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Abstract: The aim of this study is to obtain the Bayes estimators and the maximum likelihood
estimators (MLEs) for the unknown parameters of the Rayleigh-Weibull (RW) distribution based on
progressive type-II censored samples. The approximate Bayes estimators are calculated using the
idea of Lindley, Tierney-Kadane approximations, and also the Markov Chain Monte Carlo (MCMC)
method under the squared-error loss function when the Bayes estimators are not handed in explicit
forms. In this study, the approximate Bayes estimates are compared with the maximum likelihood
estimates in the aspect of the estimated risks (ERs) using Monte Carlo simulation. The asymptotic
confidence intervals for the unknown parameters are obtained using the MLEs of parameters. In
addition, the coverage probabilities the parametric bootstrap estimates are computed. Real lifetime
datasets related to bladder cancer, head and neck cancer, and leukemia are used to illustrate the
empirical results belonging to the approximate Bayes estimates, the maximum likelihood estimates,
and the parametric bootstrap intervals.
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1. Introduction

Probability distributions are often used to model real data, especially in the fields of
medicine, engineering, biological studies, etc. In general, medical data such as lifetime data
have a (right) skewed distribution. Therefore, statistical analysis depends on the assumed
probability distribution of the skewed medical data. The Rayleigh distribution, proposed by
Lord Rayleigh [1] in 1880, which is a special form of the Weibull distribution, is one of the
most popular distributions in the analysis of skewed data. The Rayleigh distribution plays
an important role in real life applications. It has wide applications in life and reliability
analysis, especially in modeling real lifetime data in clinical research. Extensions and gen-
eralizations of the known probability distributions have been suggested in order to obtain
the best model that fits the data. Likewise, Rayleigh probability distribution extensions
and generalizations have been derived because of its great importance in modeling life
phenomena. In the literature, statistical inferences have been made for different forms of
the Rayleigh distribution, both in the case of complete and censored samples. Additionally,
goodness-of-fit tests have been developed for the Rayleigh distribution (Sindhua et al. [2],
Dey and Dey [3], EL-Sagheer et al. [4], Dey et al. [5], Fan and Gui [6], Shen et al. [7],
Zamanzade and Mahdizadeh [8]).

The Rayleigh—Weibull distribution, introduced by Smadi and Alrefaei [9] as a new
probability distribution model, provides flexibility enabling the Rayleigh distribution to
obtain the best model fit with parameters («, ) denoted by RW (e, 3), where « > 0 and
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B > 0. The probability density function (pdf), cumulative distribution function (cdf),
survival function, and hazard function of the random variable X has a Rayleigh-Weibull
distribution with parameters («, ) and can be given as follows:

f(x;a, B) = 2apPx1 exp(—ﬁZxZ“), x>0,a>0 >0 1)
F(x;a,B) =1— exp(—ﬁ2x2“> 2)

F(x;a,B) = exp(—ﬁ2x2“) 3)

h(x;a, B) = 2ap?x* 1 )

In this study, Bayesian estimators for parameters of the Rayleigh-Weibull distribution
proposed to give flexibility to the Rayleigh distribution are investigated in detail. Since the
prior distribution of the parameters is used in the Bayesian estimation method, it is more
convenient to use Bayesian estimators of the parameters of the (right) skewed distributions
in the decision-making process in medical studies. In many studies, Bayesian estimation
has been investigated based on complete and censored samples for different distributions,
including by Kundu and Gupta [10], Almogy et al. [11], Xie and Gui [12], Cai and Gui [13],
Jiang and Gui [14].

In medical studies, since researchers can not observe the entire lifetime of all subjects
in a life test experiment due to the time and cost constraints, censored data are needed.
Since the complete data are not always available, there are censoring schemes that reduce
time and cost. In life test experiments, one of the most frequently used censoring schemes is
the progressive Type-II right (PTR-II) censoring scheme. Progressive censoring is useful in
both industrial life testing applications and clinical settings. It allows removal of surviving
experimental units before testing is terminated [3]. In the PTR-II censoring scheme, the
items are removed from the experiment and then a censored sample is created, thus saving
time and cost. This type of censored scheme is explained as follows. Suppose that n
identical items are put to the test and m failures are to be observed. At the time of the first
failure, R items from the rest of the surviving n — Ry — 1 items are randomly selected,
and then removed. Likewise, at the time of the second failure, R; items of the remaining
n — Ry — 2 items are randomly selected, and then removed, and so the process continues.
Lastly, at the time of the mt" failure, all the surviving items are censored. The PTR-II
censoring scheme is visually demonstrated with the R = (Ry, Ry, ..., Ryy) scheme. In this

lifetime process, X® = (Xﬁ}nm,ngn:n, . ..,Xrlfl%:n) with ijm < Xﬁm << XBm s
called the PTR-II censored sample with R = (Ry, Ry, ..., Ry;). In PTR-II censoring, using
R = (0,0,...,n —m), Type-II right censoring is obtained. The joint probability density

function (pdf) of this censored sample is given by ([15,16])

m
fX{{‘m'n’Xgm'n"“’XrIr{l:m:n (xl’xz" * "xm) = CHf(xl)[l - F(xl)]Rl 4 —o < xl < x2 < e < xm < o0 (5)
sz X2im: ]
wherec=n(n—R; —1)x---x(n—Ry —Ry—---—Ry_1 —m+1).

