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Abstract: A very recent article delved into and expanded the four parametric linear Euler sums,
revealing that two well-established subjects—Euler sums and series involving the zeta functions—
display particular correlations. In this study, we present several closed forms of series involving
zeta functions by using formulas for series associated with the zeta functions detailed in the afore-
mentioned paper. Another closed form of series involving Riemann zeta functions is provided by
utilizing a known identity for a series of rational functions in the series index, expressed in terms of
Gamma functions. Furthermore, we demonstrate a myriad of applications and relationships of series
involving the zeta functions and the extended parametric linear Euler sums. These include connec-
tions with Wallis’s infinite product formula for π, Mathieu series, Mellin transforms, determinants
of Laplacians, certain integrals expressed in terms of Euler sums, representations and evaluations
of some integrals, and certain parametric Euler sum identities. The use of Mathematica for various
approximation values and certain integral formulas is elaborated upon. Symmetry naturally occurs
in Euler sums.
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1. Introduction and Preliminaries

In 1775, Euler found the following series of harmonic numbers:

∞

∑
ξ=1

Hξ

(ξ + 1)2 =
1
2

∞

∑
ξ=1

Hξ

ξ2 = ζ(3), (1)

which have a long pedigree (consult, for instance, ([1] p. 252 and ensuing) ; see also [2]).
Here ζ(z) is the Riemann zeta function defined by

ζ(z) := lim
ξ→∞

H
(z)
ξ =

∞

∑
η=1

1
ηz (<(z) > 1), (2)

where H
(z)
ξ denote harmonic numbers of order z given by

H
(z)
ξ :=

ξ

∑
η=1

1
ηz (z ∈ C, ξ ∈ Z>1), (3)
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and Hξ := H
(1)
ξ (ξ ∈ Z>1) are the harmonic numbers. The well-known link Euler found

between the Riemann zeta function and the Bernoulli numbers is as follows: (consult, for
instance, [3], p. 166)

ζ(2η) = (−1)η+1 (2π)2η

2 (2η)!
B2η (η ∈ Z>0). (4)

In this work, as in others, an empty sum is considered to be zero; thus, H(z)
0 = 0. We denote

by C, R, and Z, respectively, the sets of complex numbers, real numbers, and integers.
Also, let

E<η , E6η , E>η , and E>η

be the subsets of E that are less than η, less than or equal to η, greater than η, and greater
than or equal to η, respectively, for some η ∈ E, where E is either R or Z.

The extended harmonic numbers H(z)
ξ (u) are defined by

H
(z)
ξ (u) :=

ξ

∑
η=1

1
(η + u)z (z ∈ C, u ∈ C \Z6−1, ξ ∈ Z>1), (5)

and H
(z)
ξ (0) = H

(z)
ξ . The generalized (or Hurwitz) zeta function ζ(z, u) is defined by

ζ(z, u) := lim
ξ→∞

H
(z)
ξ (u− 1) =

∞

∑
ν=0

1
(ν + u)z (u ∈ C \Z60, <(z) > 1). (6)

By means of (2) and (6), we find

ζ(z) = ζ(z, 1) = (2z − 1)−1 ζ
(
z, 1/2

)
= 1 + ζ(z, 2). (7)

The following captivating identity comes to mind (see [4], also consult ([5] Equation
(2.16)), ([6] p. 280), ([7] Equation (9))):

∞

∑
ξ=1

H2
ξ

(ξ + 1)2 =
11
17

∞

∑
ξ=1

H2
ξ

ξ2 =
11
4

ζ(4). (8)

Euler, during his correspondence with Goldbach in 1742, initiated this line of inves-
tigation, and he pioneered the study of linear harmonic sums (see, for instance, [8,9]):

Sa,b :=
∞

∑
ξ=1

H
(a)
ξ

ξb . (9)

Euler’s research, which was completed by Nielsen in 1906 (consult [10]), demonstrated
that the linear harmonic sums in (9) are established in the following cases: a = 1; a = b;
a + b odd; and a + b even, yet the couple (a, b) belongs to the set {(2, 4), (4.2)}. Along with
each of these situations, if Sa,b is known in the ones with a 6= b, then Sb,a is found using the
symmetric connection:

Sa,b + Sb,a = ζ(a) ζ(b) + ζ(a + b) (10)

and conversely (see, for instance, [11]). The numerical analysis of the linear correlations
between polynomials with zeta values and linear Euler sums (see [9,12]) unambiguously
states that Euler identified all viable evaluations of linear harmonic sums, for example:

2 S1,ξ = (ξ + 2) ζ(ξ + 1)−
ξ−2

∑
η=1

ζ(ξ − η) ζ(η + 1) (ξ ∈ Z>2). (11)
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Nonlinear harmonic sums are generated by multiplying at least two (extended) har-
monic numbers together. Let A = (a1, . . . , a`) be a partition of an integer a into ` sum-
mands, so that a = a1 + · · ·+ a` and a1 6 a2 6 · · · 6 a`. The nonlinear Euler sum of index
A, b is defined by

SA;b :=
∞

∑
ξ=1

H
(a1)
ξ H

(a2)
ξ · · ·H(a`)

ξ

ξb . (12)

Here, the amount b + a1 + · · ·+ a` is named the weight, and the number ` is the degree. To
make things simple, powers are used to denote repeating summands in partitions, such as

S13,32,6;b = S1,1,1,3,3,6;b =
∞

∑
ξ=1

(
Hξ

)3 {
H
(3)
ξ

}2
H
(6)
ξ

ξb .

An expository cum survey [13] provided a comprehensive assessment of publications
on Euler sums of varying degrees and multiple zeta values. Since then, there has been
much interest in Euler sums and multiple zeta values (see, for instance, [14–36]).

Flajolet and Salvy [9] proposed the following notations for a total of four distinct types
of linear Euler sums:

S++
a,b =

∞

∑
ξ=1

H
(a)
ξ

ξb , S+−
a,b =

∞

∑
ξ=1

(−1)ξ+1
H
(a)
ξ

ξb ,

S−+a,b =
∞

∑
ξ=1

A
(a)
ξ

ξb , S−−a,b =
∞

∑
ξ=1

(−1)ξ+1
A
(a)
ξ

ξb .

(13)

Obviously, S++
a,b = Sa,b. Here A(z)

ξ are alternating harmonic numbers of order z, given by

A
(z)
ξ :=

ξ

∑
`=1

(−1)`+1

`z (z ∈ C, ξ ∈ Z>1), (14)

and Aξ := A
(1)
ξ . There exists the following connection between numbers A(z)

ξ and H
(z)
ξ :

A
(z)
ξ = H

(z)
ξ − 21−zH

(z)
[ξ/2]. (15)

In this and other instances, [ξ] is the integral component of ξ ∈ R.
Like (5), the generalized types A(z)

ξ (u) of the numbers A(z)
ξ are denoted by

A
(z)
ξ (u) :=

ξ

∑
`=1

(−1)`+1

(`+ u)z (z ∈ C, u ∈ C \Z6−1, ξ ∈ Z>1). (16)

The Dirichlet eta function η(z) is defined as follows:

η(z) := lim
ξ→∞

A
(z)
ξ =

∞

∑
`=1

(−1)`+1

`z (<(z) > 0). (17)

In particular,

η(1) = ln 2 and η(0) =
1
2

. (18)

The extended eta function η(z, u) is defined by

η(z, u) := lim
ξ→∞
A(z)

ξ (u− 1) =
∞

∑
ν=0

(−1)ν

(ν + u)z (u ∈ C \Z60, <(z) > 0). (19)
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One finds from (19) that

η(z, u + 1) =
1
uz − η(z, u) and η

(
z,

1
2

)
=

1
2z

{
ζ
(

z,
1
4

)
− ζ
(

z,
3
4

)}
. (20)

By using (17) and (19), one has

η(z, 1) = η(z) and η(z, 2) = 1− η(z). (21)

The Dirichlet beta function β(z) is defined by

β(z) =
∞

∑
τ=0

(−1)τ

(2τ + 1)z (<(z) > 0). (22)

Among several different expressions for β(z), the following is written in terms of the
generalized zeta function (6) and the extended eta function (19):

β(z) = 4−z
(

ζ

(
z,

1
4

)
− ζ

(
z,

3
4

))
= 2−z η

(
z,

1
2

)
(z ∈ C).

(23)

It is highlighted here that

η
(

1,
1
2

)
=

π

2
and β(1) =

π

4
. (24)

Catalan’s constant G is given by

G = β(2) =
∞

∑
τ=0

(−1)τ

(2τ + 1)2 ' 0.9159655941772190 . . . . (25)

Polylogarithm Lik(α) is given by (consult, for example, [3] (p. 185)):

Lik(α) :=
∞

∑
ξ=1

αξ

ξk (k ∈ Z>2, |α| 6 1)

=
∫ α

0

Lik−1(τ)

τ
dτ (k ∈ Z>3).

(26)

Clearly,
Lik(1) = ζ(k) (k ∈ Z>2), (27)

and
Lik(−1) = − η(k) (k ∈ Z>1). (28)

Dilogarithm Li2(α) is defined by

Li2(α) :=
∞

∑
ξ=1

αξ

ξ2 (|α| 6 1)

=−
∫ α

0

log(1− τ)

τ
dτ.

