of static plane-symmetric spacetimes is expressed as [7]:

ds2 = eA(x)dt2 − dx2 − eB(x)[dy2 + dz2], (5)

where A and B are the arbitrary functions of x only. The motivation behind studying
symmetries of these geometries is that they hold significance within the realm of physics
as they contribute to the creation of Kasner’s spatially homogeneous solutions in the
field equations [20], as well as the renowned Taub’s solution for the universe [21]. These
solution classes have also found utility in the examination of the motion and behavior of
non-rotating rigid bodies [21,22]. The metric (5) exhibits a minimum of four Killing vectors,
given by:

X(1) = ∂t, X(2) = ∂y, X(3) = ∂z, X(4) = z∂y − y∂z. (6)

The non-vanishing Ricci tensor components for the above metric are:

R00 =
eA(x)

4

[
2A′′(x) + A′2(x) + 2A′(x)B′(x)

]
,

R11 =
1
4

[
−2A′′(x)− A′2(x)− 4B′′(x)− 2B′2(x)

]
,

R22 = R33 =
eB(x)

4

[
A′(x)B′(x) + 2B′′(x) + B′2(x)

]
, (7)

where the primes represent the derivative of the metric functions with respect to x. The
Ricci scalar R for the static plane symmetric spacetime can be calculated using R = gabRab,
so that:

R =
1
4
[
4A′′(x) + 2A′2(x) + 3A′(x)B′(x) + 6B′′(x) + 4B′2(x)

]
. (8)

Substituting (7) and (8) in Equation (1), we obtain the covariant stress–energy tensor
components as:
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T00 =
−eA(x)

4
[3B′2(x) + 4B′′(x)],

T11 =
1
4
[B′2(x) + 2A′(x)B′(x)],

T22 = T33 =
eB(x)

4
[B′2(x) + A′(x)B′(x) + A′2(x) + 2A′′(x) + 2B′′(x)]. (9)

From the above covariant stress–energy tensor, the components of the contravariant stress–
energy tensor can be obtained by the relation Tab = gakgblTkl , and hence:

T00 =
−1

4eA(x)
[3B′2(x) + 4B′′(x)],

T11 =
1
4
[B′2(x) + 2A′(x)B′(x)],

T 22 = T33 =
1

4eB(x)
[B′2(x) + A′(x)B′(x) + A′2(x) + 2A′′(x) + 2B′′(x)]. (10)

From these values of the contravariant stress–energy tensor, the components of mixed
energy–momentum tensor can be obtained as Ta

b = Tacgbc, so that:

T0
0 =

−1
4

[3B′2(x) + 4B′′(x)],

T1
1 =

−1
4

[B′2(x) + 2A′(x)B′(x)],

T2
2 = T3

3 =
−1
4

[B′2(x) + A′(x)B′(x) + A′2(x) + 2A′′(x) + 2B′′(x)]. (11)

Using the values from (10) in (4), we obtain the following ten MC equations:

T00
,1 X1 − 2T00X0

,0 = 0,

T00X1
,0 + T11X0

,1 = 0,

T00X2
,0 + T 22X0

,2 = 0,

T00X3
,0 + T 22X0

,3 = 0,

T11
,1 X1 − 2T11X1

,1 = 0,

T11X2
,1 + T 22X1

,2 = 0,

T11X3
,1 + T 22X1

,3 = 0,

T 22
,1 X1 − 2T 22X2

,2 = 0,

T 22(X3
,2 + X2

,3) = 0,

T 22
,1 X1 − 2T 22X3,3 = 0. (12)

where the components of the vector field X generating MCs are represented by X0, X1, X2, X3

and the commas in the subscripts represent partial derivatives with respect to spacetime
coordinates. In the following sections, we solve these equations for degenerate and non-
degenerate contravariant energy–momentum tensor, to obtain the explicit form of MCs
for static plane-symmetric spacetimes. For this purpose, we use the direct integration
approach. In this approach, The equations representing matter collineations are decoupled
and integrated with respect to the coordinate variables to obtain the components of the
vector field representing MCs in the explicit form. The process of solving MC equations
ends when the components of the vector field representing MCs contains no unknown
function, that is given in terms of arbitrary constants. The number of constants involved in
the final form of the MC vector field gives the dimension of the algebra of MCs.
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2.1. MCs for Non-Degenerate Tab