There are a lot of studies that refer to the parameter estimation of different distributions
under PTR-II censored samples (Ali Mousa [17], Balakrishnan [18], Ali Mousa and Al-
Sagheer [19], Wu et al. [20], Panahi and Asadi [21], Aljuaid [22], Ahmed [23], Singh et al. [24],
Liao ang Gui [25], Abbas et al. [26], Sultan et al. [27], Alshenawy [28], Mukhtar [29], Wu
and Gui [30], Almongy et al. [31], Qiao and Gui [32], Wu [33], El-Morshedy et al. [34],
El-Sherpieny et al. [35], Liang et al. [36], Alshenawy et al. [37], Almetwally et al. [38],
Muhammed and Almetwally [39], Ciftci et al. [40]). Based on the above studies, the main
purpose of this study is to obtain the approximate Bayes estimators under the square error
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loss functions and then to check them with maximum likelihood estimators (MLEs) in the
aspect of the estimated risk (ER).

The sections of this study are organized as follows: In the first section, an introduction
to the RW distribution and PTR-II censored sample is given. In Section 2, the MLEs,
asymptotic and bootstrap confidence intervals for the unknown parameters are obtained.
In Section 3, the approximate Bayes estimators under the squared error loss function
using Lindley’s approximations, Tierney—-Kadane approximations, and the Markov Chain
Monte Carlo (MCMC) method for the unknown parameters are acquired. In Section 4,
the approximate Bayes estimations are compared with the maximum likelihood (ML)
estimations in the aspect of the ER, and then the coverage probabilities of the asymptotic
confidence intervals and the bootstrap confidence intervals are observed by using Monte
Carlo simulation. In Section 5, the real lifetime datasets of bladder cancer, neck cancer, and
leukemia are given to illustrate the empirical results of the approximate Bayes estimates,
the maximum likelihood estimates, and the parametric bootstrap intervals. In Section 6,
conclusions are given.

2. Maximum Likelihood Estimation

In terms of possessing the asymptotic normality property under mild regularity
conditions, the maximum likelihood (ML) estimation is highly favored within the field of
statistical inference. Recently, Wang et al. [41] studied the ML methodology for inverse

Gaussian distribution based on maximum rank set sampling with unequal samples. Let
xR = (Xﬁ}n:n, Xifn:n,. .., X,I,i?;n:n) , which denotes a PTR-II censored sample taken from a

RW (a, B) distribution with the pdf and cdf in Equations (1) and (2). Then, the likelihood
function ¢(«, B) can be written as follows:

m .
Ua,p) = cll 20p2x2% Lexp (222, ) [exp (— 22, )]

wpeimon(f [P o

i=1 i=1
The log-likelihood function, L(«, ) = In¢(«, B) can be given as follows:
m m
L(w, B) & mIn(a) +2mIn(B) + (26 — 1)) In(Xjipn) — ,322 (14 Ry)x2 . (7)
i=1 i=1

Taking the partial derivatives of L(«, ) according to the « and  parameters, and then
equalizing them to zero, the following equations can be obtained:

oL m m m
1= 5= ;—FZZln(xi:mn - E (14 R)x2 0 (Xigpn) = O ®)
i=1 =
oL 2m m
:1

The nonlinear equations given by Equations (8) and (9) can be solved by using the
Newton-Raphson (NR) iterative method in MATLAB 2016.

2.1. Asymptotic Confidence Interval (ACI)
Let ® = («, B) be the Fisher information matrix of ® parameter vector given by

?InL  9%nL
_ a2 oudp
I(G)) =-E RInL  PnL

9wp  op?
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Since 1(©) is difficult to compute, the observed Fisher information I (@) is used as
an approximate to expect Fisher information matrix. Let ©® = (&, 8) be the MLEs of the
parameters © = («, B). The observed Fisher information matrix is given by

_PInL L
o2 ondp
O=

1(9) = | _94nL L
onop ap?

(C]

Therefore, the observed variance-covariance matrix for the MLEs (&, ,B) is the inverse
of the observed information matrix given by [42]

1,ay | Var(a)  Cov(a,B)
'(®) = |:COU((X,‘B) Var(B) ]

Under some regularity conditions, ® is approximately bivariately normally distributed

with mean © and variance-covariance matrix I(®) as [® ~ N(0,171(®))] [43]. Thus,

the 100 (1—0)% confidence interval for @ and  can be constructed as (54 Fzg X Vur(ﬁc))

and (,B Fzs X Var(B)), where z;5 denotes the upper § — th quantile of the standard

normal distribution.

2.2. Bootstrap Confidence Interval

Confidence intervals for the unknown © = («, ) parameters are obtained by using the
percentile bootstrap confidence interval (P-BCI) method proposed by Efron [44]. The steps
for estimating the bootstrap parametric confidence intervals of the parameters ® = («, )
by using the P-BCI method are given as follows [45].

1. Generate the PTR-II censored samples X} = (XR1 xR

Lmm’ “*2min/
the RW distribution with the ® = (a, ) parameters.
2. Let ML estimates of the ® = («, 8) parameters be ® = (&pLg, BmLE)-

3. Generate the bootstrap samples xR = (XRl xR ..,X,ﬁ’:’;n:n) with the

Limn’ “*2:mn’ *

., XVIE’:’;n:n) taken from

Ry, Ry, ..., Ry scheme, using the ® = (&g, Bmre). Find the bootstrap estimate of the
© = (a, ) parameters as ©" = (&%, Biirp)-

4. Repeat Step 3 NBoot times.

5. Let F*(x) = P(@)* < x) as the cumulative distribution function of ®". Define

®" = F*~1(x) for a given x. The approximate bootstrap 100 (1—7)% confidence interval
.. Ak A K
for © is given as (G%' ®1_%>.