(29)

Polylogarithm Lik(α) can be extended as follows (consult, for example, [3] (p. 198,
Equation (28))):

Liz(α) :=
∞

∑
ξ=1

αξ

ξz (|α| < 1, z ∈ C; |α| = 1, <(z) > 1). (30)
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Recall mingling interactions that are similar to (10) (refer to [9] (p. 33)):

S−+a,b + S+−
b,a = η(a) ζ(b) + η(a + b); (31)

S−−a,b + S−−b,a = η(a) η(b) + ζ(a + b). (32)

In terms of extensions of Flajolet and Salvy’s linear Euler sums (13), Alzer and Choi [37]
developed four different types of parameterized linear Euler sums:

S++
µ,z (α, β) :=

∞

∑
ξ=1

H
(µ)
ξ (α)

(ξ + β)z , S+−
µ,z (α, β) :=

∞

∑
ξ=1

(−1)ξ+1
H
(µ)
ξ (α)

(ξ + β)z ,

S−+µ,z (α, β) :=
∞

∑
ξ=1

A
(µ)
ξ (α)

(ξ + β)z , S−−µ,z (α, β) :=
∞

∑
ξ=1

(−1)ξ+1
A
(µ)
ξ (α)

(ξ + β)z .

(33)

Obviously,

S++
µ,z (0, 0) = S++

µ,z , S+−
µ,z (0, 0) = S+−

µ,z , S−+µ,z (0, 0) = S−+µ,z , S−−µ,z (0, 0) = S−−µ,z .

The authors of [37] investigated a variety of intriguing properties and identities of the
four parameterized linear Euler sums in (33), including their analytic continuations and
mingling relations. Different Euler sums with parameters have been studied (consult, for
instance, [18,21,22,28,38,39]).

Very recently, Sofo and Choi [40] extended the four parameterized linear Euler sums
in (33) as follows:

S++
µ,z (α, β; q) :=

∞

∑
ξ=1

H
(µ)
qξ (α)

(ξ + β)z , S+−
µ,z (α, β; q) :=

∞

∑
ξ=1

(−1)ξ+1
H
(µ)
qξ (α)

(ξ + β)z ,

S−+µ,z (α, β; q) :=
∞

∑
ξ=1

A
(µ)
qξ (α)

(ξ + β)z , S−−µ,z (α, β; q) :=
∞

∑
ξ=1

(−1)ξ+1
A
(µ)
qξ (α)

(ξ + β)z .

(34)

Here, q ∈ Z>1, α, β ∈ C \Z6−1 and µ, z ∈ C are modified, such that the involved defining
series can converge. Clearly,

S++
µ,z (α, β; 1) = S++

µ,z (α, β), S+−
µ,z (α, β; 1) = S+−

µ,z (α, β),

S−+µ,z (α, β; 1) = S−+µ,z (α, β), S−−µ,z (α, β; 1) = S−−µ,z (α, β).

Using these expanded sums, the authors of [40] analyzed some of their characteristics
and identities. Specifically, the authors of [40] observed that two well-known and popular
subjects, namely Euler sums and series involving zeta functions, had some surprising
relationships.

In this study, we propose establishing several closed forms of series involving zeta
functions by using the formulae for series linked with zeta functions from [40], see Theo-
rem 4.2. Another closed form of series involving Riemann zeta functions is also provided
by utilizing a known formula for a series of rational functions, where the series index
is expressed in terms of Gamma functions. Numerous applications and relationships of
series involving zeta functions and extended parametric linear Euler sums, such as their
connections with the Mathieu series, Mellin transforms, determinants of Laplacians, cer-
tain integrals expressed in terms of Euler sums, representations and evaluations of some
integrals, and certain parametric Euler sum identities, are also demonstrated. The use of
Mathematica 13.0 (Home Edition) for various approximation values and integral formulae
is addressed.
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2. Series Involving the Zeta Functions

This section establishes closed-form expressions of several new families of series
associated with zeta functions by making use of Theorem 1 ([40], Theorem 4.2) and a
known infinite product formula expressed in terms of Gamma functions.

Zeta function series have piqued the curiosity of numerous academics. The interested
reader can refer to, for instance, the monograph [3] for information on the subject’s history
and an astoundingly large number of identities. The series involving zeta functions in ([40]
Theorem 4.1)) are clearly of different types from those previously presented (such as [3],
Chapter 3) and from those recollected in Theorem 1 (see [40], Theorem 4.2).

Let us recall two parametric and two variable summations (see [40], Theorem 4.2):

S+
µ,ν(x, y) :=

∞

∑
ξ=1

1
(ξ + x)µ (ξ + y)ν

, (35)

and

S−µ,ν(x, y) :=
∞

∑
ξ=1

(−1)ξ+1

(ξ + x)µ (ξ + y)ν
. (36)

The psi (or digamma) function ψ(u) is given by

ψ(u) :=
d

du
{log Γ(u)} = Γ′(u)

Γ(u)
or log Γ(u) =

∫ u

1
ψ(ξ) dξ. (37)

Here, Γ represents the renowned Gamma function (consult, for instance, [3], Section 1.1).
The psi function ψ(u) gratifies

ψ(u) = −γ− 1
u
+

∞

∑
ξ=1

u
ξ(u + ξ)

(u ∈ C \Z60). (38)

Here, and in other places, γ signifies the Euler–Mascheroni constant (see, for instance, [3],
Section 1.2; see also [41,42]).

The polygamma functions ψ(k)(u) are provided by

ψ(η)(u) :=
dη+1

duη+1 log Γ(u) =
dη

duη ψ(u) (u ∈ C \Z60, η ∈ Z>1). (39)

The following relationship between the zeta function of Hurwitz ζ(z, u) and the polygamma
functions ψ(η)(u) is worth noting:

ψ(η)(u) = (−1)η+1 η!
∞

∑
ξ=0

1
(ξ + u)η+1 = (−1)η+1 η! ζ(η + 1, u) (40)

(u ∈ C \Z60, η ∈ Z>1).

One finds the subsequent identity:

ψ(r)(u + η)− ψ(r)(u) = (−1)r r!
η

∑
ξ=1

1
(u + ξ − 1)r+1

= (−1)r r! H(r+1)
η (u− 1) (r, η ∈ Z>0).

(41)

The Pochhammer symbol (α)β is given (for α, β ∈ C) by

(α)β :=
Γ(α + β)

Γ(α)
=

{
1 (β = 0; α ∈ C \ {0})
α(α + 1) · · · (α + `− 1) (β = ` ∈ Z>0; α ∈ C),

(42)
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accepting that (0)0 := 1. Also, the falling factorial 〈α〉` is defined (for α ∈ C) by

〈α〉` := α(α− 1) · · · (α− `+ 1) (` ∈ Z>1) and 〈α〉0 := 1. (43)

Theorem 1 ([40], Theorem 4.2). Assume that x, y ∈ C \ Z6−1 satisfy x 6= y and |x − y| <
|1 + x|. Also, put µ, ν ∈ Z>1. Then,

S+
µ,ν(x, y) =

∞

∑
ξ=0

(ν)ξ

ξ!
(x− y)ξ ζ(µ + ν + ξ, 1 + x)

= (−1)ν

(
µ + ν− 2

µ− 1

)
ψ(y + 1)− ψ(x + 1)

(x− y)µ+ν−1

+ (−1)ν
ν−1

∑
j=1

1
j!

(
µ + ν− j− 2

µ− 1

)
ψ(j)(y + 1)

(x− y)µ+ν−1−j

+ (−1)ν
µ−1

∑
j=1

(−1)1+j

j!

(
µ + ν− j− 2

ν− 1

)
ψ(j)(x + 1)

(x− y)µ+ν−1−j ,

(44)

and

S−µ,ν(x, y) =
∞

∑
ξ=0

(ν)ξ

ξ!
(x− y)ξ η(µ + ν + ξ, 1 + x)

= (y− x)−ν
µ−1

∑
j=0

(
ν + j− 1

ν− 1

)
(x− y)−j η(µ− j, x + 1)

+ (x− y)−µ
ν−1

∑
j=0

(
µ + j− 1

µ− 1

)
(y− x)−j η(ν− j, y + 1).

(45)

Lemma 1. Let n, `, m ∈ Z>0 with ` > m and x, y ∈ C \Z6−1. Also, the principal values of the
involved logarithms are assumed. Then∫ x+n

x
log Γ(t + 1) dt =

n

∑
k=1

(x + k) log(x + k)− nx− 1
2

n(n + 1) +
1
2

n log(2π); (46)

I(`, m; x, y) : =
∫ y

x
(x− t)m ψ(`)(t + 1) dt

=
m−1

∑
k=0

(−1)m+k 〈m〉k (y− x)m−k ψ(m−k−1)(y + 1)

+ m!
[
ψ(`−m−1)(y + 1)− ψ(`−m−1)(x + 1)

]
.

(47)

where
ψ(−1)(t + 1) := log Γ(t + 1) and ψ(0)(t + 1) = ψ(t + 1). (48)

Proof. Formula (46) follows from the known one (see, for instance, ([43], p. 24, Equation (20)),
([3], p. 29, Equation (41))).

