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Abstract: Two subsets X and Y of a permutation group G acting on Ω are cross-intersecting if for
every x ∈ X and every y ∈ Y there exists some point α ∈ Ω such that αx = αy. Based on several
observations made on the cross-independent version of Hoffman’s theorem, we characterize in this
paper the cross-intersecting families of certain permutation groups. Our proof uses a Cayley graph
on a permutation subgroup with respect to the derangement. By carefully analyzing the cross-
independent version of Hoffman’s theorem, we obtain a useful theorem to consider cross-intersecting
subsets of certain kinds of permutation subgroups, such as PGL(2, q), PSL(2, q) and Sn.
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1. Introduction

Let [n] = {1, 2, 3, · · · , n}. For two permutations φ, ϕ ∈ Sn, we say φ and ϕ intersect
if φ(i) = ϕ(i) for some i ∈ [n]. Similarly, they are said to k-intersect if φ(it) = ϕ(it) for
t = 1, 2, · · · , k, where i1, i2, · · · , ik ∈ [n]. A subset A ⊂ Sn is said to be k-intersecting if any
two permutations in A k-intersect. Similarly, two subsets A, B ⊂ Sn are said to be k-cross-
intersecting if any permutation in A and any permutation in B k-intersect. Specifically,
1-cross-intersecting is called cross-intersecting for short.

The Erdős–Ko–Rado theorem [1] is a fundamental theorem in extremal set theory.
Many similar theorems have been proved for other mathematical objects. We can briefly
understand them by consulting with [2–5]. A version of the EKR theorem for permutations
stems from [6], in which Frankl and Deza proved that the maximal size of intersecting
families of permutations is (n− 1)!. They conjectured that for any n ∈ N, the 1-coset is the
only intersecting subsets of Sn with the size (n− 1)!, and if n is large enough depending on
k, the k-coset is the only largest k-intersecting subsets of Sn. The first part was solved by
Cameron and Ku [5], and there are some other proofs such as [7,8]. D. Ellis, Friedgut and H.
Pilpel [9] proved the second conjecture, in which they also have a similar result concerning
k-cross-intersecting subsets of Sn. In recent years, considering the intersecting families
of the subgroups of Sn and cross-intersecting family in other mathematical objects have
result in much attention. See [10–14] for versions of intersecting family for An, GL(n, q),
PGL(2, q), PSL(2, q) and so on. See [15–17] for a version of a cross-intersecting family. In the
past two years, some relevant comprehensive articles have also been published, see [18,19].

The object of this paper is to establish the relationship between intersecting families
and cross-intersecting families of certain kinds of permutation subgroups, which is a great
help when considering cross-intersecting families. Our proof uses a Cayley graph on a
permutation subgroup with respect to the derangement, which appears in [5]. By carefully
analyzing the cross-independent version of Hoffman’s theorem [9], we obtain a useful
theorem to consider cross-intersecting subsets of a certain kind of permutation subgroups,
such as PGL(2, q), PSL(2, q) and Sn.

2. Preliminary Results

In this section, we present some preliminary results, which will be helpful for our main
results. Let G be a group and S a subset of G which does not contain the identity element 1.
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The Cayley digraph Cay(G, S) (on G with respect to S) is defined on G such that x is adjacent
to y if and only if yx−1 ∈ S. It is easily shown that Cay(G, S) is connected if and only if
G = 〈S〉, that is, S is a generating set of the underlying group G. If S = S−1 := {s−1 | s ∈ S}
the Cay(G, S) may be viewed as a graph by identifying every two opposite directed edges
as an edge; the resulting graph is called a Cayley graph of G and is also denoted by
Cay(G, S). For each g ∈ G, define

R(g) : G → G, x 7→ xg, ∀x ∈ G.

It follows that, R(g) ∈ AutΓ, and R(G) = {R(g)|g ∈ G} is a regular subgroup of AutΓ
isomorphic to G, which yields that Γ is a vertex-transitive.

For a permutation subgroup G, we construct a Cayley graph Cay(G, S) where S is all
the derangements of the group G, and this graph, denoted by ΓG for short, is called the
derangement graph of the group G. Then, the characterization of a cross-intersecting family
of permutation groups equals the characterization of two subsets of the derangement graph
for which there are no edges between them.