3. Bayes Estimation

For Bayesian estimation, it is assumed that the « and B parameters of the RW («, f)
distribution have the following independent prior Gamma(ay, by ), and Gamma(ay, by) den-
sities, respectively:
a1~ exp(—bya)by!

m(a) = T (ay) a1, b, 0 >0 (10)
_ B T exp(—bp)by
ﬂz(ﬁ) - r(ﬂ2) az, bZIﬁ >0 (11)

In this case, the joint prior distribution of the « and p parameters can be written
as follows:

! -1 bblh IBazfl b;z
T'(a1)T (az)

(a, B) = exp(—bia) exp(—bB) a;,bj,a,p>0,i=1,2 (12)
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From Equation (12), the log of the prior density function is given as follows:
o(a, ) = (a1 —D)Ina+ (a — 1) In B — by — by S+ (13)
a ln(b ) +as ln(bz) - ln[F(al)] - In[l“(az)]

By using the L(«, B), and 7t(«, B), the joint posterior density function of the « and j
parameters can be written as follows:

e ep( £ -t ) bl o (6]
P(&,p) = o o ;
T ke £ g, ) 1, (et )] dads
00 i=1

(14)

where k(a, ) = a1 -1g2mta 1 exp(—pia) exp(—byf).
Thus, the Bayes estimate of any function of « and B, say u(«, §), under the squared
error loss function can be written as follows:

J T, elto) oo dudp
00

p(a, ) = Elu(a, p)] = — == (15)
[ [ elblwp)+e(@wp)ldadp
00

The Bayes estimate of any function of « and § given in Equation (15), which consists of
the ratio of two integrals, can not be obtained in closed form, and then the Bayes estimators
of these parameters using the Lindley’s approximation, and Tierney—Kadane approximation
under the squared error loss (quadratic loss) function are computed.

3.1. Lindley’s Approximation

Lindley’s approximation, suggested by Lindley [46], is an approximate Bayes method
used to approximate the ratio of two integrals, such as those given in Equation (15), that
cannot be solved analytically. This method uses third derivatives of the log-likelihood
function, and has an error of order O(n~!). Lindley’s approximation has been used by
many authors, such as Ahmad and Jaheen [47], Kundu and Gupta [48], and Preda et al. [49],
to compute the approximate Bayes estimators of different lifetime distributions based on
the censored samples. For the two-parameter case, where 6; and 6, notations are used
for the o and B parameters, the formula with the Lindley’s approximation can be written
as follows:

uBLindley(élréZ) = E[u(61,6)/X] =

N =
MN

l
—

~ uMLE( )+

2 1 2 2 2 2
Y (wij+2uipp)oij+ 53 ) Y Y Lijkoijoath
i=1j=1

i=1j=1 —1k=11=1

A A 1 1
= upmre(01,02) + 5 [a11 + a12 + ax1 + axn] + E[(”l‘fll + up012)d 4 (U101 + up02)e] (16)

5
where 0; and 6, are the MLE of the 8; and 6, parameters, respectively, and let
ay; = (u1; +2u10;)015; Az = (o + 2uzp;)on; 1=1,2

d = L111011 + L121012 + L211021 + L1022

e = L112011 + L122012 + Lo12021 + L2202
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and
ap(91,92) . au(@l, 92) . azu(el, 92)
= —— i=12u,=—=,i=12u;=—=,1,j=1,2
Pi 36, l 90, i o000, "
aZL(Gl,Qz) , 83L(91,92) ..
L= —2%% =12 L = ———1=~ =1,2
1y aelae] 7 l/] ’ l]k aelag]aek 7 l/]/k 7
-1 ..
[—Lj] = [oy], i,j =12
0j; is the (i, j)-th element of the matrix [oy;].
From Equation (13), we get
i — 1 . _ ap— 1 .
1= " by, p2 = B by
and then, the following values of Ll-]- fori,j=1, 2 and Lijk for i, j, k =1, 2 are handed
as follows: .

m
Lllz_ﬁ_ﬁ 24(1+R> zmnl (xi:m:n)z
i=1

i=1

m
L22:— Z 1—|-R lmn
i=1
2m 3
Lulf*—ﬁ 28 1+ Rp)x2  In (X

=1

Li2 = L2 = Liz1 = Loy = —2l324 (14 Ry) a2, I (i)
i=1

Loy = Lizp = Lyp1 = Lo1p = —222 (1+ Ri) X250 0 (X )
i=1
4m
Lo = B

Finally, the approximate Bayes estimators for the a and  parameter of the RW(«, 3)
distribution based on progressive type-II censored samples under the squared error loss
function are obtained, respectively, as follows:

apr = &pmrE + ( 1 b1>(711 + ( - bz) 012 + = [o11d + op1€] 17)
&MLE BMmLE 2

N N ap —1 a, —1 1

PaL = PmLE + < L bl) 021 + ( 2 bz) 022 + ~[012d + 02e] (18)
AMLE BMLE 2

3.2. Tierney—Kadane Approximation

The Tierney—Kadane approximation, proposed by Tierney and Kadane [50], is a
method alternative to Lindley’s approximation. This method uses second derivatives
of a function composed of the log-likelihood function and the log-prior function, and
has an error of order O(n~2). Therefore, the Tierney—Kadane approximation is more ad-
vantageous than Lindley’s approximation. The Tierney—Kadane approximation has been
used by many authors, such as Gencer and Gencer [51], Kim and Han [52], Elshahhat and
Rastogi [53], Singh et al. [54], to compute the approximate Bayes estimators of different
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lifetime distributions based on the censored samples. This approximation can be defined
as follows:

(e B) = [ (&, ) +p(a, B)]

7 (0 B) = - Infu(a, B)] + 1 (a, )

where L(a, B) denotes the log-likelihood function, and p(«, B) denotes the log of the joint
prior density. Thus, by means of the Tierney-Kadane approximation, Equation (15) can be
written as follows:

A el ”‘,B)
nri(a,p) = Elu(a b)) = L)
1172 ) .
~ [$F] Tewlnlr @) - n(@p))
where (&%, 3*) and (&, B) maximize *(a, B) and 7(«, B), respectively. £* and £ are minus

the inverse Hessians of 1* («, 8) and 7(w, B) at (2%, *) and (&, B), respectively.
In this case, 17(«, B), n*(«, B), and X are given as follows:

n(,B) = L{min(ex) + 2min(B) + (20— 1) 32 In(Xien) — B2 L (14 R)22%, +

i=1 i=1
(a1 — 1)In(x) + (ag — 1)In(B) — byoc — bpp + ayln(aqy)+

axln(by) — In[['(a1)] — In['(az)]]

1 (o, B) = L{infu(e, B)] + min(e) + 2min(B) + (20 — 1) ¥ (i) —

i=1

B2, (1 Ry)x2e, + (a1 — D)ln(w) + (a2 — 1)in() — by — byt
i=1
a1ln(by) + axln(by) — In[I'(a1)] — In[I'(az)]]

and )

_82%(0;5) _Bzg(géﬁ) -

_ R I
2= 2ep Py
9B 3p?

respectively.

Through the Tierney—Kadane approximation, the approximate Bayes estimators of
the & and B parameters of the RW(«, 3) distribution based on the PTR-II censored samples
under the squared error loss function are obtained as follows:

In(e)

N (o, B) = +n(e, B)
and )
_32775(24!3) _9222(80;//5) -
* o 4
Ta= | 2pip)  Puiap)
ondp op?
. detX} 172 nw A A
leTK_{detZ] exp{n [z (&, p*) — (& B)] } (19)
« In
i (a8) = 2B e, )
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and )
Prsp) P
so _ | T o T oudp
BT i) )
T B op?
. detZE 1/2 e A o
PBTK = | 4o exp{n[%(“ B) — ’7(0‘/5)” (20)

3.3. Markov Chain Monte Carlo (MCMC)

The Markov Chain Monte Carlo (MCMC) method is one of the best and most useful
method for Bayesian estimation and has been used by many authors such as Aljuaid [21],
Singh et al. [55], Lv et al. [56], and Zhou et al. [57]. The MCMC method provides sampling
from the posterior distribution. The Metropolis—Hastings (MH) algorithm introduced
by Metropolis et al. [58] is one of the most popular algorithms for the MCMC method.
The random-walk Metropolis—Hastings algorithm is a type of the Metropolis-Hastings
algorithm. For more details about the random-walk Metropolis—-Hastings algorithm steps,
see Junnumtuam et al. [59]. In this study, the random-walk Metropolis algorithm to obtain
Bayes estimates of & and 8 parameters was applied using the rwmetrop function in R
programme LearnBayes library (Albert and Albert [60]).

4. Simulation Study

In this section, Monte Carlo simulation studies for different sample sizes (n and
m) and different censoring schemes are done. In the aspect of the estimated risks, the
performances of the approximate Bayes estimates computed with Lindley and Tierney—
Kadane approximation and MCMC methods under the squared error loss function for the
« and B parameters of RW («, 3) based on PTR-II censored sample are compared with those
of the ML. Informative priors for aj= 1, byj= 1, ay= 3, b= 3 are used while computing the
approximate Bayes estimates. The ER for the estimate of the a parameter can be computed
with the &pg = E(&; — oc)z, i =1,2,...,10,000, where & is the ML or the approximate
Bayes estimation, and « is generated from the Gamma distribution with parameters (a1, by).
In addition, the ER for the estimate of the g parameter is computed in the same way. All
the computations are based on 10.000 replications in MATLAB.

In this simulation study, in order to produce the PTR-II censored samples from the
RW(«, ) distribution, we have benefited from the algorithm presented in Balakrishnan
and Sandhu [61]. The algorithm for the RW («, ) distribution is given as follows:

1.  LetWj, Wy, ..., Wy, be m-sized samples generated from the Uniform(0, 1) distribution.
-1

(i+ a % 1R]-)
2. Vi=W, Jmmer is defined by replacing i =1,2,...,m.
3. Ufm:n =1—-VuVy_1---Vy_iy1 is obtained by replacingi = 1,2,...,m.
Thus UR < UR =~ < -+ < UR . are progressively Type-II censored samples

with the censoring scheme R = (Ry, Ry, ..., Ry;) taken from the Uniform(0, 1) distribution.

(25)
- W} i , 1=1,2,...,mis the progressively Type-II censored
i'" order statistic with the censoring scheme R = (Ry, R, ..., Ry,) taken from the RW («, )
distribution. The estimated risks of the approximate Bayes estimates computed with
Lindley and Tierney—Kadane approximations and MCMC methods under the squared-error
loss function and ML estimates for the « and B parameters of RW(«, ) based on progressive
type-II censored sample are tabulated in Table 1. « and  parameters are generated from
Gamma distribution parameters (a1, b1) and (a, bp) in each replicate, respectively.

rmn

Finally, xR = {
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Table 1. ER values of the ML and the Approximate Bayes Estimates of the « and 8 parameters for
a;= 1, b1: 1, Ay = 3, b2: 3.