In the case where the contravariant stress–energy tensor is non-degenerate, that is
det(Tab) 6= 0, it follows that T00 6= 0, T11 6= 0, and T 22 6= 0, implying that none of the
contravariant stress–energy tensor components can equal zero. Integrating the system of
Equation (12), we have obtained the following solution of the MC equations in the form of
unknown functions, dependent solely on t and x:

X0 = − T00

T 22

[
1
2
(y2 + z2)G1

t (t, x) + zG2
t (t, x) + yG3

t (t, x)
]
+ G4(t, x),

X1 = − T11

T 22

[
1
2
(y2 + z2)G1

x(t, x) + zG2
x(t, x) + yG3

x(t, x)
]
+ G5(t, x),

X2 = c1
[yz2

2
− y3

6
]
+ c2yz + c3

[ z2

2
− y2

2
]
+ c4z + yG1(t, x) + G3(t, x),

X3 = c1
[ z3

6
− y2z

2
]
+ c2

[ z2

2
− y2

2
]
− c3yz− c4z + zG1(t, x) + G2(t, x). (13)

Here, c1,c2,c3 and c4 represent arbitrary constants. Upon substituting the above values
of Xa , for a = 0, 1, 2, 3 into the system of Equation (12), it is observed that six out of ten
equations are satisfied identically, resulting in the vanishing of the constant c1. However, the
remaining four equations yield the following integrability conditions that enforce particular
constraints on Tab:

T00
,1 G1

x(t, x)− 2T00T00

T11 G1
tt(t, x) = 0,

T00
,1 G3

x(t, x)− 2T00T00

T11 G3
tt(t, x) = 0,

T00
,1 G2

x(t, x)− 2T0T0

T11 G2
tt(t, x) = 0,

T00
,1 G5(t, x)− 2T00G4

t (t, x) = 0,

G1
tx(t, x) +

T 22

2T00

(
T00

T 22

)
,1

G1
t (t, x) = 0,

G3
tx(t, x) +

T 22

2T00

(
T00

T 22

)
,1

G3
t (t, x) = 0,

G2
tx(t, x) +

T 22

2T00

(
T00

T 22

)
,1

G2
t (t, x) = 0,

T00G5
t (t, x) + T11G4

x(t, x) = 0,

−T11
,1

T11

2T 22 G1
x(t, x) + T11

(
T11

T 22

)
,1

G1
x(t, x) +

T11T11

T 22 G1
xx(t, x) = 0,

−T11
,1

T11

2T 22 G3
x(t, x) + T11

(
T11

T 22

)
,1

G3
x(t, x) +

T11T11

T 22 G3
xx(t, x) = 0,

−T11
,1

T1

2T 22 G2
x(t, x) + T11

(
T11

T 22

)
,1 G2

x(t, x) +
T11T1

T 22 G2
xx(t, x) = 0,

T11
,1 G5(t, x)− 2T11G5

x(t, x) = 0,

T 22
,1

T11

2T 22 G1
x(t, x) = 0,

T 22
,1

T1

2T 22 G3
x(t, x)− c3T 22 = 0,

T 22
,1

T1

2T 22 G2
x(t, x) + c2T 22 = 0,

T 22
,1 G5(t, x)− 2T 22G1(t, x) = 0. (14)
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Solving these integrability conditions allows us to derive the final expression for the vector
field X that generates MCs. However, due to the highly nonlinear nature of these equations,
it is impossible to solve them in a general manner. Hence, we consider different conditions
on the derivatives of the contravariant stress–energy tensor components, leading to eight
distinct cases as follows:
(I) T00′ = 0, T11′ = 0, and T 22′ = 0 (II) T00′ = 0, T11′ = 0, and T 22′ 6= 0
(III) T00′ = 0, T 22′ = 0, and T11′ 6= 0 (IV) T 22′ = 0, T11′ = 0, and T00′ 6= 0
(V) T00′ 6= 0, T11′ 6= 0, and T 22′ = 0 (VI) T00′ 6= 0, T 22′ 6= 0, and T11′ = 0
(VII) T11′ 6= 0, T 22′ 6= 0, and T00′ = 0 (VIII) T00′ 6= 0, T11′ = 0, and T 22′ 6= 0

We have solved Equation (14) for each of the aforementioned cases, giving the final
form of MCs. We omit to write the basic calculations and present the results obtained for
these eight cases in Table 1. In some cases, we have obtained a maximum (of ten) matter
collineations, consisting of four basic Killing vectors and six additional matter collineations.
In the remaining cases, the number of matter collineations turned out to be four, where all
of these matter collineations are the same as the minimum Killing vectors of the spacetime
under consideration.

