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Abstract: In this paper, we present a result on the existence of asymptotically stable solutions of
infinite systems (IS) of quadratic Hammerstein integral equations (IEs). Our study will be conducted
in the Banach space of functions, which are continuous and bounded on the half-real axis with values
in the classical Banach sequence space consisting of real bounded sequences. The main tool used in
our investigations is the technique associated with the measures of noncompactness (MNCs) and a
fixed point theorem of Darbo type. The applicability of our result is illustrated by a suitable example
at the end of the paper.
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1. Introduction

IEs play a significant role in several branches of nonlinear analysis. Obviously, IEs are
closely connected with the theory of differential equations, both ordinary and partial (cf.
Corduneanu [1], Pogorzelski [2]).

With the help of IEs we can represent mathematical models of a lot of events appearing
in mathematical physics, engineering, mechanics, kinetic theory of gases, transport theory,
economics, biology, etc. (see Burton [3], Busbridge [4], Cahlon and Eskin [5], Case and
Zweigel [6], Chandrasekhar [7], Deimling [8] and references therein). Let us mention that
a lot of real-world problems can be described with the help of IEs (see Deimling [8] and
Zabrejko et al. [9], for example).

Obviously, the theory of ISs of IEs represents both a generalization of the classical
theory of IEs and simultaneously an advanced part of nonlinear analysis. That theory is a
young branch of the theory of IEs since papers studying problems of ISs of IEs have only
appeared in recent decades.

It is worthwhile mentioning that the investigations concerning solutions of ISs of IEs
defined on an unbounded interval are quite new (cf. Banaś and Chlebowicz [10], Banaś
and Madej [11] and references therein). Let us pay attention to the paper of Banaś and
Madej [11], where we examined an IS of quadratic Urysohn IEs with integral taken as
improper one defined on the real half-axis R+.

As far as we know, the above-quoted paper of Banaś and Madej is the first one of such
a type. In that paper, we examined conditions ensuring the existence of ISs solutions for
quadratic Urysohn IEs, which are converging to zero at infinity at the same rate. More
precisely, we examined conditions guaranteeing that solutions of the mentioned ISs of
quadratic Urysohn IEs being function sequence (xn(t)) defined on the interval R+ are such
that lim

t→∞
xn(t) = 0 uniformly with respect to n belonging to the set of natural numbers N.
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In the present paper, we are going to study the IS of quadratic Hammerstein IEs having
the form

xn(t) = an(t) + fn(t, x1(t), x2(t), . . . )
∫ ∞

0
gn(t, τ)hn(τ, x1(τ), x2(τ), . . . )dτ, (1)

for t ∈ R+ = [0, ∞) and for n = 1, 2, . . . .
The definitions of functions fn and gn appearing in IS of IEs (1) will be given in

Section 3.
Our aim is to prove that under suitable conditions imposed on components of IS of

IEs (1) there exists a solution x(t) = (xn(t)) of this IS defined on R+ which is asymptotically
stable. The main tool used in the proof is the technique of MNCs applied in a suitable
Banach space. Due to MNCs, we are in a position to achieve the result for the existence of
asymptotically stable solutions of IS of IEs (1).

The results obtained in the paper for IS of IEs (1) create the first step in investigations
of conditions guaranteeing the existence of asymptotically stable solutions of IS of IEs.
Indeed, we expect that, based on these results, we will be able to obtain similar results for
IS of IEs of Urysohn type.

2. Auxiliary Facts

In this section, we collect notations and auxiliary facts that will be utilized in our
investigations of this paper. By the symbol R we denote the set of real numbers and we put
R+ = [0, ∞). Moreover, we denote by N the set of natural numbers.

Further, assume that E is a given Banach space with the norm ∥ · ∥E and the zero
element θ. In our considerations, we will also write ∥ · ∥ instead of ∥ · ∥E if it does not lead
to misunderstanding.

The symbol B(x, r) denotes the closed ball centered at x and with radius r. We write Br
to denote the ball B(θ, r). If X is a subset of E then the symbols X and ConvX stand for the
closure and convex closure of X, respectively. Moreover, we will use the standard notation
X + Y, λX to denote the classical algebraic operations on subsets of E.