Integrating by parts repeatedly, with the aid of (39), we derive

(−1)m I(`, m; x, y) =
m−1

∑
k=0

(−1)k 〈m〉k (y− x)m−k ψ(m−k−1)(y + 1)

+ (−1)m m!
∫ y

x
(t− x)m−m ψ(`−m)(t + 1) dt

=
m−1

∑
k=0

(−1)k 〈m〉k (y− x)m−k ψ(m−k−1)(y + 1)

+ (−1)m m!
[
ψ(`−m−1)(y + 1)− ψ(`−m−1)(x + 1)

]
.
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Theorem 2. Let x, y ∈ C \ Z6−1 be such that |x − y| < |1 + x|. Also, let µ, ν ∈ Z>1.
Furthermore, the principal values of the involved logarithms are assumed. Then,

∞

∑
τ=0

(ν)τ

τ! (τ + µ + ν)
ζ(µ + ν + τ, 1 + x) (x− y)τ+µ+ν

= (−1)ν+1
(

µ + ν− 2
µ− 1

){
log

Γ(y + 1)
Γ(x + 1)

+ (x− y)ψ(x + 1)
}

+ (−1)ν+1
ν−1

∑
j=1

1
j!

(
µ + ν− j− 2

µ− 1

)
I(j, j; x, y)

+ (−1)ν+1
µ−1

∑
j=1

(−1)j

(j + 1)!

(
µ + ν− j− 2

ν− 1

)
(x− y)j+1ψ(j)(x + 1),

(49)

where
I(j, j; x, y) =

∫ y

x
ψ(j)(t + 1) (x− t)j dt

=
j−1

∑
k=0

(−1)j+k 〈j〉k (y− x)j−k ψ(j−k−1)(y + 1)

+ j! log
Γ(y + 1)
Γ(x + 1)

.

(50)

Proof. Multiplying each side of (44) by (x− y)ξ (ξ ∈ Z>0), replacing y by t in the resulting
identity, and integrating the second resulting identity with respect to t from x to y, we obtain

∞

∑
τ=0

(ν)τ

τ! (τ + ξ + 1)
ζ(µ + ν + τ, 1 + x) (x− y)τ+ξ+1

= (−1)ν+1
(

µ + ν− 2
µ− 1

){∫ y

x
ψ(t + 1) (x− t)ξ−µ−ν+1 dt + ψ(x + 1)

(x− y)ξ−µ−ν+2

ξ − µ− ν + 2

}
+ (−1)ν+1

ν−1

∑
j=1

1
j!

(
µ + ν− j− 2

µ− 1

) ∫ y

x
ψ(j)(t + 1) (x− t)ξ−µ−ν+1+j dt

+ (−1)ν+1
µ−1

∑
j=1

(−1)j

j!

(
µ + ν− j− 2

ν− 1

)
ψ(j)(x + 1)

(x− y)ξ−µ−ν+2+j

ξ − µ− ν + 2 + j
.

(51)

In order to apply (47) to evaluate the integral∫ y

x
ψ(t + 1) (x− t)ξ−µ−ν+1 dt,

the following restriction is required:

0 6 ξ − µ− ν + 1 6 0 ⇐⇒ ξ + 1 = µ + ν. (52)

Using (52) in (51), we obtain

∞

∑
τ=0

(ν)τ

τ! (τ + µ + ν)
ζ(µ + ν + τ, 1 + x) (x− y)τ+µ+ν

= (−1)ν+1
(

µ + ν− 2
µ− 1

){
log

Γ(y + 1)
Γ(x + 1)

+ (x− y)ψ(x + 1)
}

+ (−1)ν+1
ν−1

∑
j=1

1
j!

(
µ + ν− j− 2

µ− 1

) ∫ y

x
ψ(j)(t + 1) (x− t)j dt

+ (−1)ν+1
µ−1

∑
j=1

(−1)j

(j + 1)!

(
µ + ν− j− 2

ν− 1

)
(x− y)j+1ψ(j)(x + 1).

(53)
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Employing (47), we can evaluate

I(j, j; x, y) =
∫ y

x
ψ(j)(t + 1) (x− t)j dt

as in (50).

Corollary 1. Let y ∈ C \ Z6−1 be such that |y| < 1. Also, let µ, ν ∈ Z>1. Furthermore, the
principal values of the involved logarithms are assumed. Then,

∞

∑
τ=0

(ν)τ

τ! (τ + µ + ν)
ζ(µ + ν + τ) (−y)τ+µ+ν

= (−1)ν+1
(

µ + ν− 2
µ− 1

)
{log Γ(y + 1) + γ y}

+ (−1)ν+1
ν−1

∑
j=1

1
j!

(
µ + ν− j− 2

µ− 1

)
I(j, j; 0, y)

+ (−1)ν+1
µ−1

∑
j=1

(−1)j

j + 1

(
µ + ν− j− 2

ν− 1

)
ζ(j + 1) yj+1,

(54)

where

I(j, j; 0, y) =
j−1

∑
k=0

(−1)j+k 〈j〉k yj−k ψ(j−k−1)(y + 1)

+ j! log Γ(y + 1),

(55)

and γ is the Euler–Mascheroni constant;

∞

∑
τ=2

(−1)τ

τ
ζ(τ) yτ = log Γ(1 + y) + γ y (|y| < 1); (56)

∞

∑
τ=2

(−1)τ

τ(τ + 1)
ζ(τ) = −1 +

γ

2
+

1
2

log(2π). (57)

Proof. Setting x = 0 in (54), with the aid of (7), (38), and (40), yields (54).
Taking µ = ν = 1 in (54) gives (56), which is a known identity (consult, for instance,

([3], p. 269)).
Furthermore, integrating both sides of (56) with respect to variable y from 0 to 1, and

using (46), we obtain (57). The closed-form evaluation of the series involving zeta functions
in (57) is also a known formula (see, for instance, [3], p. 324, Equation (568)).

Theorem 3. Assume that x, y ∈ C \ Z6−1 gratify x 6= y and |x − y| < |1 + x|. Also, set
µ, ν ∈ Z>1 and s ∈ Z>0. Then,

∞

∑
ξ=0

(ξ + 1)s (ν + s)ξ

(s + ξ)!
(x− y)ξ ζ(µ + ν + s + ξ, 1 + x)

= (−1)ν+s
(

µ + ν + s− 2
µ− 1

)
ψ(y + 1)− ψ(x + 1)

(x− y)µ+ν+s−1

+ (−1)ν+s
ν+s−1

∑
j=1

1
j!

(
µ + ν + s− j− 2

µ− 1

)
ψ(j)(y + 1)

(x− y)µ+ν+s−1−j

+ (−1)ν+s
µ−1

∑
j=1

(−1)1+j

j!

(
µ + ν + s− j− 2

ν + s− 1

)
ψ(j)(x + 1)

(x− y)µ+ν+s−1−j ;

(58)
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∞

∑
ξ=0

(ξ + 1)s (ν + s)ξ

(s + ξ)!
(x− y)ξ η(µ + ν + s + ξ, 1 + x)

= (y− x)−ν−s
µ−1

∑
j=0

(
ν + s + j− 1

ν + s− 1

)
(x− y)−j η(µ− j, x + 1)

+ (x− y)−µ
ν+s−1

∑
j=0

(
µ + j− 1

µ− 1

)
(y− x)−j η(ν + s− j, y + 1).

(59)

Proof. First consider the following formula:

d`

dt`
(ξ + t)−κ = (−1)` (κ)` (ξ + t)−κ−` (` ∈ Z>0). (60)

Differentiating both sides of (35) s times, with respect to y, with the aid of (60), we obtain

∂s

∂ys S+
µ,ν(x, y) = (−1)s (ν)s

∞

∑
ξ=1

1
(ξ + x)µ (ξ + y)ν+s

= (−1)s (ν)s S+
µ,ν+s(x, y).

(61)

Using the first equality of (44), we have

∂s

∂ys S+
µ,ν(x, y) =

∂s

∂ys

∞

∑
ξ=0

(ν)ξ

ξ!
(x− y)ξ ζ(µ + ν + ξ, 1 + x)

=
∞

∑
ξ=s

(−1)s 〈ξ〉s (ν)ξ

ξ!
(x− y)ξ−s ζ(µ + ν + ξ, 1 + x).

(62)

Setting ξ − s = ξ ′ in the last summation in (62), and dropping the prime on ξ, we obtain

∂s

∂ys S+
µ,ν(x, y) =

∞

∑
ξ=0

(−1)s 〈s + ξ〉s (ν)s+ξ

(s + ξ)!
(x− y)ξ ζ(µ + ν + s + ξ, 1 + x). (63)

Using the following two identities

〈s + ξ〉s = (ξ + 1)s and (ν)s+ξ = (ν)s(ν + s)ξ (64)

in (63), and matching the resulting identity and the right member of (61), we derive

∞

∑
ξ=0

(ξ + 1)s (ν + s)ξ

(s + ξ)!
(x− y)ξ ζ(µ + ν + s + ξ, 1 + x) = S+

µ,ν+s(x, y), (65)

which, upon substituting ν + s for ν in the right member of (44), yields the desired iden-
tity (58).

Likewise, using (36) and (45), we obtain

∞

∑
ξ=0

(ξ + 1)s (ν + s)ξ

(s + ξ)!
(x− y)ξ η(µ + ν + s + ξ, 1 + x) = S−µ,ν+s(x, y), (66)

which, upon replacing ν with ν + s in the right member of (45), leads to the desired
identity (59).