Table 1. MCs for non-degenerate Tab.

Case Constraints MCs

I T00′ = 0 T11′ = 0 T 22′ = 0 X0 = −c5z− c6y + c7x + c9, X1 = −c12z− c8y− c7t + c10,
X2 = c4z + c6t + c8x + c11, X3 = −c4y + c5t + c12x + c13.

II T00′ = 0 T11′ = 0 and T 22′ 6= 0 X0 = c5, X1 = 0,
X2 = c4z + c6, X3 = −c4y + c7.

III T00′ = 0 T 22′ = 0 and T11′ 6= 0 X0 = −
[

c4z + c6

]
+ c7y

∫ dx√
T11 + c8,

X1 = −T11
[

c9z√
T11 +

c10y√
T11

]
− c7t√

T11 +
√

T11c11,

X2 = c4z + c6t + c10
∫ dx√

T11 + c12,

X3 = −c4y + c5t + c9
∫ dx√

T11 + c13.

IV T 22′ = 0 T11′ = 0 and T00′ 6= 0 X0 = − 1
x2 [xz{−c5 sin t+ c6 cos t}+ xy{−c7 sin t+ c8 cos t}]

+ 1
x {−c9 sin t + c10 cos t}+ c11,

X1 = −z{c5 cos t + c6 sin t}+ y{c7 cos t + c8 sin t}+
c11 cos t + c10 sin t,

X2 = c4z + x{c7 cos t + c8 sin t}+ c12,

X3 = −c4y + x{c5 cos t + c6 sin t}+ c13.

V T00′ 6= 0 T11′ 6= 0 and T 22′ = 0 X0 = c5, X1 = 0,
X2 = c4z + c6, X3 = −c4y + c7.

VI T00′ 6= 0 T 22′ 6= 0 and T11′ = 0 X0 = c5, X1 = 0,
X2 = c4z + c6, X3 = −c4y + c7.

VII T11′ 6= 0 T 22′ 6= 0 and T00′ = 0 X0 = c5, X1 = 0,
X2 = c4z + c6, X3 = −c4y + c7.

VIII T00′ 6= 0 T11′ 6= 0 T 22′ 6= 0 X0 = c5, X1 = 0,
X2 = c4z + c6, X3 = −c4y + c7.
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2.2. MCs for Degenerate Tab

When the contravariant form of stress–energy tensor is degenerate, that is det
Tab = T00T11T 22 = 0, then one of the components T00, T11 and T 22 must be zero, and
hence we have the following six possibilities:
(D1) T00 = 0, T11 = 0, and T 22 6= 0 (D2) T11 = 0, T 22 = 0, and T00 6= 0
(D3) T00 = 0, T 22 = 0, and T11 6= 0 (D4) T00 = 0, T11 6= 0, T 22 6= 0
(D5) T00 6= 0, T11 6= 0, and T 22 = 0 (D6) T 22 6= 0, T00 6= 0, and T11 = 0

We have solved the set of MC equations, Equation (12), for all the above six cases,
and as a result, we have obtained the components of the vector field X involving arbitrary
functions, showing that the dimension of the group of MCs is infinite in all these cases.
Table 2 presents the MCs obtained for the six cases.

Table 2. MCs for degenerate Tab.

Case Constraints MCs

I T00 = 0 T11 = 0 and T 22 6= 0 X0 = G1(t, x), X1 = G2(t, x),

X2 =
y
2

T2
,1

T 22 G2(t, x) + F1(t, x, z),

X3 = z
2

T 22
,1

T 22 G2(t, x) + F2(t, x, z).

II T11 = 0 T 22 = 0 and T00 6= 0 X0 =
T00

,1
2T00 F1(x, y, z) + F4(x, y, z), X1 = F1(x, y, z),

X2 = F2(x, y, z), X3 = F3(x, y, z).

III T00 = 0 T 22 = 0 and T11 6= 0 X0 = F1(t, y, z), X1 =
√

T1F4(t, y, x), X2 = F2(t, y, z),
X3 = F3(t, y, z).

IV T00 = 0 and T11 6= 0, T 22 6= 0 X0 = H1(t), X1 = 0,

X2 = −zH2(t) + H4(t), X3 = yH2(t) + H3(t).

V T00 6= 0 T11 6= 0 T 22 = 0 X0 = 1
2

T00
,1
√

T11

T00 G3(y, z) + F1(x, y, z), X1 = 0,
X2 = G1(y, z), X3 = G2(y, z).