Next, let ME denote the family of all nonempty and bounded subsets of E while its
subfamily consisting of all relatively compact sets will be denoted by NE.

The most important concept used in our paper is the concept of a MNC. We will accept
the axiomatic definition of that concept taken from Banaś and Goebel [12].

Definition 1. A function µ : ME → R+ is said to be a MNC in the space E if it satisfies the
following conditions:

(i) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE.
(ii) X ⊂ Y ⇒ µ(X) ⩽ µ(Y).
(iii) µ

(
X
)
= µ(X).

(iv) µ(ConvX) = µ(X).
(v) µ(λX + (1 − λ)Y) ⩽ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1].
(vi) If (Xn)n⩾1 is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for n = 1, 2, . . . and

lim
n→∞

µ(Xn) = 0, then the set X∞ =
⋂∞

n=1 Xn is nonempty.

The family kerµ appearing in (i) is called the kernel of the MNC µ.
If kerµ = NE then the MNC µ is called full.
Let us note that the set X∞ from axiom (vi) is an element of the kernel kerµ. It follows

immediately from the inequality µ(X∞) ⩽ µ(Xn) for n = 1, 2, . . . . Hence we infer that
µ(X∞) = 0 and consequently X∞ ∈ kerµ. This simple observation plays a significant role
in applications of the technique connected with MNCs.

Further, assume that µ is a MNC in the space E. The measure µ is called sublinear [12]
if it satisfies the following conditions:

(vii) µ(X + Y) ⩽ µ(X) + µ(Y).
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(viii) µ(λX) = |λ|µ(X), for λ ∈ R.

If µ satisfies the condition

(ix) µ(X ∪ Y) = max{µ(X), µ(Y)}
then it is called the MNC with the maximum property. If µ is a full and sublinear MNC,
which has the maximum property, then it is called regular [12].

It is worthwhile mentioning that the first MNC was defined by K. Kuratowski [13].
Nevertheless, the most important and useful MNC is the so-called Hausdorff (or ball) MNC
defined in [14,15] with the help of the following formula

χ(X) = inf{ε > 0 : X has a finite ε − net in E},

for X ∈ ME. It can be shown that χ is a regular MNC [12]. Let us notice that in some
Banach spaces such as c0, lp (1 ⩽ p < ∞), C([a, b]) we can give formulas expressing
χ in connection with the structure of these Banach spaces (cf. Akhmerov et al. [16],
Ayerbe et al. [17], Banaś and Goebel [12]). On the other hand, there are Banach spaces
such as c or Lp(a, b) in which we know formulas for regular MNCs are equivalent to the
Hausdorff MNC χ in the mentioned spaces (cf. Banaś and Goebel [12]).

Moreover, let us pay attention to the fact that in some Banach spaces, there exist regular
MNCs that are not equivalent to the Hausdorff MNC χ (cf. Ablet et al. [18], Mallet-Paret
and Nussbaum [19]).

Let us point out that in a lot of Banach spaces, we are not in a position to construct
formulas expressing the Hausdorff MNC χ or MNCs equivalent to χ. In such a situation,
we have to restrict ourselves to MNCs in the sense of Definition 1, in which they are not
even full.

Now, we recall the fixed point theorem of the Darbo type utilizing the concept of
an MNC (cf. Banaś and Goebel [12], Darbo [20]). That theorem will be important in our
further considerations.

Theorem 1. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E.
Assume that Q : Ω → Ω is a continuous operator and there exists a constant k ∈ [0, 1) such that
µ(QX) ⩽ kµ(X) for any nonempty subset X of Ω, where µ is an MNC in the space E. Then, Q
has at least one fixed point in the set Ω.

Notice that it can be shown (see Banaś and Goebel [12]) that the set FixQ of fixed
points of the operator Q belonging to Ω is an element of the kernel kerµ. This simple
observation allows us to characterize solutions of considered operator equations.