Setting x = 0 (58) and (59), with the aid of (7), (21), (38) and (40), we obtain series
involving Riemann zeta and eta functions, without proofs, asserted in the ensuing corollary.
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Corollary 2. Let y ∈ C \Z60 be such that |y| < 1. Also, let µ, ν ∈ Z>1 and s ∈ Z>0. Then

∞

∑
ξ=0

(ξ + 1)s (ν + s)ξ

(s + ξ)!
(−y)ξ ζ(µ + ν + s + ξ)

= (−1)1−µ

(
µ + ν + s− 2

µ− 1

)
ψ(y + 1) + γ

yµ+ν+s−1

+ (−1)1−µ
ν+s−1

∑
j=1

(−1)j

j!

(
µ + ν + s− j− 2

µ− 1

)
ψ(j)(y + 1)
yµ+ν+s−1−j

+ (−1)1−µ
µ−1

∑
j=1

(−1)j
(

µ + ν + s− j− 2
ν + s− 1

)
ζ(j + 1)

yµ+ν+s−1−j ;

(67)

∞

∑
ξ=0

(ξ + 1)s (ν + s)ξ

(s + ξ)!
(−y)ξ η(µ + ν + s + ξ)

= (y)−ν−s
µ−1

∑
j=0

(
ν + s + j− 1

ν + s− 1

)
(−y)−j η(µ− j)

+ (−y)−µ
ν+s−1

∑
j=0

(
µ + j− 1

µ− 1

)
y−j η(ν + s− j, y + 1).

(68)

The subsequent lemma provides formulas for derivatives of the generalized (or Hur-
witz) zeta function ζ(z, u) in (6) and the extended eta function η(z, u) (19), which are easily
derivable (consult, for example, [3] , p. 159, Equation (18)).

Lemma 2. The following differential formulas hold:

∂k

∂uk ζ(z, u) = (−1)k (z)k ζ(z + k, u) (k ∈ Z>0) (69)

and
∂k

∂uk η(z, u) = (−1)k (z)k η(z + k, u) (k ∈ Z>0). (70)

Theorem 4. Suppose that x, y ∈ C \ Z6−1 satisfy x 6= y and |x − y| < |1 + x|. Also, put
µ, ν ∈ Z>1 and s ∈ Z>0. Then,

∞

∑
ξ=0

(ν)ξ

(µ)s ξ!

s

∑
j=0
j6ξ

(−1)j
(

s
j

)
〈ξ〉j (µ + ν + ξ)s−j

× (x− y)ξ−j ζ(µ + ν + ξ + s− j, 1 + x)

= (−1)ν

(
µ + ν + s− 2

µ + s− 1

)
ψ(y + 1)− ψ(x + 1)

(x− y)µ+ν+s−1

+ (−1)ν
ν−1

∑
j=1

1
j!

(
µ + ν + s− j− 2

µ + s− 1

)
ψ(j)(y + 1)

(x− y)µ+ν+s−1−j

+ (−1)ν
µ+s−1

∑
j=1

(−1)1+j

j!

(
µ + ν + s− j− 2

ν− 1

)
ψ(j)(x + 1)

(x− y)µ+ν+s−1−j

(71)
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and
∞

∑
ξ=0

(ν)ξ

(µ)s ξ!

s

∑
j=0
j6ξ

(−1)j
(

s
j

)
〈ξ〉j (µ + ν + ξ)s−j

× (x− y)ξ−j η(µ + ν + ξ + s− j, 1 + x)

= (y− x)−ν
µ+s−1

∑
j=0

(
ν + j− 1

ν− 1

)
(x− y)−j η(µ + s− j, x + 1)

+ (x− y)−µ−s
ν−1

∑
j=0

(
µ + s + j− 1

µ + s− 1

)
(y− x)−j η(ν− j, y + 1).

(72)

Proof. Using the similar process of proof Theorem 3, with the aid of the identities (69)
and (70), and (44) and (45), we prove (71) and (72). The involved details are omitted.

Like Corollary 2, putting x = 0 in (71) and (72), we obtain series involving Riemann
zeta and eta functions, without proof, asserted in the subsequent corollary.

Corollary 3. Let y ∈ C \Z60 be such that |y| < 1. Also, set µ, ν ∈ Z>1 and s ∈ Z>0. Then,

∞

∑
ξ=0

(−1)ξ (ν)ξ

(µ)s ξ!

s

∑
j=0
j6ξ

(
s
j

)
〈ξ〉j (µ + ν + ξ)s−j

× yξ−j ζ(µ + ν + ξ + s− j)

= (−1)ν

(
µ + ν + s− 2

µ + s− 1

)
ψ(y + 1) + γ

(−y)µ+ν+s−1

+ (−1)ν
ν−1

∑
j=1

1
j!

(
µ + ν + s− j− 2

µ + s− 1

)
ψ(j)(y + 1)

(−y)µ+ν+s−1−j

+ (−1)ν
µ+s−1

∑
j=1

(
µ + ν + s− j− 2

ν− 1

)
ζ(j + 1)

(−y)µ+ν+s−1−j

(73)

and
∞

∑
ξ=0

(−1)ξ (ν)ξ

(µ)s ξ!

s

∑
j=0
j6ξ

(
s
j

)
〈ξ〉j (µ + ν + ξ)s−j

× yξ−j η(µ + ν + ξ + s− j)

= y−ν
µ+s−1

∑
j=0

(
ν + j− 1

ν− 1

)
(−y)−j η(µ + s− j)

+ (−y)−µ−s
ν−1

∑
j=0

(
µ + s + j− 1

µ + s− 1

)
y−j η(ν− j, y + 1).

(74)

The following theorem offers an interesting closed-form evaluation of series involving
Riemann zeta functions with parameters.

Theorem 5. Let ` ∈ Z>0, αk ∈ C \Z6−1 and βk ∈ C \Z6−1 (k = 1, 2, . . . , `) be such that

max
16k6`

{|αk|, |βk|} < 1. (75)

and
`

∑
k=1

αk =
`

∑
k=1

βk. (76)
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Here and elsewhere, the principal value of log(·) is assumed to be taken. Then,

∞

∑
j=2

(−1)j

j

`

∑
k=1

{
(βk)

j − (αk)
j
}

ζ(j) = log

{
`

∏
k=1

Γ(1 + βk)

Γ(1 + αk)

}
. (77)

We also have
∞

∑
j=2

1
j

`

∑
k=1

{
(βk)

j − (αk)
j
}

ζ(j) = log

{
`

∏
k=1

Γ(1− βk)

Γ(1− αk)

}
; (78)

∞

∑
j=1

1
j

`

∑
k=1

{
(βk)

2j − (αk)
2j
}

ζ(2j) = log

{
`

∏
k=1

βk sin(π αk)

αk sin(π βk)

}
; (79)

∞

∑
j=1

1
2j + 1

`

∑
k=1

{
(βk)

2j+1 − (αk)
2j+1

}
ζ(2j + 1)

=
1
2

log

{
`

∏
k=1

Γ(1 + αk)Γ(1− βk)

Γ(1− αk)Γ(1 + βk)

}
.

(80)

Proof. Under constraint (76), we find (see, for instance, [43], pp. 6–7)

∞

∏
n=1

(n + α1)(n + α2) · · · (n + α`)

(n + β1)(n + β2) · · · (n + β`)
=

`

∏
k=1

Γ(1 + βk)

Γ(1 + αk)
. (81)

Let L1 be the left member of (81). Then,

L1 =
∞

∏
n=1

(
1 + α1

n
)(

1 + α2
n
)
· · ·
(
1 + α`

n
)(

1 + β1
n

)(
1 + β2

n

)
· · ·
(

1 + β`
n

) . (82)

Taking logarithms on both sides of (82) gives

logL1 =
∞

∑
n=1

`

∑
k=1

{
log
(

1 +
αk
n

)
− log

(
1 +

βk
n

)}
. (83)

Applying the Maclaurin series

log(1 + z) =
∞

∑
j=1

(−1)j+1

j
zj (|z| < 1)

to each log-term in (83), we obtain

logL1 =
∞

∑
n=1

`

∑
k=1

∞

∑
j=1

(−1)j+1

j

{
(αk)

j − (βk)
j
} 1

nj

=
∞

∑
n=1

∞

∑
j=2

(−1)j+1

j

`

∑
k=1

{
(αk)

j − (βk)
j
} 1

nj

=
∞

∑
j=2

(−1)j+1

j

`

∑
k=1

{
(αk)

j − (βk)
j
}

ζ(j),

where restrictions (75) and (76) are used for the first and second equalities, respectively,
and (2) is employed for the third equality. Also, since one can observe that the second
multiple series converges absolutely, the order of summations is interchangeable. Hence,
upon matching the logarithm on the right member of (81) and the last expression of logL1,
the result (77) easily follows.
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Replacing βk and αk with −βk and −αk (k = 1, . . . , `) in (77) yields (78). Recall the
following well-known formula:

Γ(s) Γ(1− s) = π csc(πs) (s ∈ C \Z). (84)

Adding (78) and (77), and subtracting (77) from (78), side by side, with the aid of (84),
respectively, shows (79) and (80).

3. Applications

Euler sums and series involving zeta functions have been associated with and used in
various research subjects (consult, for example, [3]). Several applications of Euler sums and
series involving zeta functions are demonstrated in this section.

To prevent any confusion, throughout this section, the pure imaginary unit i =
√
−1

is indicated as i :=
√
−1.