VI T 22 6= 0, T00 6= 0 and T11 = 0 X0 =
T00

,1
2T00 tH1(x)− T00

T 22 yH2(x) + G1(x, z), X1 = H1(x),

X2 =
T 22

,1
2T 22 yH1(x) + tH2(x)− zH3(x) + H5(x),

X3 =
T 22

,1
2T 22 zH1(x)− T 22

T00 tG1
z (x, z) + yH3(x) + H4(x).

3. MCs for Mixed Energy–Momentum Tensor

In this section, we explore MCs for static plane-symmetric spacetimes by considering
the energy–momentum tensor in its mixed form, that is Ta

b . Like the case of the contravariant
energy–momentum tensor, we use the definition of MCs as:

LXTa
b = 0, (15)

where L represents the Lie derivative operator, X is a collineation vector and Ta
b is the

energy–momentum tensor in its mixed form. The preceding equation can be written in its
explicit form:

Ta
b ,c Xc − Tc

b Xa,c +Ta
c Xc,b = 0. (16)



Symmetry 2023, 15, 1614 8 of 10

Using the components of Ta
b , given in (11), in Equation (16), we obtain the following thirteen

MC equations:

(T0
0 )
′X1 = 0

(T0
0 − T1

1 )X0,1 = 0

(T0
0 − T1

1 )X1,0 = 0

(T0
0 − T2

2 )X0,2 = 0

(T0
0 − T2

2 )X2,0 = 0

(T0
0 − T2

2 )X0,3 = 0

(T0
0 − T2

2 )X3,0 = 0

(T1
1 )
′X1 = 0

(T1
1 − T2

2 )X1,2 = 0

(T1
1 − T2

2 )X2,1 = 0

(T1
1 − T2

2 )X1,3 = 0

(T1
1 − T2

2 )X3,1 = 0

(T2
2 )
′X1 = 0. (17)

To compare the obtained MCs for contravariant and mixed forms of energy–momentum
tensor, we have solved the above equations for the same cases of degenerate and nonde-
generate energy–momentum tensor, as discussed in the previous section. However, we
have obtained infinite MCs for all the cases considered here. The following tables present
the comparisons of the obtained MCs for the contravariant and mixed form of the energy–
momentum tensor and with those obtained in ref. [7], where the energy–momentum
tensor was considered in its covariant form. These comparisons are presented for both the
nondegenerate and degenerate cases of the energy–momentum tensor in Tables 3 and 4,
respectively.

Table 3. Comparison in non-degenerate case.

Cases LX Tab = 0 [7] LX Tab = 0 LX Ta
b = 0

I 6 10 Infinite Dimensional
II 5 4 Infinite Dimensional
III 4 10 Infinite Dimensional
IV 7 10 Infinite Dimensional
V 10 4 Infinite Dimensional

VI-a 10 4 Infinite Dimensional
VI-b 10 4 Infinite Dimensional
VII 6 4 Infinite Dimensional
VIII – 4 Infinite Dimensional

Table 4. Comparison in degenerate case.

Cases LX Tab = 0 [7] LX Tab = 0 LX Ta
b = 0

I Infinite Dimensional Infinite Dimensional Infinite Dimensional
II Infinite Dimensional Infinite Dimensional Infinite Dimensional
III Infinite Dimensional Infinite Dimensional Infinite Dimensional
IV Infinite Dimensional Infinite Dimensional Infinite Dimensional
V Infinite Dimensional Infinite Dimensional Infinite Dimensional
VI 4,6,10 Infinite Dimensional Infinite Dimensional

4. Conclusions

In this article, we have investigated matter collineations of static plane-symmetric
spacetimes. We specifically examined MCs for contravariant and mixed forms of the stress–
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energy tensor, while MCs for the same spacetimes for the covariant energy–momentum
tensor were already explored in ref. [7]. The MC equations are solved for both degenerate
and non-degenerate cases. Our findings indicate that for the degenerate stress–energy
tensor in its contravariant and mixed form, the Lie algebra of MCs exhibits an infinite
dimension due to unknown functions in the components of the vector field X. However,
the author of ref. [7] obtained finite and infinite MCs for a degenerate energy–momentum
tensor in its covariant form.

On the other hand, for nondegenerate stress–energy tensor in contravariant form, we
have observed that the Lie algebra has finite dimensions, typically four or ten. However,
in ref. [7], the author obtained the 4-, 5-, 6-, 7- and 10-dimensional algebra of MCs for the
nondegenerate stress–energy tensor in its covariant form. Moreover, when considering the
nondegenerate mixed form of the stress–energy tensor, the dimension of the Lie algebra is
found to be infinite, while for the nondegenerate contravariant form of the stress–energy
tensor the author of [7] obtained a 4-, 5-, 6-, 7-, and 10-dimensional algebra of MCs.