Theorem 1 ([10]). Every independent set M of the derangement graph of PGL(2, q) acting on the
projective line Pq has size at most q(q− 1). The bound is attained if and only if M is a coset of the
stabilizer of a point.

Theorem 2 ([11]). Every independent set M of the derangement graph of PSL(2, q) where q is
even, acting on the projective line Pq has size at most q(q− 1). The bound is attained if and only if
M is the coset of the stabilizer of a point.

Theorem 3 ([5]). Let n ≥ 2 and M ⊂ Sn be an intersecting set of permutations such that
|M| = (n− 1)!. Then M is a coset of a stabilizer of one point.

The eigenvalues of the derangement graph of PGL(2, q), PSL(2, q) and Sn are also
needed for our proof. Then we present the eigenvalues of these derangement graphs
as follows.

Theorem 4 ([10]). 1. If q is even, then the spectrum of ΓPGL(2,q) is(
q2(q−1)

2
−q(q−1)

2 q 0

1 q2 q(q−1)2

2
(q+1)2(q−2)

2

)

2. If q is odd, then the spectrum of ΓPGL(2,q) is(
q2(q−1)

2
−q(q−1)

2
q−1

2 q 0

1 q2 + 1 q2 (q−1)3

2
(q+1)2(q−3)

2

)

Theorem 5 ([11]). 1. If q is even, then the spectrum of ΓPSL(2,q) is(
q2(q−1)

2
−q(q−1)

2 q 0

1 q2 q(q−1)2

2
(q+1)2(q−2)

2

)

2. If q is odd, then the spectrum of ΓPSL(2,q) is(
q(q−1)2

4
−(q−1)2

4 q 0

1 q2 (q−1)3

4
(q+1)2(q−3)

4

)
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Theorem 6 ([9,20]). The second largest absolute eigenvalue is the smallest eigenvalue of the
derangement graph of ΓSn , where n ≥ 5. And the smallest eigenvalue is given by η = −dn

n−1 , where
dn is the number of the derangements of Sn.

In the following section, we show the main result of this paper. Let G be one of the
following permutation groups: Sn (with n ≥ 5) acts on {1, 2, 3, · · · , n}, and PGL(2, q) (with
q ≥ 4) acts on the projective line PG(1, q). Let H be a point-stabilizer in G. Then, it is
proven that if X and Y are cross-intersecting in G then |X||Y| ≤ |H|2, and the equality
holds if and only if X = Y is a right coset of some conjugation of H in G. For Sn, our proof
is different from [9] presented by Ellis, Friedgut and Pilpel.

3. Main Results and Discussions

In this section, we show the main result of this paper. As our results mainly concerned
the relationship of intersecting families and cross-intersecting families of a certain kind of per-
mutation subgroups, we will first give some information about The Erdős–Ko–Rado Theorem.

Let ([n]k ) denote the collection of all k-subsets of [n] = {1, 2, 3 · · · , n}. A familyA ⊆ ([n]k )

is called intersecting if A∩ B 6= ∅ for all A, B ∈ A, and two familiesA, B ⊆ ([n]k ) are called
cross-intersecting if A∩ B 6= ∅ for all A ∈ A and all B ∈ B. The Erdős–Ko–Rado Theorem 1
says that for n ≥ 2k if a family A ⊆ ([n]k ) is intersecting then |A| ≤ (n−1

k−1), and the equality
holds for n > 2k if and only if A consists of all the k-subsets containing one fixed element.
Pyber gave a generalization of this result for cross-intersecting families.

Theorem 7 ([21,22]). Let n ≥ 2k. If A, B ⊆ ([n]k ) are cross-intersecting then |A||B| ≤ (n−1
k−1)

2
,

and the equality holds for n > 2k if and only if A = B consists of all the k-subsets containing one
fixed element.