Censoring

ML LINDLEY TIERNEY-KADANE MCMC
n m Scheme

R &ER Ber kgr Ber &ER Ber &ER Ber
10 5 A 0.0256 0.0290 0.0243 0.0258 0.0220 0.0253 0.0399 0.0221
B 0.0338 0.0256 0.0311 0.0234 0.0292 0.0229 0.0221 0.0263
C 0.0267 0.0262 0.0244 0.0229 0.0218 0.0227 0.0258 0.0234
10 D 0.0154 0.0207 0.0142 0.0183 0.0133 0.0182 0.0154 0.0181
15 5 A 0.0196 0.0260 0.0179 0.0228 0.0169 0.0227 0.0426 0.0238
B 0.0375 0.0241 0.0354 0.0224 0.0337 0.0222 0.0199 0.0246
C 0.0188 0.0204 0.0179 0.0190 0.0165 0.0188 0.0220 0.0216
10 A 0.0142 0.0177 0.0126 0.0163 0.0122 0.0162 0.0195 0.0147
B 0.0208 0.0149 0.0189 0.0136 0.0184 0.0135 0.0136 0.0158
C 0.0132 0.0145 0.0114 0.0134 0.0112 0.0133 0.0132 0.0132
15 D 0.0111 0.0139 0.0101 0.0129 0.0100 0.0129 0.0103 0.0126
20 10 A 0.0211 0.0135 0.0196 0.0125 0.0190 0.0125 0.0209 0.0120
B 0.0124 0.0160 0.0113 0.0148 0.0111 0.0147 0.0115 0.0154
C 0.0139 0.0133 0.0122 0.0123 0.0121 0.0123 0.0122 0.0130
20 D 0.0082 0.0097 0.0074 0.0090 0.0073 0.0090 0.0079 0.0096
30 10 A 0.0218 0.0134 0.0206 0.0130 0.0202 0.0129 0.0221 0.0134
B 0.0110 0.0149 0.0106 0.0141 0.0103 0.0141 0.0115 0.0138
C 0.0229 0.0144 0.0220 0.0137 0.0214 0.0137 0.0103 0.0111
15 A 0.0140 0.0085 0.0129 0.0081 0.0128 0.0081 0.0142 0.0088
B 0.0085 0.0112 0.0078 0.0106 0.0078 0.0106 0.0087 0.0107
C 0.0141 0.0088 0.0134 0.0085 0.0133 0.0084 0.0084 0.0086
30 20 A 0.0106 0.0077 0.0099 0.0073 0.0099 0.0073 0.0099 0.0073
B 0.0070 0.0091 0.0066 0.0086 0.0066 0.0086 0.0068 0.0085
C 0.0071 0.0077 0.0065 0.0073 0.0065 0.0072 0.0071 0.0071
25 A 0.0072 0.0069 0.0068 0.0065 0.0068 0.0065 0.0071 0.0066
30 B 0.0059 0.0077 0.0055 0.0073 0.0055 0.0073 0.0061 0.0075
C 0.0065 0.0075 0.0063 0.0072 0.0061 0.0072 0.0062 0.0068
30 D 0.0054 0.0068 0.0051 0.0064 0.0051 0.0064 0.0052 0.0065
50 20 A 0.0110 0.0068 0.0104 0.0066 0.0104 0.0066 0.0106 0.0066
B 0.0062 0.0079 0.0059 0.0076 0.0059 0.0076 0.0062 0.0079
C 0.0061 0.0060 0.0057 0.0059 0.0057 0.0059 0.0056 0.0061
30 A 0.0072 0.0048 0.0068 0.0046 0.0068 0.0046 0.0061 0.0075
B 0.0046 0.0063 0.0045 0.0061 0.0045 0.0061 0.0062 0.0068
C 0.0045 0.0048 0.0043 0.0047 0.0043 0.0047 0.0052 0.0065
40 A 0.0048 0.0041 0.0046 0.0039 0.0046 0.0039 0.0106 0.0066
B 0.0038 0.0048 0.0036 0.0047 0.0036 0.0047 0.0062 0.0079
C 0.0036 0.0042 0.0034 0.0041 0.0034 0.0041 0.0056 0.0061
50 D 0.0030 0.0039 0.0028 0.0038 0.0028 0.0038 0.0061 0.0075
70 30 A 0.0076 0.0045 0.0074 0.0044 0.0073 0.0043 0.0076 0.0043
B 0.0043 0.0056 0.0041 0.0055 0.0040 0.0054 0.0043 0.0055
C 0.0039 0.0042 0.0037 0.0041 0.0037 0.0040 0.0038 0.0039
40 A 0.0057 0.0032 0.0056 0.0031 0.0055 0.0030 0.0053 0.0035
B 0.0034 0.0031 0.0032 0.0030 0.0031 0.0029 0.0035 0.0047
C 0.0043 0.0028 0.0042 0.0027 0.0041 0.0027 0.0032 0.0035
50 A 0.0038 0.0031 0.0036 0.0030 0.0035 0.0029 0.0037 0.0032
B 0.0030 0.0038 0.0029 0.0037 0.0028 0.0036 0.0029 0.0037
C 0.0028 0.0030 0.0027 0.0029 0.0026 0.0028 0.0027 0.0031
70 D 0.0022 0.0029 0.0021 0.0028 0.0020 0.0026 0.0023 0.0027
100 25 A 0.0095 0.0070 0.0092 0.0068 0.0091 0.0067 0.0100 0.0076
B 0.0049 0.0065 0.0048 0.0063 0.0046 0.0062 0.0045 0.0063
C 0.0038 0.0046 0.0037 0.0045 0.0036 0.0044 0.0038 0.0047
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Table 1. Cont.