3.1. Wallis’s Infinite Product Formula for π

In 1655, Wallis [44] presented his renowned infinite product for π:

π

2
=

2
1

2
3

4
3

4
5

6
5

6
7

8
7

8
9

10
9

10
11

12
11

12
13

14
13

14
15

16
15

16
17
· · · =: Ω. (85)

Since then, various basic and advanced proofs of (85), as well as related products and
fascinating anecdotes have been presented (see, e.g., [45–54]). In 1873, Catalan [50] proved
the Wallis-type formulas

π

2
√

2
=

4
3

4
5

8
7

8
9

12
11

12
13

16
15

16
17
· · · =: Λ1 (86)

and √
2 =

2
1

2
3

6
5

6
7

10
9

10
11

14
13

14
15
· · · =: Λ2. (87)

Together, they provide an elegant factorization of Wallis’s formula, which is written as
Ω = Λ1 ×Λ2 (see also [52]).

Here, (85), (86) and (87) are shown using closed-form evaluations of specific series
involving zeta functions. We find that

Ω =
∞

∏
k=1

4k2

4k2 − 1
, Λ1 =

∞

∏
k=1

(4k)2

(4k)2 − 1
, Λ2 =

∞

∏
k=1

(4k− 2)2

(4k− 3) (4k− 1)
. (88)

Taking the principal logarithms on each member in (88), we obtain

log Ω = −
∞

∑
k=1

log
(

1− 1
4k2

)
=

∞

∑
k=1

∞

∑
τ=1

1
τ (4k2)τ

=
∞

∑
τ=1

ζ(2τ)

τ 22τ
; (89)

log Λ1 = −
∞

∑
k=1

log
(

1− 1
(4k)2

)
=

∞

∑
τ=1

ζ(2τ)

τ 42τ
; (90)

log Λ2 =
∞

∑
k=1

{
2 log

(
1− 1

2k

)
− log

(
1− 3

4k

)
− log

(
1− 1

4k

)}

=
∞

∑
k=1

{
−2

∞

∑
τ=1

1
τ (2k)τ

+
∞

∑
τ=1

1
τ

(
3
4k

)τ

+
∞

∑
τ=1

1
τ

(
1
4k

)τ
}

=
∞

∑
k=1

{
−2

∞

∑
τ=2

1
τ (2k)τ

+
∞

∑
τ=2

1
τ

(
3
4k

)τ

+
∞

∑
τ=2

1
τ

(
1
4k

)τ
}

= −2
∞

∑
τ=2

ζ(τ)

τ 2τ
+

∞

∑
τ=2

ζ(τ)

τ

(
3
4

)τ

+
∞

∑
τ=2

ζ(τ)

τ

(
1
4

)τ

=: Θ.

(91)
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For expression (89), also see ([51], Equation (6)). Replacing y with −y in (56) gives

∞

∑
τ=2

ζ(τ)

τ
yτ = log Γ(1− y)− γ y (|y| < 1). (92)

Adding (56) and (92) side by side, with the help of (84), gives

∞

∑
τ=1

ζ(2τ)

τ
y2τ = log

(
πy

sin πy

)
(|y| < 1), (93)

which is a known formula (see, e.g., [3], p. 271, Equation (17)). Setting y = 1
2 and y = 1

4
in (93), respectively, gives

log Ω = log
(π

2

)
and log Λ1 = log

(
π

2
√

2

)
,

which are found to be equivalent to the product values in (85) and (86). Putting y = 1
2 ,

y = 3
4 , and y = 1

4 in (92), with the aid of (84), provides the value Θ in (91):

Θ = −2 log Γ
(

1
4

)
+ log

{
Γ
(

1
4

)
Γ
(

3
4

)}
= log

√
2,

which proves (87).

3.2. Mathieu Series

Émile Leonard Mathieu (1835–1890) [55] explored the infinite series

S(τ) =
∞

∑
ξ=1

2ξ

(ξ2 + τ2)
2 (τ ∈ R>0) (94)

in research on the elasticity of solid bodies (also consult [56]). Pogány et al. [57] proposed
an alternate representation of the Mathieu series (94):

S̃(τ) =
∞

∑
ξ=1

(−1)ξ−1 2ξ

(ξ2 + τ2)
2 (τ ∈ R>0). (95)

Since Mathieu’s era, numerous researchers have explored various facets of the Mathieu
series, such as (94), as well as (95), in a range of techniques (see, for instance, [55–74]).

Pogány et al. [57] offered the integral representations of the Mathieu series (94) and
the alternating Mathieu series (95), as follows:

S(τ) =
1
τ

∫ ∞

0

u sin(τu)
eu − 1

du, (96)

and

S̃(τ) =
1
τ

∫ ∞

0

u sin(τu)
eu + 1

du. (97)

Choi and Srivastava [75] formulated (94) and (95) as series associated with the Riemann
zeta function, which is evaluated by the Trigamma function and, hence, by the generalized
zeta function:

S(τ) = 2
∞

∑
n=1

(−1)n−1 n ζ(2n + 1) τ2(n−1) (|τ| < 1), (98)

and

S̃(τ) = 2
∞

∑
n=1

(−1)n−1 n η(2n + 1) τ2(n−1) (|τ| < 1) : (99)
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S(τ) =
i

2τ

{
ψ′(1 + iτ)− ψ′(1− iτ)

}
(0 < |τ| < 1); (100)

S(τ) =
i

2τ
{ζ(2, 1 + iτ)− ζ(2, 1− iτ)} (0 < |τ| < 1); (101)

S̃(τ) = S(τ)− 1
4

S
(τ

2

)
(|τ| < 1). (102)

Here, it is noted that identities (100) and (101) are very useful because of numerous
properties and formulas of the psi function ψ(z) (and so the Trigamma function ψ′(z)) and
the Hurwitz zeta function ζ(s, a) have been presented. In this connection, among other
things, Choi and Srivastava [75] offered several integral representations for S(τ).

Recall the following power series representations of variable a for ζ(s, a) (see [76],
p. 25):

ζ(s, a) =
∞

∑
n=0

(−1)n (a− 1)n

n!
Γ(n + s) ζ(s + n) (|a− 1| < 1). (103)

Applying (103) to (101) yields (98).
Using the following formula (see, for instance, [76], p. 14):

ψ(n)(z) = (−1)n+1
∫ ∞

0

un

1− e−u e−zu du (<(z) > 0; n ∈ Z>0) (104)

in (100) gives (96).
Employing an integral representation (see, for instance, [76], p. 16):

ψ(z) = −γ + 2
∫ ∞

0
e−zt sinh[(z− 1)t]

sinh t
dt (<(z) > 0) (105)

in (100) affords

S(τ) =
2
τ

∫ ∞

0
t e−t sin(2τt)

sinh t
dt, (106)

which is found to be the same formula in (96).

3.3. Mellin Transforms

Taking the Mellin transform in (96), with the aid of ([77], p. 37, Entry 2.4.1-1 and [78],
p. 307, Equation (3)), we obtain

M{S(τ); s} = −22−s cos
(π

2
s
)

Γ(s− 1)
∫ ∞

0

e−x x2−s

sinh x
dx (−1 < <(s) < 1). (107)

Applying a known integral formula (see, e.g., [79], p. 381, Entry 3.552-1):

∫ ∞

0

xµ−1 e−βx

sin hx
dx = 21−µ Γ(µ) ζ

[
µ,

1
2
(β + 1)

]
(<(µ) > 1, <(β) > −1) (108)

to (108) yields

M{S(τ); s} = − cos
(π

2
s
)

Γ(s− 1) Γ(3− s) ζ(3− s)

= −π

2
csc
(π

2
s
)

ζ(3− s) (−1 < <(s) < 1),
(109)

where Formula (84) is employed.
Similarly,

M
{

S̃(τ); s
}
= −22−s cos

(π

2
s
)

Γ(s− 1)
∫ ∞

0

e−x x2−s

cosh x
dx (−1 < <(s) < 1). (110)
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Applying a known integral formula (consult, for example, [79], p. 381, Entry 3.552-3):

∫ ∞

0

xµ−1 e−x

cos hx
dx = 21−µ

(
1− 21−µ

)
Γ(µ) ζ(µ) (<(µ) > 0, µ 6= 1) (111)

to (110) produces

M
{

S̃(τ); s
}

= −π

2
csc
(π

2
s
) (

1− 2s−2
)

ζ(3− s) (−1 < <(s) < 1). (112)

Recall a Mellin transform, which was input into Mathematica 13.0 (Home Edition):

M
{

τ2(n−1); s
}
= 2π δ[i{2(n− 1) + s}] (n ∈ Z>0), (113)

where δ(x) is the Dirac delta function (see, for instance, [80], pp. 28, 30, 80).
Taking Mellin transforms on both sides of (96) and (97), with the aid of (98), (99), (109),

(112) and (113), we obtain

∞

∑
n=1

(−1)n−1 n ζ(2n + 1) δ[i{2(n− 1) + s}]

= −1
8

csc
(π

2
s
)

ζ(3− s) (−1 < <(s) < 1),

(114)

and
∞

∑
n=1

(−1)n−1 n η(2n + 1) τ2(n−1) δ[i{2(n− 1) + s}]

= −1
8

csc
(π

2
s
) (

1− 2s−2
)

ζ(3− s) (−1 < <(s) < 1).