Theorem 7 has a natural extension to permutations. In this paper, we are concerned
with analogues of the above result for certain permutation groups. Let G be a permutation
group on a finite set Ω, that is, G is a subgroup of the symmetric group Sym(Ω). A point-
stabilizer in G is the subgroup fixes some given point α ∈ Ω. Two subsets X and Y of G are
called cross-intersecting if for every x ∈ X and every y ∈ Y there exists some point α ∈ Ω
such that αx = αy.

Leader [23] conjectured that for |Ω| ≥ 4 if X, Y ⊆ Sym(Ω) are cross-intersecting
then |X||Y| ≤ ((|Ω| − 1)!)2. Ellis, Friedgut and Pilpel [9] proved this conjecture. Note
that all point-stabilizers in Sym(Ω) are conjugates; in particular, they have the same order
(|Ω| − 1)!. Then we formulate the following result from (Theorem 4 in [9]).

Theorem 8. Let H be a point-stabilizer in G = Sym(Ω). For |Ω| ≥ 5, if X, Y ⊆ G are cross-
intersecting then |X||Y| ≤ |H|2. Equality holds if and only if X = Y is a right coset of some
conjugation of H in G.

In this paper, we are concerned with analogues of the above result for a certain kind
of permutation groups. Our main results are stated as follows.

Theorem 9. Let G = PGL(2, q) act on the projective line PG(1, q), and let H be a point-stabilizer
in G. Assume that X, Y ⊆ PGL(2, q) are cross-intersecting.

1. If q > 2 then |X||Y| ≤ |H|2 = q2(q− 1)2. Equality holds for q ≥ 4 if and only if X = Y is
a coset of some conjugation of H in G.

2. If X and Y are cross-intersecting in PGL(2, q) where q 6= 2, then |X||Y| ≤ q2(q − 1)2.
For q ≥ 4, the bound is attained if and only if X = Y is a coset of the stabilizer of a point
of Pq.
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Theorem 10. Let G = PSL(2, q) act on the projective line PG(1, q), and let H be a point-
stabilizer in G. Assume that X, Y ⊆ PSL(2, q) are cross-intersecting. If q is odd and q ≥ 7 then

|X||Y| ≤ |H|2 = q2(q−1)2

4 , and the equality yields that X = Y.

It was conjectured in [10] that, for PSL(2, q) acting on PG(1, q), only the cosets of point-
stabilizers are the biggest intersecting families. Thus, we have the following conjecture.

Conjecture 1. Let G = PSL(2, q) act on PG(1, q), and let H be a point-stabilizer in G, where q is

odd and q ≥ 7. Assume that X, Y ⊂ PSL(2, q) are cross-intersecting. If |X||Y| = q2(q−1)2

4 then
X = Y is a coset of some conjugation of H in G.

4. Comparison and Proof

In this section, we give the proof of main theorems. For convenience, we restate the
cross-independent version of Hoffman’s theorem as follows, which bounds the maximum
possible size of the cross-independent set in a d-regular graph.

4.1. The Cross-Independent Set of a d-Regular Graph

Let Γ = (V, E) be a d-regular graph of order m, where d ≥ 1. Consider the space R[V]
of real-valued functions on V. Define an inner product

< v, w >=
1
|V| ∑

α∈V
v(α)w(α).

This induces the following Euclidean norm:

||v||2 =
√
< v, v > =

√
1
|V|
√

∑
α∈V

v(α)2.

For a subset X ⊆ V, denote by 1X the characteristic function of X. Take an orthonormal system

{1V = v1, v2, · · · , vm}

of eigenvectors of Γ, with corresponding eigenvalues

d = λ1, λ2, · · · , λm

ordered by descending absolute value.
Let λmin be the minimum eigenvalue of Γ. Then |λ2| ≥ −λmin. Let I be an independent

set of Γ. Then, by (Theorem 11 in [9]),

|I| ≤ −λmin

d− λmin
|V| ≤ |λ2|

d + |λ2|
|V|, (1)

and the first equality implies that 1I − |I|
|V|1V is an eigenvector of Γ with corresponding

eigenvalue λmin.
Take subsets X, Y ⊆ V such that there are no edges of Γ between X and Y. Write

1X =
m

∑
i=1

aivi, 1Y =
m

∑
i=1

bivi.