In what follows, we will work in the Banach space BC(R+, E) consisting of functions
defined, continuous, and bounded on R+ with values in a given Banach space E. Here,
we will assume that in the space E, there is given an MNC µ, which, in general, is not
equivalent to the Hausdorff MNC χ. If x ∈ BC(R+, E) then we define the norm of x as

∥ x ∥∞= sup{∥ x(t) ∥E: t ∈ R+},

where ∥ · ∥E is a norm in the Banach space E.
We will also consider the space CT = C([0, T], E) where T > 0 is arbitrarily fixed.

Obviously the space CT consists of functions x : [0, T] → E being continuous on the interval
[0, T] and normed by the formula

∥ x ∥T= sup{∥ x(t) ∥E: t ∈ [0, T]}.

Notice that if we take a function x ∈ BC(R+, E) then the restriction x|[0,T] of x to the
interval [0, T] is an element of the space CT .

Now, we are going to present the construction of the MNC in the space BC(R+, E) (cf.
Banaś et al. [21]). This MNC will be utilized in considerations conducted in the paper. Let
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us indicate that the mentioned MNC is associated with the investigations of conditions
ensuring the existence of solutions of the IS of IEs (1) which are asymptotically stable.

Thus, let us take an arbitrary nonempty and bounded subset X of the space BC(R+, E).
Fix a function x ∈ X. For ε > 0 we define the quantity ω∞(x, ε) by putting

ω∞(x, ε) = sup{∥ x(t)− x(s) ∥E: t, s ∈ R+, |t − s| ⩽ ε}.

Notice that lim
ε→0

ω∞(x, ε) = 0 if and only if the function x = x(t) is uniformly continu-

ous on R+. On the other hand observe that for any T > 0 we have

ωT(x, ε) ⩽ ω∞(x, ε),

where ωT(x, ε) denotes the modulus of the restriction x|[0,T] in the space CT i.e.,

ωT(x, ε) = sup{∥ x(t)− x(s) ∥E: t, s ∈ [0, T], |t − s| ⩽ ε}.

However, we will not use the modulus ωT(x, ε) in this paper (cf. Banaś and Chlebow-
icz [10]).

Next, let us define:

ω∞(X, ε) = sup{ω∞(x, ε) : x ∈ X},

ω∞
0 (X) = lim

ε→0
ω∞(X, ε). (2)

It is easily seen that ω∞
0 (X) = 0 if and only if functions from the set X are equicontin-

uous on the interval R+ or equivalently, functions from X are equiuniformly continuous
on R+.

Next, let us consider the function µ∞ defined on the family MBC(R+ ,E) by the formula

µ∞(X) = lim
T→∞

µT(X), (3)

where
µT(X) = sup{µ(X(t)) : t ∈ [0, T]}

and µ is an MNC given in the Banach space E.
Notice that the existence of the limit in (3) follows from the fact that the function

T → µT(X) is nondecreasing and bounded on R+ (cf. Banaś et al. [21]).
Further, for arbitrarily fixed t ∈ R+ we define

diamX(t) = sup{∥ x(t)− y(t) ∥E: x, y ∈ X}

and
c(X) = lim sup

t→∞
diamX(t). (4)

Finally, taking into account (2)–(4), we define the following quantity

µc(X) = ω∞
0 (X) + µ∞(X) + c(X) (5)

(cf. Banaś et al. [21]).
It can be shown that the function µc defined by (5) is the MNC in the Banach space

BC(R+, E) (cf. Banaś et al. [21]). The kernel kerµc, of this measure contains all nonempty
and bounded subsets X of the space BC(R+, E) which are equiuniformly continuous on
R+ and such that all cross-sections X(t) of X are elements of the kernel kerµ in the Banach
space E. Moreover, the thickness of the bundle formed by graphs of functions from X tends
to zero at infinity.
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Let us also pay attention to the fact that the MNC µc is not full and does not have the
maximum property. If we take the MNC µ to be sublinear in E then the MNC µc is also
sublinear in the Banach space BC(R+, E) (cf. Banaś et al. [21] for details).