(115)

Differentiating both sides of (56) gives a known formula (see, for instance, [3], p. 271,
Equation (14)):

∞

∑
τ=1

(−1)τ+1 ζ(τ + 1) yτ = ψ(y + 1) + γ (|y| < 1). (116)

Taking the Mellin transform on both sides of (116), with the aid of known identities (see (113)
and [77], p. 98, Entry 3.1.2-1), we obtain

∞

∑
τ=1

(−1)τ+1 ζ(τ + 1) δ[i(τ + s)] =
ζ(1− s)

2 sin(πs)
(−1 < <(s) < 0). (117)

3.4. Determinants of Laplacians

Numerous authors, including [81,82], Sarnak [83], and Voros [84], have paid consider-
able attention to the problem of evaluating the determinants of the Laplacians on Riemann
manifolds over the last four decades. They computed the determinants of the Laplacians
on compact Riemann surfaces of constant curvatures in terms of special values of the Sel-
berg zeta function. Although interest in the Laplacian determinants began with Riemann
surfaces, it is equally fascinating and possibly beneficial to calculate these determinants for
higher-dimensional classical Riemannian manifolds, such as spheres. The assessment of the
functional determinant for the n-dimensional unit sphere Sn (n ∈ Z>0) with the standard
metric has received special attention (see, for instance, [85–90]).

Assume {αk}∞
k=0 is a nonnegative, increasing, and unbounded real sequence; that is,

0 = α0 < α1 5 α2 5 · · · 5 αk 5 · · · ; αk ↑ ∞ (k→ ∞); (118)
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for the remainder of this section, we will discuss only such nonnegative growing sequences.
Then we can show that

Z(s) :=
∞

∑
k=1

1
αs

k
, (119)

which is recognized to converge absolutely in a half-plane <(s) > σ for some σ ∈ R.
The determinant of the Laplacian ∆ on the compact manifold M is defined to be (cf.

Osgood et al. [87])
det′∆ := ∏

αk 6=0
αk, (120)

where {αk} is the sequence of eigenvalues of the Laplacian ∆ on M. The sequence {αk}
is recognized to gratify the restriction, as in (118), but the product in (120) is always
divergent. Thus, some kind of regularization must be applied in order for the phrase (120)
to make sense (consult, for example, [89]). It is straightforward to deduce that e−Z′(0) is
the product of ∆’s nonzero eigenvalues. Although this product does not converge, Z(s)
can be continued analytically to a neighborhood of s = 0. As a result, we can provide a
proper definition:

det′∆ := e−Z′(0), (121)

which is referred to as the Laplacian ∆’s functional determinant on M.
The order µ of the sequence {αk} is defined by

µ := inf

{
ρ > 0

∣∣∣∣ ∞

∑
k=1

1
α

ρ
k
< ∞

}
. (122)

The analogous and shifted analogous Weierstrass canonical products E(α) and E(α, b) of
the sequence {αk} are defined, respectively, by

E(α) :=
∞

∏
k=1


(

1− α

αk

)
exp

 α

αk
+

α2

2α2
k
+ · · ·+ α[µ]

[µ]α
[µ]
k

 (123)

and

E(α, b) :=
∞

∏
k=1

{(
1− α

αk + b

)
exp

(
α

αk + b
+ · · ·+ α[µ]

[µ](αk + b)[µ]

)}
, (124)

where [µ] signifies the biggest integer that is less than or equal to the order µ of the sequence
{αk}.

E(α) and E(α, b) have the following relationship (see Voros [84]):

E(α, b) = exp

(
[µ]

∑
m=1
Rm−1(−b)

αm

m!

)
E(α− b)
E(−b)

, (125)

where, for the sake of convenience,

R[µ](α− b) :=
d[µ]+1

dα[µ]+1
{− log E(α, b)}. (126)

The shifted series Z(s, b) of Z(s) in (119) by b is given by

Z(s, b) :=
∞

∑
k=1

1
(αk + b)s . (127)

Actually, we obtain

Z′(0,−α) = −
∞

∑
k=1

log(αk − α),
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on a formal level, which entails that

D(α) =
∞

∏
k=1

(αk − α)

immediately upon defining

D(α) := exp
[
−Z′(0,−α)

]
. (128)

Indeed, Voros [84] established the following link between D(α) and E(α):

D(α) = exp[−Z′(0)] exp

[
−

[µ]

∑
k=1

FPZ(k)
αk

k

]

× exp

(
−

[µ]

∑
k=2

Ω−k Hk−1
αk

k!

)
E(α).

(129)

The finite part prescription of a function h is implemented as follows (see Voros [84], p. 446):

FPh(s) :=


h(s) if s is not a pole,

lim
ε→0

(
h(s + ε)− Residue

ε

)
if s is a simple pole,

(130)

and
Z(−k) = (−1)k k! Ω−k. (131)

Take now the sequence of eigenvalues on the standard Laplacian ∆n on Sn. Vardi’s
work [90] (see also Terras [91]) established that the standard Laplacian ∆n (n ∈ Z>0) pos-
sesses eigenvalues

ηk := k(k + n− 1) (132)

with multiplicity

qn(k) :=
(

k + n
n

)
−
(

k + n− 2
n

)
=
(2k + n− 1) (k + n− 2)!

k! (n− 1)!

=
2k + n− 1
(n− 1)!

n−2

∏
j=1

(k + j) (k ∈ Z>0).
(133)

From here on, we will refer to the sequence {αk} of {ηk} in (132), which is shifted by(
n−1

2

)2
, as a basic sequence. Then, the sequence {αk} is expressed in the following concise

form:

αk = ηk +

(
n− 1

2

)2
=

(
k +

n− 1
2

)2
(134)

with the same multiplicity as in (133).
Here, the order µn (n ∈ Z>0) of the sequence {αk} in (134) is given by

µn =

{
m (n = 2m),
m + 1

2 (n = 2m + 1),
(135)

for m ∈ Z>0.
We shall exclude the zero mode; that is, we will begin the sequence at k = 1 for further

analysis. Additionally, in order to emphasize n on Sn, we use the notations Zn(s), Zn(s, b),
En(α), En(α, b), and Dn(α) instead of Z(s), Z(s, b), E(α), E(α, b), and D(α), respectively.
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We readily observe from (128) that

Dn

((
n− 1

2

)2
)

= det′∆n, (136)

where det′ ∆n denotes the determinants of the Laplacians on Sn (n ∈ Z>0).
Several authors (see Choi [85], Kumagai [86], Vardi [90], and Voros [84]) employed the

theory of multiple gamma functions (see Barnes [92–95]) to evaluate the determinants of the
Laplacians on the n-dimensional unit sphere Sn (n ∈ Z>0). Quine and Choi [88] utilized
zeta regularized products to evaluate det′ ∆n and the determinant of the conformal Lapla-
cian, det(∆Sn + n(n− 2)/4). Choi and Srivastava [96,97], Choi et al. [98], and Choi [99]
used certain closed-form evaluations of the series associated with zeta functions (see [3],
Chapter 3) for the computation of the determinants of the Laplacians on Sn (n = 2, 3, 4,
5, 6, 7, 8, 9). Choi [100] presented a general explicit formula for the determinants of the
Laplacians on S2n+1 (n ∈ Z>0) by mainly using a closed-form expression of certain series
involving zeta functions.

Question: As in [100], can one establish a general explicit formula for the determinants
of the Laplacians on S2n (n ∈ Z>0) by mainly using closed-form evaluations of certain
series involving zeta functions (for instance, (54), (57))?

Here, we attempt to only evaluate

D10(α) = det′∆10,

where α := (9/2)2.
To do this, from (133)–(135), we find that the shifted basic sequence of eigenvalues on

the standard Laplacian ∆10 on S10 is given as

αk =

(
k +

9
2

)2
(137)

with multiplicity

q10(k) =
2k + 9

9!

8

∏
j=1

(k + j) (k ∈ Z>0). (138)

From (135), the order of the sequence (137) is 5. Hence, in view of (129), it suffices to
compute the following:

D10

(
81
4

)
= exp[−Z′10(0)] exp

− 5

∑
k=1

FPZ10(k)

(
81
4

)k

k


× exp

(
−

5

∑
k=2

Ω−kHk−1

(
81
4

)k

k!

)
E10

(
81
4

)
.

(139)

Here, in order to show how det′∆10 can be involved in closed-form evaluations of series
associated with the zeta functions, we only have to compute E10

(
81
4

)
. From (123), we obtain

log E10(α) =
∞

∑
k=1

q10(k)

[
log
(

1− α

αk

)
+

5

∑
j=1

1
j

(
α

αk

)j
]

= −
∞

∑
k=1

q10(k)

[
∞

∑
`=6

1
`

(
α

αk

)`
]

,

(140)
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where the Maclaurin expansion is used:

log(1− x) = −
∞

∑
`=1

x`

`
(|x| < 1).