It follows that,

a1 =< 1X , v1 >=
|X|
|V| , b1 =< 1Y, v1 >=

|Y|
|V| .
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Let A be the adjacency matrix of Γ. Note that 1T
X A1Y is equal to the number of edges of Γ

between M and N. Then,

0 = 1T
X A1Y = |V|

m

∑
i=1

λiaibi = |V|(da1b1 +
m

∑
i=2

λiaibi). (2)

Note that
m

∑
i=2

λiaibi =<
m

∑
i=2

λiaivi,
m

∑
i=2

bivi > .

By the Cauchy–Schwarz inequality,

|
m

∑
i=2

λiaibi| ≤ ||
m

∑
i=2

λiaivi||2 · ||
m

∑
i=2

bivi||2 =

√
m

∑
i=2

λ2
i a2

i

√
m

∑
i=2

b2
i . (3)

Equality holds if and only if
m
∑

i=2
λiaivi and

m
∑

i=2
bivi are parallel vectors, that is, there is a

non-zero real number c such that bi = cλiai for 2 ≤ i ≤ m.
By (2) and (3), we have

a1b1 = −1
d

m

∑
i=2

λiaibi =
1
d
|

m

∑
i=2

λiaibi| ≤
1
d

√
m

∑
i=2

λ2
i a2

i

√
m

∑
i=2

b2
i . (4)

Similarly,

a1b1 ≤
1
d

√
m

∑
i=2

a2
i

√
m

∑
i=2

λ2
i b2

i . (5)

Equality holds if and only if there is a non-zero real number c′ such that ai = c′λibi for
2 ≤ i ≤ m. By (4) or (5), we have

a1b1 ≤ |λ2|
d

√
m
∑

i=2
a2

i

√
m
∑

i=2
b2

i

= |λ2|
d

√
< 1X , 1X > −a2

1

√
< 1Y, 1Y > −b2

1

= |λ2|
d

√
a1 − a2

1

√
b1 − b2

1.

It follows that √
a1b1

(1− a1)(1− b1)
≤ |λ2|

d
. (6)

Note that

(1− a1)(1− b1) = 1− (a1 + b1) + a1b1 ≤ 1− 2
√

a1b1 + a1b1 = (1−
√

a1b1)
2.

It follows from (6) that √
a1b1 ≤

|λ2|
d + |λ2|

.

Thus, we obtain the next result, which is a slight improvement of the cross-independent
version of Hoffman’s Theorem given in [9].

Theorem 11. Using the above notation, we have

|X||Y| ≤ (
|λ2|

d + |λ2|
|V|)2.

Equality implies that |X| = |Y| and, for i ≥ 2,
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(i) ai = 0 if and only if bi = 0;
(ii) if ai 6= 0 then λi = ±|λ2|;
(iii) there are non-zero real numbers c and c′ such that cc′ = 1

λ2
2
, ai = cλibi and bi = c′λiai;

(iv) if further X = Y then |λ2| = −λmin.

Corollary 1. Continue the above notation. Suppose that λi = λ2 provided i ≥ 2 and |λi| = |λ2|.
If |X||Y| = ( |λ2|

d+|λ2|
|V|)2. Then either

(i) X = Y, in this case, λ2 = λmin and X is a maximum independent set of Γ; or
(ii) V = X ∪Y and Γ are not connected. If |X| = 1

2 |V| and 1X 6= 1Y, then 1X + 1Y = 1.

Proof. First of all, we prove the first part. Assume that |X||Y| = ( |λ2|
d+|λ2|

|V|)2. Recall that

1X =
m

∑
i=1

aivi = a11V + ∑
i≥2,|λi |=|λ2|

aivi = a11V + ∑
i≥2,λi=λ2

aivi.

Then, by Theorem 11 we have

1X = a11V + ∑
i≥2,λi=λ2

cλibivi = a11V − cλ2b11V + cλ21Y.

Thus, 1X − cλ21Y = (a1 − cλ2a1)1V as a1 = b1. It follows that either X = Y or V = X ∪Y.
The former case yields item (i) of this corollary.