In what follows, keeping in mind further applications of the MNC µc defined by (5),
we will consider as the Banach space E the sequence space l∞ consisting of all real sequences
(xn) being bounded. Obviously, we consider the space l∞ with the classical supremum
norm

∥ x ∥=∥ (xn) ∥= sup{|xn| : n = 1, 2, . . . },

where x = (xn) ∈ l∞.
It is worthwhile mentioning (Banaś and Goebel [12]) that we do not know formu-

las expressing the Hausdorff MNC χ in the space l∞. Therefore, we are forced to con-
sider the MNC defined by (5), where in the component defined by (3) we use one of
MNCs constructed in the space l∞ (cf. Banaś and Geobel [12], Banaś and Mursaleen [22],
Akhmerov et al. [16]).

Now, we present the formula for the MNC used in the space BC(R+, l∞) in our further
considerations. For convenience, we will denote the space BC(R+, l∞) by the symbol BC∞.

Summing up, we consider the space BC∞ consisting of functions x : R+ → l∞ which
are continuous and bounded on R+. Any such a function can be written in the form

x(t) = (xn(t)) = (x1(t), x2(t), . . . )

for t ∈ R+, where the sequence (xn(t)) is an element of the space l∞ for any fixed t.
The norm of the function x = x(t) = (xn(t)) is defined with help of the equality

∥ x ∥= sup{∥ x(t) ∥l∞ : t ∈ R+} = sup
t∈R+

{sup{|xn(t)| : n = 1, 2, . . . }}.

In what follows, we present the formula expressing the MNC µc in connection with an
MNC in the space l∞, which seems to be the most natural in our setting.

Thus, let us fix a set X ∈ MBC∞ . For ε > 0 and for an arbitrary function x(t) = (xn(t))
belonging to the set X let us consider the modulus ω∞(x, ε) which now has the form

ω∞(x, ε) = sup{∥ x(t)− x(s) ∥l∞ : t, s ∈ R+, |t − s| ⩽ ε}
= sup{sup{|xn(t)− xn(s)| : n = 1, 2, . . . } : t, s ∈ R+, |t − s| ⩽ ε}.

Then we obtain

ω∞(X, ε) = sup
x∈X

{
sup

{
sup
n∈N

|xn(t)− xn(s)| : t, s ∈ R+, |t − s| ⩽ ε

}}
.

Finally, in view of (2) we have

ω∞
0 (X) = lim

ε→0
ω∞(X, ε)

= lim
ε→0

{
sup
x∈X

{
sup

{
sup
n∈N

|xn(t)− xn(s)| : t, s ∈ R+, |t − s| ⩽ ε

}}}
.

(6)

Now, to define the second term µ∞ of the MNC µc given by Formula (5), we will
assume (as we indicated it above) that in the space l∞ we take the MNC µ3 defined on the
family Ml∞ in the following way (see Banaś and Goebel [12], Banaś and Mursaleen [22]):

µ3(X) = lim sup
n→∞

diamXn,

where
Xn = {xn : x = (xi) ∈ X}
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and
diamXn = sup{|xn − yn| : x = (xi), y = (yi) ∈ X}.

Now, keeping in mind the above formula and (3), for X ∈ MBC∞ and for arbitrarily
fixed T > 0 we obtain

µ3
T(X) = sup

{
µ3(X(t)) : t ∈ [0, T]

}
= sup

t∈[0,T]

{
lim sup

n→∞
{sup{|xn(t)− yn(t)| : x = x(t), y = y(t) ∈ X}}

}
.

Hence, we derive the following formula

µ3
∞(X) = lim

T→∞
µ3

T(X)

= lim
T→∞

{
sup

t∈[0,T]

{
lim sup

n→∞
{sup{|xn(t)− yn(t)| : x = x(t), y = y(t) ∈ X}}

}}
.

(7)

Further, we define the third term of the MNC µc in the space BC∞ given by Formula (4).
Indeed, we obtain

c(X) = lim sup
t→∞

diamX(t)

= lim sup
t→∞

{
sup

{
sup
n∈N

|xn(t)− yn(t)| : x = x(t), y = y(t) ∈ X

}}
.