Summarizing the results, we can say that like in the case of static spherically symmetric
spacetimes, the algebras of MCs for static plane-symmetric spacetimes are also of different
dimensions for different forms of energy–momentum tensor. A similar comparative study
of MCs with three different forms of energy–momentum tensor for some other spacetimes
is under consideration. Another open direction to follow is to extend the same work for
the case of homothetic and conformal matter collineations with three mentioned forms of
energy–momentum tensor.

To add some physical implications, we find some particular plane symmetric met-
rics satisfying the conditions under which the spacetime under consideration admits the
obtained MCs. Considering A(x) = 0 and B(x), we obtain the following metric:

ds2 = dt2 − dx2 − ex[dy2 + dz2]. (18)

For this metric, we have found that T00 = − 3
4 , T11 = 1

4 and T22 = T33 = 1
4ex , which

satisfy the constraints of case II in Section 2.1. This metric represents a perfect fluid as
its energy–momentum tensor is of the form Tab = (p + ρ)uaub − pgab with p = 1

4 as
pressure, ρ = − 3

4 as density and ua = e−A(x) as the four velocity vector. Similarly, if we
take A(x) = B(x) = x, the static plane symmetric metric becomes:

ds2 = exdt2 − dx2 − ex[dy2 + dz2]. (19)

For this metric, we have T00 = T22 = − 3
4 e−x and T11 = 3

4 , which satisfy the conditions of
case VIII of Section 2.1. Like the above metric, this metric also gives a perfect fluid with
p = ρ = − 3

4 . Similarly, one may find metrics corresponding to the remaining cases and find
their energy–momentum tensor components to see the nature of the corresponding matter.

Author Contributions: Methodology and supervision, F.K.; Formal analysis and investigation, W.U.;
Conceptualization, T.H.; Data curation, W.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stephani, H.; Kramer, D.; Maccallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge

University Press: Cambridge, UK, 2003.
2. Misnor, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman and Company: San Francisco, CA, USA, 1973.
3. Petrov, A.Z. Einstein Spaces; Oxford University Press: Oxford, UK, 1969.
4. Sharif, M. Symmetries of the Energy-Momentum Tensor of Cylindrically Symmetric Static Space-Times. J. Math. Phys. 2004,

45, 1532. [CrossRef]

http://doi.org/10.1063/1.1668335


Symmetry 2023, 15, 1614 10 of 10

5. Sharif, M.; Ismael, T. Proper Matter Collineations of Plane Symmetric Spacetimes. Mod. Phys. Lett. A 2007, 24, 1813. [CrossRef]
6. Camci, U.; Sahin, E. Matter Collineation Classification of Bianchi Type II Spacetime. Gen. Relat. Grav. 2006, 38, 1331. [CrossRef]
7. Sharif, M. Classification of Static Plane Symmetric Space-Times according to their Matter Collineations. J. Math. Phys. 2004,

45, 1518. [CrossRef]
8. Camci, U.; Sharif, M. Matter Collineations in Kantowski-Sachs, Bianchi Types I and III Spacetimes. Gen. Relat. Grav. 2003, 35, 97.

[CrossRef]
9. Camci, U. Matter Collineations of Bianchi V Spcetime. Int. J. Mod. Phys. D 2005, 14, 1023. [CrossRef]
10. Carot, J.; da Costa, J.; Vaz, E.G.L.R. Matter Collineations: The inverse “Symetry Inheritance” Problem. J. Math. Phys. 1994,

35, 4832. [CrossRef]
11. Salti, M.; Korunur, M.; Acikgoz, I.; Binbay, F.; Pirinccioglu, N. Matter Collineations of BKS-Type Spacetimes. Rom. J. Phys. 2014,

59, 65.
12. Sharif, M. Matter Collineations of Static Spacetimes with Maximal Symmetric Transverse spaces. Acta Phys. Polon. B 2007,

38, 2003.
13. Sharif, M.; Ilyas, N. Matter Collineations of Plane Symmetric Spacetimes. Chin. J. Phys. 2008, 46, 621. [CrossRef]
14. Camci, U.; Sharif, M. Matter Collineations of Spacetime Homogeneous Gödel-Type Metrics. Class. Quantum Grav. 2003, 20, 2169.
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