Now assume that V = X ∪Y. Then |X| = |Y| = |V|
2 . It follows that |λ2|

d+|λ2|
= 1

2 , and so
d = |λ2|. Suppose that Γ is connected. Then, the only possibility is that λ2 = −d. Thus,
Γ is a connected bipartite graph, and |λi| < d for i > 2. Let U and W be the bipartition
subsets of Γ. We may choose v2 = 1U − 1W . Then 1X = a11V + a2(1U − 1W). It follows
that X = U or W (note that Γ is not empty, and so X 6= V and Y 6= V). Similarly, Y = U or
W. Since V = X ∪Y, we have {X, Y} = {U, W}. Thus there are ages of Γ between X and
Y, a contradiction. This completes the proof.

This theorem characterizes a cross-independent set by establishing a connection be-
tween a certain kind of cross-independent set and an independent set of a regular graph.

4.2. Proofs of the Main Results

By Theorem 11, we easily obtain the bounds of the cross-intersecting family. But we
cannot describe all the families that meet these bounds. In this section, we present a
connection between cross-intersecting family and intersecting family by optimizing the
previous cross-independent version of Hoffman’s theorem.

To describe the construction of this connection, we present some claims. Notice that
the bound in Theorem 11 is obtained if and only if all the equalities in Theorem 11 are met
at the same time.

Claim 1: If |X||Y| = ( |λ2|
λ1+|λ2|

|V|)2, then 1 − a1 − b1 + a1b1 = 1 − 2
√

a1b1 + a1b1,
and |X| = |Y|.

Proof. Obviously, 0 < a1 < 1, 0 < b1 < 1 and a1 + b1 − 2
√

a1b1 = 0. Hence, |X| = |Y|.

Claim 2: If |X||Y| = ( |λ2|
λ1+|λ2|

|V|)2, then
n
∑

i=2
|aibi| =

√
n
∑

i=2
a2

i

√
n
∑

i=2
b2

i . We have ai = 0 if

and only if bi = 0, and |ai |
|bi |

=
|aj |
|bj |

for all i 6= j where ai 6= 0 and aj 6= 0.
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Proof. It is easy to see that

(
n

∑
i=2

a2
i )(

n

∑
i=2

b2
i )− (

n

∑
i=2
|ai||bi|)2 =

1
2

n

∑
i=2

n

∑
j=2

(|aibj| − |ajbi|)2.

If
n
∑

i=2
|aibi| =

√
n
∑

i=2
a2

i

√
n
∑

i=2
b2

i . Then |aibj| = |biaj| for 2 ≤ i, j ≤ n.

For ai = 0, we have |aibj| = |ajbi| = 0, for all 2 ≤ j ≤ n. Then we will prove bi = 0.
Suppose for a contradiction that bi 6= 0, then a2 = a3 = · · · = an = 0. We have 1X = a1v1,
and so 1X = v1. Therefore 1Y = v1; it is impossible. For bi = 0, we have ai = 0 by the same

way. It is obvious that |ai |
|bi |

=
|aj |
|bj |

for all i 6= j where ai 6= 0 and aj 6= 0.

Claim 3: If |X||Y| = ( |λ2|
λ1+|λ2|

|V|)2, then
n
∑

i=2
|aibiλi| = |λ2|

n
∑

i=2
|aibi|, and if |λi| 6= |λ2|

then ai = bi = 0.

Proof. We have
n
∑

i=2
|aibiλi| = |λ2|

n
∑

i=2
|aibi|, and hence

n
∑

i=2
(|λ2| − |λi|)|aibi| = 0. Thus

(|λ2| − |λi|)|aibi| = 0 for 2 ≤ i ≤ n. Suppose |λi| 6= |λ2|, we have ai = bi = 0.
By Claim 3, if |X||Y| = ( |λ2|

λ1+|λ2|
|V|)2, then 1X , 1Y ∈ Span({v1} ∪ {vi : |λi| = |λ2|}).

Claim 4: If |X||Y| = ( |λ2|
λ1+|λ2|

|V|)2, then |
n
∑

i=2
aibiλi| =

n
∑

i=2
|aibiλi|. Hence aibiλi are all

non-positive. Then for positive eigenvalue λi, aibi ≤ 0, but for negative eigenvalue λj,
ajbj ≥ 0.