(8)

Now, based on Formulas (6)–(8) and taking into account Formula (5) expressing the
MNC µc in the Banach space BC(R+, E), we obtain the formula for the MNC in the space
BC∞ being counterpart of the MNC µ3 mentioned above. In fact, this MNC has the form

µ3
c (X) = ω∞

0 (X) + µ3
∞(X) + c(X) (9)

(cf. Banaś et al. [21]).
Let us point out that the function µ3

c is the MNC in the Banach space BC∞, which is
sublinear but does not have the maximum property. Moreover, µc is not full.

The kernel kerµ3
c is the family consisting of all nonempty and bounded subsets X of

the space BC∞ such that functions belonging to X are equiuniformly continuous on R+

and all cross-sections X(t) of X are sets in l∞ such that the thickness X(t) tends to zero as
n → ∞, uniformly with respect to t ∈ R+. Moreover, the thickness of the bundle formed
by graphs of functions from X tends to zero at infinity.

Let us mention that the MNC µ3
c defined by (9) will be used in our considerations of

the next sections of the paper.

3. Main Result

This section is devoted to investigating the solvability of the IS of the quadratic
Hammerstein IEs (1).

Let us recall that the mentioned IS has the form

xn(t) = an(t) + fn(t, x1(t), x2(t), . . . )
∫ ∞

0
gn(t, τ)hn(τ, x1(τ), x2(τ), . . . )dτ,

where t ∈ R+ and n = 1, 2, . . . .
As we indicated earlier, our considerations are located in the Banach space BC∞ =

BC(R+, l∞). The main tool used in our study is the MNC µ3
c defined by Formula (9).

Now, we present assumptions under which the IS if IEs (1) will be investigated.

(i) The sequence (an(t)) is an element of the space BC∞. Apart from this, the functions
an = an(t) are equicontinuous on R+.
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For further purposes we denote by A the norm of the function (an(t)) in the space
BC∞ i.e.,

A = sup{sup{|an(t)| : n = 1, 2, . . . } : t ∈ R+}.

(ii) The functions gn(t, τ) = gn : R2
+ → R are continuous on the set R2

+ (n = 1, 2, . . . ).
Moreover, the functions t → gn(t, τ) are equicontinuous on the set R+ uniformly with
respect to τ ∈ R+ i.e., the following condition is satisfied

∀
ε>0

∃
δ>0

∀
n∈N

∀
τ∈R+

∀
t1,t2∈R+

[|t2 − t1| ⩽ δ ⇒ |gn(t2, τ)− gn(t1, τ)| ⩽ ε].

(iii) For any n ∈ N and for each t ∈ R+ the improper integral∫ ∞

0
|gn(t, τ)|dτ

is convergent. Moreover, the integrals
∫ ∞

0 |gn(t, τ)|dτ are equibounded for any n =
1, 2, . . . and for each t ∈ R+.

In what follows we denote by G1 the finite constant defined by the equality

G1 = sup
{∫ ∞

0
|gn(t, τ)|dτ : n = 1, 2, . . . , t ∈ R+

}
.

(iv) The sequence (gn(t, τ)) is equibounded on R2
+ i.e., there exists a constant G2 > 0 such

that |gn(t, τ)| ⩽ G2 for t, τ ∈ R+ and n = 1, 2, . . . .
(v) The functions fn are defined on the set R+ ×R∞ and take real values for n = 1, 2, . . . .

Apart from this, the functions t → fn(t, x1, x2, . . . ) are equicontinuous on R+ uni-
formly with respect to x = (xn) ∈ l∞ i.e., the following condition is satisfied

∀
ε>0

∃
δ>0

∀
(xi)∈l∞

∀
n∈N

∀
t1,t2∈R+

[|t2 − t1| ⩽ δ ⇒ | fn(t2, x1, x2, . . . )− fn(t1, x1, x2, . . . )| ⩽ ε].