Censoring ML LINDLEY TIERNEY-KADANE MCMC
n m Scheme
R &ER Ber &ER Ber &ER Ber &ER Ber
100 40 A 0.0057 0.0032 0.0056 0.0032 0.0056 0.0032 0.0055 0.0034
B 0.0034 0.0043 0.0032 0.0042 0.0031 0.0041 0.0034 0.0043
C 0.0028 0.0031 0.0027 0.0030 0.0027 0.0030 0.0028 0.0031
50 A 0.0043 0.0025 0.0042 0.0025 0.0042 0.0025 0.0044 0.0027
B 0.0027 0.0037 0.0026 0.0036 0.0026 0.0036 0.0029 0.0036
C 0.0025 0.0027 0.0024 0.0026 0.0024 0.0026 0.0025 0.0027
70 A 0.0028 0.0024 0.0026 0.0022 0.0025 0.0021 0.0029 0.0022
B 0.0022 0.0027 0.0021 0.0026 0.0021 0.0025 0.0022 0.0026
C 0.0020 0.0024 0.0019 0.0021 0.0019 0.0020 0.0019 0.0021
90 A 0.0019 0.0020 0.0018 0.0019 0.0018 0.0019 0.0021 0.0020
B 0.0018 0.0022 0.0017 0.0021 0.0016 0.0020 0.0016 0.0022
C 0.0017 0.0021 0.0016 0.0020 0.0016 0.0020 0.0055 0.0034
100 D 0.0015 0.0019 0.0014 0.0018 0.0013 0.0018 0.0034 0.0043
Where A: The censoring at the end of the experiment R = (0,0,...,1n — m), B: The censoring at the beginning
of the experiment R = (n — m,0,...,0), C: Other censoring schemes R = (0,0, ..., (n —m),...,0), D: Complete
sample R = (0,0,...,0).

In Tables 2 and 3, coverage probabilities, lengths, lower and upper bounds for the
asymptotic confidence intervals (ACI) and bootstrap confidence intervals for the « and
parameters are given.

Table 2. Confidence average width and coverage probability for the asymptotic confidence interval
and the bootstrap confidence interval of the parameter a (« = 0.5).

. Probability Boot Boot Boot Boot

oy x MBS Lowerupper o ad UG BeML e e AC robabiy

Coverage Limit Limit Width of Coverage
20,10 A 0.6108 0.2598 0.9618 0.7020 0.9618 0.7301 0.0403 1.0654 1.0251 0.9700
20,10 B 0.5618 0.3117 0.8118 0.5001 0.9540 0.4987 0.0403 0.8309 0.7906 0.9560
20,10 C 0.5740 0.3184 0.8297 0.5112 0.9460 0.8986 0.0446 0.8945 0.8498 0.9490
20, 20 D 0.5318 0.3478 0.7159 0.3681 0.9300 0.6347 0.4034 0.8236 0.4203 0.9100
50, 30 A 0.5414 0.3656 0.7172 0.3515 0.9400 0.5393 0.4112 0.7922 0.3811 0.9000
50, 30 B 0.5316 0.3822 0.6810 0.2988 0.9200 0.5465 0.4209 0.7432 0.3223 0.9000
50, 30 C 0.5217 0.3885 0.6549 0.2664 0.9600 0.5138 0.4223 0.7106 0.2882 0.9100
50, 50 D 0.5129 0.4012 0.6246 0.2234 0.9400 0.6025 0.4269 0.6568 0.2299 0.9300
100, 50 A 0.5170 0.3844 0.6501 0.2657 0.9420 0.7353 0.4174 0.8799 0.4625 0.9100
100, 50 B 0.5126 0.4068 0.6183 0.2114 0.9560 0.6427 0.4300 0.7583 0.3283 0.9220
100, 50 C 0.5149 0.4174 0.6124 0.1950 0.9480 0.7634 0.4666 0.8495 0.3829 0.9590
100, 70 A 0.5107 0.4046 0.6167 0.2121 0.9420 0.7674 0.4575 0.8715 0.4140 0.9270
100, 70 B 0.5110 0.4195 0.6025 0.1830 0.9510 0.7105 0.4637 0.7769 0.3132 0.9380
100, 70 C 0.5110 0.4228 0.5992 0.1765 0.9600 0.7092 0.4658 0.7935 0.3277 0.9520
100, 100 D 0.5059 0.4285 0.5834 0.1549 0.9520 0.6822 0.4650 0.7321 0.2671 0.9380

As shown in Table 1, for all censoring schemes, the performances of the Tierney—
Kadane approximate Bayes estimates outdo those of both the ML estimates, the Lindley
and MCMC approximate Bayes estimates. Additionally, the approximate Bayes estimates
of Lindley, Tierney—Kadane and MCMC methods are approximate as expected. For all the
estimation methods, it is observed that for the same 7 and all censoring schemes as % —1,
the ER values of the ML and the approximate Bayes estimates tend to decrease. Additionally,
in complete sample case (n = m), the ER values of the ML and the approximate Bayes
estimates are the smallest, as expected. In addition, as seen from Tables 2 and 3, when
the n and m values increase, the coverage probabilities reach the desired level as expected.
In different n and m values, the coverage probabilities of the ACIs and the Bootstrap
confidence intervals are approximately 1 — a = 0.95.
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Table 3. Confidence average width and coverage probability for the asymptotic confidence interval
and the bootstrap confidence interval of the parameter 8 (f = 0.8).