Using (137) and (138) in (140) gives

−8! log E10(α) =
∞

∑
k=1

(
8

∏
j=1

(k + j)

)[
∞

∑
`=6

1
`

(
9
2

)2`−1( 1
k + 9/2

)2`−1
]

. (141)

Let τ := k + 9/2. Then,

8

∏
j=1

(k + j) =
4

∏
j=1

[
τ2 −

(
2j− 9

2

)2
]

,

which, upon shortening the computation, yields

8

∏
j=1

(k + j) =τ8 − 21 τ6 +
987

8
τ4 − 3229

16
τ2 +

11025
256

. (142)

Setting (142) in (141) gives

−8! log E10(81/4) =
∞

∑
`=6

1
`

(
9
2

)2`−1
[

∞

∑
k=0

(
1

k + 11/2

)2`−9
− 21

∞

∑
k=0

(
1

k + 11/2

)2`−7

+
987
8

∞

∑
k=0

(
1

k + 11/2

)2`−5
− 3229

16

∞

∑
k=0

(
1

k + 11/2

)2`−3

+
11025
256

∞

∑
k=0

(
1

k + 11/2

)2`−1
]

,

which, in view of (6), is expressed in terms of series involving the generalized zeta functions:

− 8! log E10(81/4) =
∞

∑
`=6

1
`

(
9
2

)2`−1[
ζ(2`− 9, 11/2)− 21 ζ(2`− 7, 11/2)

+
987

8
ζ(2`− 5, 11/2)− 3229

16
ζ(2`− 3, 11/2) +

11025
256

ζ(2`− 1, 11/2)
]
.

(143)

The identity (143) is also rewritten as follows:

−8! log E10(81/4) =
5

∑
k=1
Zk, (144)

where

Z1 =
∞

∑
`=1

1
`+ 5

(
9
2

)2`+9
ζ(2`+ 1, 11/2),

Z2 = −21
∞

∑
`=1

1
`+ 5

(
9
2

)2`+9
ζ(2`+ 3, 11/2),

Z3 =
987

8

∞

∑
`=1

1
`+ 5

(
9
2

)2`+9
ζ(2`+ 5, 11/2),

Z4 = −3229
16

∞

∑
`=1

1
`+ 5

(
9
2

)2`+9
ζ(2`+ 7, 11/2),



Symmetry 2023, 15, 1637 22 of 31

Z5 =
11025

256

∞

∑
`=1

1
`+ 5

(
9
2

)2`+9
ζ(2`+ 9, 11/2).

Here, Zk (k = 1, . . . , 5) can be evaluated by using a formula for series involving zeta
functions (see [3], p. 258, Equations (66) and (67)). For example,

Z3 =
329
12

[
− 1

4

(
9
2

)8
ζ(3, 11/2)− 1

5

(
9
2

)19
ζ(5, 11/2)

+
∞

∑
`=1

1
`+ 3

(
9
2

)2`+6
ζ(2`+ 1, 11/2)

]
.

(145)

Here, by using a known formula (see [3], p. 258, Equation (67)), we obtain

∞

∑
`=1

1
`+ 3

(
9
2

)2`+6
ζ(2`+ 1, 11/2)

=
5

∑
k=0

(
5
k

)[
ζ ′(k)− (−1)k ζ ′(−k, 10)

](9
2

)5−k

+
82695519

8960
− 177147

64
γ− 177147

32
log 2,

(146)

where some other formulas (see [3], p. 31, Equations (50) and (51); p. 151, Equation (17))
are used.

Also, if (7) and an identity (see, for instance, [3], p. 150, Equation (5)) are employed,
the ζ(3, 11/2) and ζ(5, 11/2) are reduced to yield

ζ(3, 11/2) = 7 ζ(3)− 262380376
31255875

; ζ(5, 11/2) = 31 ζ(5)− 28 · 1749037771
(5 · 7 · 9)5 .

Note that the other components in (139) can be readily computed (consult, for exam-
ple, [99,100]).

3.5. Integrals Expressed in Terms of Euler Sums

When certain log–log integrals on the real half-line x > 0 are evaluated, their represen-
tations are expressed in terms of Euler sums (see the four notations in (34)) corresponding
to the first three equations in [40], Theorem 2.1. In general, integrals have the form:∫ ∞

0

logp(x) log(1± xq)

x(1± x)
dx.

Consider the family of integrals

J(p, q) :=
∫ ∞

0

logp(x) log(1 + xq)

x(1 + x)
dx, (147)

where (p, q) ∈ Z>0 ×Z>0. The simple case (p, q) = (0, 1) of (147) gives the famous Euler’s
formula:

ζ(2) =
∫ ∞

0

log(1 + x)
x(1 + x)

dx.

Decompose the integral in (147) as follows:

J(p, q) =
∫ 1

0
f (x) dx +

∫ ∞

1
f (x) dx [(p, q) ∈ Z>0 ×Z>0], (148)

where

f (x) :=
logp(x) log(1 + xq)

x(1 + x)
. (149)
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It is noted that the f (x) in (149) is continuous and bounded on the interval [0, ∞), and

lim
x→0+

f (x) = lim
x→∞

f (x) = 0.

In the last integral of (148), substituting x = 1/y and then being the variable y replaced by
x, we obtain

J(p, q) =
∫ 1

0

(
1 + (−1)px

)
f (x)dx + (−1)p+1q

∫ 1

0

log(x)p+1

(1 + x)
dx. (150)

Analyzing the integrals of (150) by Taylor series expansions, and taking into account their
appropriate convergence regions, after some appropriate simplifications, we arrive at

J(p, q) =
p!

2p+1

(
(−1)p − 1

)
∑
n>1

(−1)n+1

n
H(p+1)

qn
2 −

1
2

− p!
2p+1

(
(−1)p − 1

)
∑
n>1

(−1)n+1

n
H(p+1)

qn
2

+ p!
(
(−1)p

qp+1 + q(p + 1)
)

η(p + 2).

(151)

Using the notation (34) in (151), we obtain

J(p, q) =
p!

2p+1

(
(−1)p − 1

)(
∑
n>1

(−1)n+1

n
H(p+1)

qn
2 −

1
2
− S+−

p+1,1

(
0, 0,

q
2

))

+ p!
(
(−1)p

qp+1 + q(p + 1)
)

η(p + 2).

(152)

The formula (152) can be separated into the following two cases:

(a) p is even:

J(p, q) = p!
(

1
qp+1 + q(p + 1)

)
η(p + 2). (153)

(b) p is odd:

J(p, q) =
p!
2p

(
S+−

p+1,1

(
0, 0,

q
2

)
− ∑

n>1

(−1)n+1

n
H(p+1)

qn
2 −

1
2

)

+ p!
(

q(p + 1)− 1
qp+1

)
η(p + 2).

(154)

The J(p, q) seems to be input into Mathematica, whose several particular cases are
recorded:

J(1, 2) = π G +
1
8

π2 ln 2− 3
16

ζ(3); (155)

J(3, 2) = 6π β(4) +
3
4

π3 G +
7

64
π4 ln 2− 3

64
π2 ζ(3)− 45

128
ζ(5); (156)

J(5, 2) =
25
16

π5G +
29295

128
ζ(6) ln 2 + 15π3β(4) + 120πβ(6)

− 315
128

ζ(4)ζ(3)− 225
128

ζ(2)ζ(5)− 945
512

ζ(7),
(157)

where G is Catalan’s constant in (25) and β(·) is the Dirichlet Beta function in (22).
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Also, consider the following family of integrals containing polylogarithmic functions
Lit(±xq) in the integrand:

J(p, q, t) :=
∫ ∞

0

logp(x)Lit(±xq)

x(1± x)
dx,

in which numerous other Euler-sum identities similar to (152) can be identified; however,
the specifics will not be discussed here. For other log integrals, one can refer to [101–103].

3.6. Representations and Evaluations of Integrals

log Γ(y + 1) is related to series involving zeta functions, as follows (see, for in-
stance, [43], p. 46, Equation (9)):

log Γ(y + 1) = −1
2

log
(

sin πy
πy

)
−

∞

∑
τ=1

ζ(2τ + 1)
2τ + 1

y2τ+1 − γ y (|y| < 1). (158)

Applying (158) to (56) gives

∞

∑
τ=2

(−1)τ

τ
ζ(τ) yτ = −1

2
log
(

sin πy
πy

)
−

∞

∑
τ=1

ζ(2τ + 1)
2τ + 1

y2τ+1 (|y| < 1). (159)

Integrating both sides of (159) from 0 to 1 offers

∞

∑
τ=2

(−1)τ

τ(τ + 1)
ζ(τ) = −1

2

∫ 1

0
log
(

sin πy
πy

)
dy−

∞

∑
τ=1

ζ(2τ + 1)
(2τ + 1)(2τ + 2)

. (160)

Decomposing the summation on the left side of (160) into even and odd summation indices,
and simplifying the resulting identity, we obtain

∫ 1

0
log
(

sin πy
πy

)
dy = −

∞

∑
τ=1

ζ(2τ)

τ(2τ + 1)
≈ −0.837877. (161)

Recall a known formula (see, e.g., [3], p. 326, Equation (580)):

∞

∑
τ=1

ζ(2τ)− 1
τ(2τ + 1)

= −3 + log(8 π). (162)

Using the following easily-derivable formula

∞

∑
τ=1

1
τ(2τ + 1)

= 2− 2 log 2 (163)

in (162) affords
∞

∑
τ=1

ζ(2τ)

τ(2τ + 1)
= −1 + log(2 π). (164)

Finally, employing (164) in (161), we obtain an integral formula∫ 1

0
log
(

sin πy
πy

)
dy =

1
π

∫ π

0
log
(

sin y
y

)
dy = 1− log(2 π), (165)

which can be obtained by combining two known integral formulas ([79], Entries 4.215-1
and 4.224-1).
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Dividing both sides of (56) by y and integrating the resulting identity from 0 to 1,
we find ∫ 1

0

1
y

log Γ(y + 1) dy = −γ +
∞

∑
τ=2

(−1)τ

τ2 ζ(τ)

≈ −0.25687,

(166)

which, upon integrating by parts, also yields

∫ 1

0
(log y)ψ(y + 1) dy = γ−

∞

∑
τ=2

(−1)τ

τ2 ζ(τ). (167)

From (158) and (166), we readily establish the following formula:

∫ 1

0

1
y

log
(

sin πy
πy

)
dy = −1

2

∞

∑
τ=1

ζ(2τ)

τ2 ≈ −1.15634. (168)

Rearranging the terms in (159), we derive

log
(

sin πy
πy

)
= −2

∞

∑
τ=2

(−1)τ

τ
ζ(τ) yτ − 2

∞

∑
τ=1

ζ(2τ + 1)
2τ + 1

y2τ+1 (|y| < 1), (169)

which implies
1
y2 log

(
sin πy

πy

)
= O(1) (y→ 0).