Finally, we comment on a feature of a certain kind of cross-independent set of a
regular graph.

Proof of Theorem 9. Let G = PGL(2, q) act on the projective line Ω := PG(1, q), and let
H be a point-stabilizer in G. By [10,24], the eigenvalues of Cay(G, D(G)) are listed in
Tables 1 and 2.

Table 1. Eigenvalues of Cay(G, D(G)) for even q.

Eigenvalue q2(q−1)
2

−q(q−1)
2

q 0

Dimension 1 q2 q(q−1)2

2
(q+1)2(q−2)

2

Table 2. Eigenvalues of Cay(G, D(G)) for odd q.

Eigenvalue q2(q−1)
2

−q(q−1)
2

q−1
2 q 0

Dimension 1 q2 + 1 q2 (q−1)3

2
(q+1)2(q−3)

2

Assume that X, Y ⊆ PGL(2, q) are cross-intersecting. If q > 2 then |X||Y| ≤ |H|2 =
q2(q− 1)2. Equality holds for q ≥ 4 if and only if X = Y is a coset of some conjugation of
H in G.

By the derangement graph of the permutation groups PGL(2, q) and PSL(2, q), we
now establish some results about the cross-intersecting family of PGL(2, q) and PSL(2, q)
based on Corollary 1.

Lemma 1. If X, Y ⊂ PGL(2, q) are cross-intersecting, then |X||Y| ≤ q2(q− 1)2 when q 6= 2.
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Proof. Assume that q 6= 2. For the eigenvalues of the derangement graph of ΓPGL(2,q),
we have

|X||Y| ≤ (
|λ2|

λ1 + |λ2|
)2|V|2 = (

q(q−1)
2

q2(q−1)
2 + q(q−1)

2

)2q2(q2 − 1)2 = q2(q− 1)2.

Theorem 12. If X and Y are cross-intersecting in PGL(2, q) where q 6= 2, then |X||Y| ≤
q2(q− 1)2. For q ≥ 4, the bound is attained if and only if X = Y is a coset of the stabilizer of a
point of Pq.

Proof. Assume q 6= 2 and q 6= 3. Notice that |X| = |Y| = q(q− 1) 6= 1
2 |PGL(2, q)|, and all

λ′is are negative. By Corollary 1, we have 1X = 1Y.
Observe that X and Y are cross-intersecting, indeed X = Y is the biggest intersecting

family in PGL(2, q). We complete the proof.

And this finished the proof of Theorem 9.

Proof of Theorem 10. Also, we firstly give some results needed for the proof.

Lemma 2. If X, Y ⊂ PSL(2, q) are cross-intersecting, then |X||Y| ≤ q2(q− 1)2 where q is even

and q ≥ 4, and |X||Y| ≤ q2(q−1)2

4 where q is odd and q ≥ 7.

Proof. Assume that q 6= 2, q 6= 3 and q 6= 5. For the eigenvalues of the derangement graph
of ΓPSL(2,q), we have

|X||Y| ≤ ( |λ2|
λ1+|λ2|

)2|V|2 = (
q(q−1)

2
q2(q−1)

2 +
q(q−1)

2

)2q2(q2 − 1)2 = q2(q− 1)2, where q is even

and q ≥ 4; and |X||Y| ≤ ( |λ2|
λ1+|λ2|

)2|V|2 = (
(q−1)2

4
q(q−1)2

4 +
(q−1)2

4

)2 · q2(q2−1)2

4 = q2(q−1)2

4 , where q is

odd and q ≥ 7.

Theorem 13. If X, Y ⊂ PSL(2, q) are cross-intersecting where q is even and q ≥ 4, then |X||Y| ≤
q2(q− 1)2 with equality only if X = Y is a coset of the stabilizer of one point.

Proof. Assume that q is even, and q 6= 2. Notice that |X| = |Y| = q(q− 1) 6= 1
2 |PSL(2, q)|.

If q 6= 2, then all λ′is are negative, and hence 1X = 1Y.
Observe that X and Y are cross-intersecting, indeed X = Y is the biggest intersecting

family in PSL(2, q). We complete the proof.