. Probability Boot ML Boot Boot Boot Boot
(nm) Mn? I;:Stl- Ii?:lietr I]'Iplf‘ftr V\I?fljtlh of Esti- Lower Upper ACI Probability
ates : . ! Coverage mates Limit Limit Width of Coverage
20,10 A 0.8456 0.5594 1.1317 0.5723 0.9500 0.6020 0.0628 1.2287 1.1659 0.9090
20,10 B 0.8161 0.5293 1.1028 0.5735 0.9430 1.2557 0.0588 1.0514 0.9926 0.8790
20,10 C 0.8320 0.5624 1.1017 0.5394 0.9230 0.6366 0.0620 1.1208 1.0588 0.8780
20,20 D 0.8215 0.6064 1.0365 0.4301 0.9500 0.6937 0.5947 1.0367 0.4690 0.9500
50, 30 A 0.8082 0.5238 0.3592 0.3293 0.9600 0.5375 0.4021 0.7620 0.3599 0.9100
50, 30 B 0.7983 0.6248 0.9718 0.3470 0.9300 0.8135 0.6215 0.9815 0.3600 0.9300
50, 30 C 0.8046 0.6531 0.9562 0.3031 0.9500 0.7046 0.6641 0.9831 0.3190 0.9400
50, 50 D 0.7952 0.6612 0.9293 0.2681 0.9800 0.7776 0.6571 0.9312 0.2741 0.9700
100, 50 A 0.8087 0.6947 0.9227 0.2280 0.9300 1.0515 0.7127 1.1498 0.4371 0.9220
100, 50 B 0.8005 0.6701 0.9309 0.2608 0.9480 1.0057 0.6774 1.0668 0.3894 0.9440
100, 50 C 0.8072 0.6926 0.9219 0.2293 0.9410 1.0665 0.7409 1.1613 0.4204 0.9220
100, 70 A 0.8022 0.7043 0.9002 0.1959 0.9590 0.9923 0.7421 1.0638 0.3216 0.9540
100, 70 B 0.7979 0.6861 0.9096 0.2285 0.9490 1.0143 0.7277 1.0827 0.3550 0.9210
100, 70 C 0.7987 0.6974 0.9000 0.2026 0.9530 0.9865 0.7361 1.0494 0.3133 0.9480
100, 100 D 0.8000 0.7052 0.8948 0.1896 0.9480 0.9645 0.7395 1.0215 0.2820 0.9410
5. Real Data Analysis
In this section, real lifetime datasets of bladder cancer, head and neck cancer, and
leukemia are used. Observing the survival times of cancer patients during their treatment
course may sometimes not be feasible. For instance, patients may relocate or discontinue
treatment. Due to such reasons, survival analysis is conducted using censored sample
designs. Progressive censoring, being a generalization of complete and Type-II censoring,
is preferred in this study. The parameter estimates for the four estimation methods are
obtained and then the performances of ML and Bayes estimation methods are compared
using three different real datasets. We applied the goodness-of-fit of censored data for the
RW distribution using approximate KS test statistics proposed by Pakyari and Balakrish-
nan [62]. The test statistics KS and the corresponding p-values are calculated using the R
program using parametric bootstrap for censored datasets.
The Real data-1 set represents the remission times (in months) of a random sample of
128 bladder cancer patients [26]. The real data-1 set is given in Table 4.
Table 4. Real data-1 set, n = 128.
0.08 0.2 0.4 0.5 0.51 0.81 0.9 1.05 1.19 1.26 1.35 1.4 1.46 1.76 2.02 2.02
2.07 2.09 223 2.26 2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31
3.36 3.36 3.48 3.52 3.57 3.64 3.7 3.82 3.88 4.18 423 4.26 4.33 4.34 4.4 4.5
4.51 4.87 4.98 5.06 5.09 5.17 532 5.32 5.34 541 5.41 5.49 5.62 5.71 5.85 6.25
6.31 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87
7.93 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06 10.34 1066 10.75 1125 11.64
11.79 1198 12.02 12.03 12.07 12,63 1311 1329 138 1424 1476 1477 1483 1596 16.62 17.12
1714 1736 181 19.13 20.28 21.73 22,69 23.63 2574 2582 3215 3426 36.66 43.01 46.12 79.05

Censored Data-1 based on real data-1 set were obtained according to the censoring schemes-(19*0.108). Censored
data-1 is given in Table 5.

The approximate KS and the corresponding p-value (in parentheses) for censored
data-1 set are 0.4276 (1.000). Accordingly, it is seen that the censored data-1 set fit the RW
distribution with & = 0.9007 and B = 0.7275 (ML estimates). Then, the following ML and
approximate Bayes estimates for « and 8 parameters under PTR-II censoring are acquired.
In Table 6, ML, Lindley, Tierney—Kadane and MCMC estimates are given. Additionally, in
Table 7, bootstrap confidence intervals for « and  parameters are given as (0.6771-1.3656)
and (0.5046-0.9459), respectively.
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Table 5. Censored data-1, m = 20.

0.08 0.2 0.4 0.5 051 081 0.9 1.05 119 126 1.35 1.4 1.46
1.76 202 202 207 209 223 226

Table 6. The ML and approximate Bayes estimates for « and  parameters in real data-1 set.

Censoring Scheme MLE LINDLEY TIERNEY-KADANE MCMC
n,m - - - -
(1,m) R i B i B & B & B
(128, 20) (19%0.108) 0.9007 0.7275 0.8878 0.7363 0.8880 0.7355 0.9751 0.6929
Table 7. The bootstrap confidence intervals for « and 8 parameters in real data-1 set.
Censoring Scheme « B
(n,m) R Boot ML Boot Lower  Boot Upper Boot ML Boot Lower  Boot Upper
Estimate Limit Limit Estimate Limit Limit
(128, 20) (19%0.108) 0.9598 0.6771 1.3656 0.7242 0.5046 0.9459

The Real data-2 set represents the remission times (in days) of 51 leukemia patients [63].
The real data-2 set is given in Table 8.