Dividing both sides of (169) by y2 and integrating both sides of the resulting identity from
0 to 1, we obtain∫ 1

0

1
y2 log

(
sin πy

πy

)
dy = −

∞

∑
τ=1

ζ(2τ)

τ(2τ − 1)
≈ −2.04628. (170)

It is noted that (161), (168) and (170) can be derived from a known series representation
([104], Entry (50.6.5)).

Using (4), the series representation ([104], Entry (50.6.4)) is written as follows:

∞

∑
τ=1

(−1)τ+1

τ
ζ(2τ) y2τ = log

(
sinh πy

πy

)
(|y| < 1). (171)

Taking the limit as y→ 1 in (171) gives

∞

∑
τ=1

(−1)τ+1

τ
ζ(2τ) = log

(
eπ − e−π

2π

)
. (172)

It is noted that the particular cases n = 2 and a = 1 of the identity ([11], p. 136, Proposition 3)
(or [3], p. 263, Proposition 3.6) yields

∞

∑
τ=1

(−1)τ

τ
ζ(2τ) = log[Γ(1− i) Γ(1 + i)], (173)

which is equivalent to (172) by recalling the following well-known formula (see, e.g., [3],
p. 3, Equation (12)):

Γ(1− z) Γ(1 + z) = πz csc(πz) (z ∈ {0} ∪C \Z). (174)
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Using (171), we can obtain the following relationships between integrals and series
involving zeta functions:

∫ 1

0
log
(

sinh πy
πy

)
dy =

∞

∑
τ=1

(−1)τ+1

τ(2τ + 1)
ζ(2τ) ≈ 0.471417; (175)

∫ 1

0

1
y

log
(

sinh πy
πy

)
dy =

1
2

∞

∑
τ=1

(−1)τ+1

τ2 ζ(2τ) ≈ 0.724263; (176)

∫ 1

0

1
y2 log

(
sinh πy

πy

)
dy =

∞

∑
τ=1

(−1)τ+1

τ(2τ − 1)
ζ(2τ) ≈ 1.50989. (177)

Here, the integral in (175) is evaluated as follows:∫ 1

0
log
(

sinh πy
πy

)
dy = 1 +

5π

12
− log(2π) +

1
2π

, (178)

which was input into Mathematica.
Employing (172) in (175) and (177), respectively, gives

∫ 1

0
log
(

sinh πy
πy

)
dy = log

(
eπ − e−π

2π

)
− 2

∞

∑
τ=1

(−1)τ+1

2τ + 1
ζ(2τ), (179)

and ∫ 1

0

1
y2 log

(
sinh πy

πy

)
dy = 2

∞

∑
τ=1

(−1)τ+1

2τ − 1
ζ(2τ)− log

(
eπ − e−π

2π

)
. (180)

From (178) and (179), we have

∞

∑
τ=1

(−1)τ+1

2τ + 1
ζ(2τ) =

1
2

log
(
eπ − e−π

)
− 1

2
− 5 π

24
− 1

4π
Li2
(

e−2π
)

. (181)

Adding both sides of (179) and (180) offers

∫ 1

0

(
1 +

1
y2

)
log
(

sinh πy
πy

)
dy = 4

∞

∑
τ=1

(−1)τ+1

4τ2 − 1
ζ(2τ). (182)

Adding (168) and (176), and subtracting (176) from (168), respectively, we obtain

∫ 1

0

1
y

log
(

sin πy sinh πy
π2y2

)
dy = −1

4

∞

∑
τ=1

ζ(4τ)

τ2 ≈ −0.432076, (183)

and ∫ 1

0

1
y

log
(

sin πy
sinh πy

)
dy = −

∞

∑
τ=1

ζ(4τ − 2)
(2τ − 1)2 ≈ −1.8806. (184)

3.7. Parametric Euler Sum Identities

Borwein et al. [38] showed several very interesting parameterized classes of multiple
sums whose many specific instances reduce to well-known Euler (and related) sums by
extensive use of computer algebra systems (as they noted). Their fundamental formulae
are summarized here (see also [75], Equations (5.24) and (5.25)):

∞

∑
n=1

1
n

n−1

∑
`=1

1
`

arctan
(

`

n2 − ` n + 1

)
=

∞

∑
n=1

arctan(1/n)
n2

=
∞

∑
τ=1

(−1)τ+1

2τ − 1
ζ(2τ + 1),

(185)
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and
∞

∑
n=1

1
n

n−1

∑
`=1

1
`

log
n2{(n− `)2 + 1

}
(n− `)2 (n2 + 1)

=
∞

∑
τ=1

(−1)τ+1

τ
ζ(2τ + 2). (186)

We attempt to express the series involving zeta functions in (185) and (186) in terms of
integrals. Recall a known identity (consult, for example, [3], p. 270, Equation (11)):

∞

∑
τ=1

ζ(2τ)

τ
u2τ = log[Γ(1 + u) Γ(1− u)] (|u| < 1). (187)

Using (174) in (187) and differentiating both sides of the resulting identity, we have

∞

∑
τ=1

ζ(2τ) u2τ−1 =
1

2 u
− π

2
cot(πu),

the first term on the left member, which transposes to yield

∞

∑
τ=2

ζ(2τ) u2τ−1 = −π2

6
u +

1
2 u
− π

2
cot(πu). (188)

Dividing both sides of (188) by u2, we obtain

∞

∑
τ=2

ζ(2τ) u2τ−3 = −π2

6 u
+

1
2 u3 −

π

2u2 cot(πu). (189)

Integrating both sides of (189) from 0 to y, we have

∞

∑
τ=2

ζ(2τ + 2)
τ

y2τ = 2
∫ y

0

[
−π2

6 u
+

1
2 u3 −

π

2u2 cot(πu)
]

du. (190)

Setting y = i in (190), we have

∞

∑
τ=2

(−1)τ+1

τ
ζ(2τ + 2) 6= 2

∫ i

0

[
π2

6 u
− 1

2 u3 +
π

2u2 cot(πu)
]

du, (191)

whose integral does diverge.
Using a similar method, as in obtaining (191) in the known identity (consult, for

example, [3], p. 271, Equation (16)):

∞

∑
τ=1

ζ(2τ + 1) u2τ = −1
2
{ψ(1 + u) + ψ(1− u)} − γ (|u| < 1), (192)

we can readily obtain

∞

∑
τ=1

(−1)τ+1

2τ − 1
ζ(2τ + 1) = i

∫ i

0

[
γ

u2 +
1

2 u2 {ψ(1 + u) + ψ(1− u)}
]

du

≈ 0.97657.

(193)

Using (4) to modify the known identity ([104], Entry (50.5.10)) gives

∞

∑
τ=0

(−1)τ+1 ζ(2τ) u2τ =
1
2

πu coth(πu) (|u| < 1). (194)
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Employing a similar method, as in obtaining (191), using (194), we find

∞

∑
τ=2

(−1)τ+1

τ
ζ(2τ + 2) 6= 2

∫ 1

0

[
π2

6 u
+

1
u3 −

π

2u2 coth(πu)
]

du, (195)

whose integral does not converge.

4. Concluding Remarks

Four forms of linear Euler sums were suggested and investigated by Flajolet and
Salvy [9]. Alzer and Choi [37] constructed and studied the four parametric linear Eu-
ler sums, which are parametric expansions of Flajolet and Salvy’s four types of linear
Euler sums [9]. Very recently, Sofo and Choi [40] broadened and investigated the four
parametric linear Euler sums [37], revealing that two well-established and well-known
topics, Euler sums and series involving the zeta functions, exhibit specific relationships
(consult, for example, [40], Theorem 4.1). Both topics—Euler sums and series involving the
zeta functions—have lengthy histories and have piqued the curiosities of many scholars.
In this study, we presented several closed forms of series involving zeta functions (see
Theorems 2–4) by using formulas for series associated with the zeta functions in [40], Theo-
rem 4.2. Also, several applications and relationships of series involving the zeta functions
and the extended parametric linear Euler sums have been explored, such as the Mathieu
series, Mellin transforms, determinants of Laplacians, specific integrals represented in
terms of Euler sums, as well as the representation and evaluation of certain integrals and
specific parametric Euler sum identities. The use of Mathematica 13.0 (Home Edition) for
various approximation values and certain integral formulas is addressed (see, for instance,
Equations (113), (161), (166), (168) and (170)).

As a result of this line of research, it is anticipated that interested and concerned
scholars, including the authors, will continue to study the four extended parametric linear
Euler sums (see (34)) and series associated with the zeta functions.
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