Theorem 14. If X, Y ⊂ PSL(2, q) are cross-intersecting where q is odd and q ≥ 7, then |X||Y| ≤
q2(q−1)2

4 . And if the equality is met, X = Y is the biggest intersecting family in PSL(2, q).

Proof. Assume that q is odd, and q ≥ 7. Notice that |X| = |Y| = q(q−1)
2 6= 1

2 |PSL(2, q)|. If
q ≥ 7, then all λ′is are negative, and therefore 1X = 1Y.

Observe that X and Y are cross-intersecting, indeed X = Y is the biggest intersecting
family in PSL(2, q). We complete this proof.

From the above analysis, we can conclude the result of Theorem 10.

Finally, we deal with several some special cases of PGL(2, q) and PSL(2, q), which are
not taken into account above. Recall that the Cayley graph is a vertex-transitive graph, so
we only need to consider the cross-intersecting subsets which contain an identity element.
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(1) Theorems 8 and 9 do not hold for S3 (noting that PGL(2, 2) ∼= S3). Let G = S3.
Then λ1 = λ2 = 2 6= λmin = −1. Thus (2) of Corollary 1 holds, and {X, Y} =
{{(1), (123), (132)}, {(23), (12), (13)}}. In fact, in this case, D(G) = {(1 2 3), (1 3 2)}
and Γ = Cay(G, D(G)) is the vertex-disjoint union of two 3-cycles.

(2) Let G = S4. Then, D(G) consists of the six odd permutations of order 4 and the three

even permutations of order 2. In this case, (|G| |λ2|
d(G)+|λ2|

)2 = 36 = |H|2, and ±λ2

are eigenvalues. If |X||Y| = 36, then X = Y is a coset of some conjugation of H in G.
(Verified by GAP.)

(3) Theorem 10 does not hold for PSL(2, 3). Let G = PSL(2, 3). Then λ1 = λ2 = 3 6=
λmin = −1. In this case, Γ = Cay(G, D(G)) is the vertex-disjoint union of three copies
of the complete graph K4, which yields that |X||Y| ≤ 18 < 36 = (|G| |λ2|

d(G)+|λ2|
)2.

(4) Let G = PSL(2, 5). Then λ2 = 5 6= λmin = −4, and λ1 is simple, and hence Γ =
Cay(G, D(G)) is connected. Thus, by Theorem 11 and Corollary 1, |X||Y| < 144 =

(|G| |λ2|
d(G)+|λ2|

)2. This finishes the proof of the main theorems.

5. Conclusions

In this article, we have successfully established a connection between intersecting
families and cross-intersecting families of certain kinds of permutation subgroups. This
is a great help when considering cross-intersecting families. And this also gives us a new
direction for considering the properties of some permutation groups. In the future, we
intend to extend our exploration to more permutation groups, such as the unitary group,
orthogonal and so on. In the process of solving the problems, we used properties of Cayley
graphs on a permutation subgroup with respect to the derangement. The symmetry of
these graphs will also aid in proving the upper bounds of the subgroups, and the use of
these inequalities will be helpful for understanding the symmetry of corresponding graph
classes. The research will promote the development of the related fields.
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22. Pyber, L. A new generalization of the Erdős-Ko-Rado theorem. J. Comb. Theory Ser. A 1986, 43, 85–90. [CrossRef]
23. Leader, I. Intersecting families of permutations. In Proceedings of the 20th British Combinatorial Conference, Durham, UK, 10–15

July 2005
24. The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.4.12. 2008 . Available online: http://www.gap-system.

org (accessed on 10 January 2023 ).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jcta.2010.09.005
http://dx.doi.org/10.1016/j.jcta.2009.07.003
http://dx.doi.org/10.37236/1000
http://dx.doi.org/10.1016/0097-3165(89)90065-4
http://dx.doi.org/10.1016/0097-3165(86)90025-7
http://www.gap-system.org
http://www.gap-system.org

	Introduction
	Preliminary Results
	Main Results and Discussions
	 Comparison and Proof
	The Cross-Independent Set of a d-Regular Graph
	Proofs of the Main Results

	Conclusions
	References