Table 8. Real data-2 set, n = 51.

24 46 57 57 64 65 82 89 90 90 111 117 128 143 148 152
166 171 186 191 197 209 223 230 239 247 254 264 269 273 284 294
304 304 332 341 393 395 487 510 516 518 518 534 608 642 697 955
1160

Censored data-2 based on real data-2 are obtained according to the censoring schemes-(19*0.31). Censored data-2
is given in Table 9.

Table 9. Censored data-2, m = 20.

24 46 57 57 64 65 82 89 90 90 111 117 128
143 148 152 166 171 186 191

The approximate KS and the corresponding p-value (in parentheses) for censored
data-2 are 0.4939 (1.000). Accordingly, it is seen that the censored data-2 set fit the RW
distribution with & = 1.2166 and B = 0.0029 (ML estimates). Then, the following ML and
approximate Bayes estimates for « and  parameters under PTR-II censoring are acquired.
In Table 10, ML, Lindley, Tierney—Kadane and MCMC estimates are given. Additionally, in
Table 11, bootstrap confidence intervals for « and 8 parameters are given as (0.9278-1.8922)
and (0.0001-0.0124), respectively.

Table 10. The ML and approximate Bayes estimates for « and 8 parameters in real data-2 set.

Censoring Scheme MLE LINDLEY TIERNEY-KADANE MCMC

(n,m)

R & B & B & B & B

(51, 20) (19*0.31) 1.2166 0.0029 0.9139 0.0089 0.9599 0.0150 0.9062 0.0158
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Table 11. The bootstrap confidence intervals for « and § parameters in real data-2 set.

Censoring Scheme n B

(n,m)

Boot ML Boot Lower  Boot Upper Boot ML Boot Lower  Boot Upper

R Estimate Limit Limit Estimate Limit Limit

(51, 20)

(19*0.31) 1.3196 0.9278 1.8922 0.0031 0.0001 0.0124

The Real data-3 set represents survival times of 45 patients suffering from head and
neck cancer treated with combined radiotherapy and chemotherapy [64]. The real data-3
set is given in Table 12.

Table 12. Real Data-3 set, n = 45.

1220 23.56
84 92
195 209

23.74 2587 3198 37 4135 4738 5546 5836 6347 6846 7826 7447 81 43
94 110 112 119 127 130 133 140 146 155 159 173 179 194
249 281 319 339 432 469 519 633 725 817 1776

Censored data-3 based on real data-3 are obtained according to the censoring schemes-(19*0.25). Censored data-3
is given in Table 13.

Table 13. Censored Data-3, m = 20.

12.20
68.46

23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 63.47
78.26 74.47 81 83 84 92 94 110

The approximate KS and the corresponding p-value (in parentheses) for censored data-
3 are 0.3852 (1.000). Accordingly, it is seen that the censored dataset fit the RW distribution
with & = 1.1476 and 3 = 0.0083 (ML estimates). Then, the following ML and approximate
Bayes estimates for « and B parameters under PTR-II censoring are acquired. In Table 14,
ML, Lindley, Tierney-Kadane and MCMC estimates are given. Additionally, in Table 15,
bootstrap confidence intervals for « and  parameters are given as (0.8764-1.7795) and
(0.0006-0.0287), respectively.

Table 14. The ML and approximate Bayes estimates for « and 8 parameters in real data-3 set.

Censoring Scheme MLE LINDLEY TIERNEY-KADANE MCMC

(n,m)

R & B & B & B & B

(45, 20)

(19%0.25) 1.1476 0.0083 0.9062 0.0205 0.9420 0.0269 0.8879 0.0289

Table 15. The bootstrap confidence intervals for « and  parameters in real data-3 set.

(n,m)

Censoring Scheme o B

Boot ML Boot Lower  Boot Upper Boot ML Boot Lower  Boot Upper

R Estimate Limit Limit Estimate Limit Limit

(45, 20)

(19*0.25) 1.2359 0.8764 1.7795 0.0086 0.0006 0.0287

6. Conclusions

In this article, the MLE and approximate Bayes estimators for unknown parameters
of the RW distribution based on PTR-II censored samples were evaluated. The maximum
likelihood estimators of the parameters were obtained by using the Newton—-Raphson
method. Because the Bayes estimators of the parameters cannot be obtained in explicit
forms, we obtained the approximate Bayes estimators using Lindley, Tierney-Kadane, and
MCMC methods under squared-error loss functions. We have compared the performance
of the approximate Bayes estimates with the ML estimates by means of Monte Carlo
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simulations, and it has been observed that the performances of approximate Bayes estimates
are better than those of ML estimates. Further, the ER values of the estimates of « and
parameters obtained by using Tierney and Kadane’s approximation method were lower
than those obtained by using both Lindley’s approximation, and MCMC method and also
MLE. It is also seen that the width of the asymptotic confidence intervals and the bootstrap
confidence intervals decreases and the coverage possibilities approach to 0.95 when (n,
m) values increase. In future research, estimators of the parameters of the new discrete
distributions in the literature proposed for modeling discrete data in medical studies can be
obtained. There are very few studies on its estimation for parameters of discrete distribution
in medicine.
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Data Availability Statement: Data is reported within the article.
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