(vi) There exists a function k : R+ → R+ which is nondecreasing on R+, k(0) = 0 and
continuous at 0. Moreover, the following condition is satisfied

| fn(t, x1, x2, . . . )− fn(t, y1, y2, . . . )| ⩽ k(r) sup{|xi − yi| : i ⩾ n}

for any r > 0, for x = (xi), y = (yi) ∈ l∞ such that ∥ x ∥l∞⩽ r, ∥ y ∥l∞⩽ r and for all
t ∈ R+ and n = 1, 2, . . . .

(vii) The sequence of functions
(

f n

)
, where f n(t) = | fn(t, 0, 0, . . . )| is an element of the

space BC∞.

Notice that on the basis of assumption (vii), we infer that we can define the finite
constant
F = sup

{
f n(t) : t ∈ R+, n = 1, 2, . . .

}
.

Now, we formulate other assumptions concerning IS (1).

(viii) The functions hn are defined on the set R+ ×R∞ and take real values for n = 1, 2, . . . .
Moreover, there exists a function m : R+ → R+, which is nondecreasing on R+,
continuous at r = 0, m(0) = 0 and such that the following condition is satisfied

|hn(t, x1, x2, . . . )− hn(t, y1, y2, . . . )| ⩽ m(r) sup{|xi − yi| : i ⩾ n}

for any r > 0, for x = (xi), y = (yi) ∈ l∞ such that ∥ x ∥l∞⩽ r, ∥ y ∥l∞⩽ r and for all
t ∈ R+ and n = 1, 2, . . . .

(ix) The operator h defined on the set R+ × l∞ by the formula

(hx)(t) = (hn(t, x)) = (h1(t, x), h2(t, x), . . . )
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is bounded, i.e., there exists a positive constant h such that ∥ (hx)(t) ∥l∞⩽ h for any
x ∈ l∞ and for each t ∈ R+.

(x) For any n ∈ N and for each function x = x(t) = (xi(t)) ∈ BC∞ the improper integral∫ ∞

0
|hn(s, x(s))|ds =

∫ ∞

0
|hn(s, x1(s), x2(s), . . . )|ds

is convergent. Moreover, the integrals
∫ ∞

0 |hn(s, x(s))|ds are equibounded for n ∈ N
and for each x = x(t) ∈ BC∞.

In view of the above assumption, we can define the finite constant H by putting

H = sup
{∫ ∞

0
|hn(s, x(s))|ds : x ∈ BC∞, n = 1, 2, . . .

}
.

(xi) There exists a positive number r0 which satisfies the inequality

A + FG1h + G1hrk(r) ⩽ r

and such that
G1hk(r0) + (r0k(r0) + F)G1m(r0) < 1,

where the constants F, G1, h were defined above and the constant A was defined in
assumption (i).

Remark 1. Let us notice that on the basis of assumption (vi) we conclude that for x = (xi), y =
(yi) ∈ l∞ such that ∥ x ∥l∞⩽ r, ∥ y ∥l∞⩽ r and for t ∈ R+, n ∈ N, the following inequality holds

| fn(t, x1, x2, . . . )− fn(t, y1, y2, . . . )| ⩽ k(r) ∥ x − y ∥l∞ ,

where k = k(r) is the function appearing in assumption (vi).
In the same way, from assumption (viii) we deduce that

|hn(t, x1, x2, . . . )− hn(t, y1, y2, . . . )| ⩽ m(r) ∥ x − y ∥l∞ ,

for t ∈ R+, n ∈ N and for r > 0, where x = (xi), y = (yi) ∈ l∞ are such that ∥ x ∥l∞⩽ r,
∥ y ∥l∞⩽ r. Moreover, the function m = m(r) is involved in assumption (viii).

Let us observe that the above remark allows us to infer that assumptions (vi) and (viii)
are essentially stronger than the assumption requiring that the functions fn and hn satisfy
the classical Lipschitz condition with the functions k(r) and m(r).

Now, we are in a position to formulate our main existence result concerning IS of
IEs (1).

Theorem 2. Under assumptions (i)-(xi) the IS of IEs (1) has at least one solution x = (xn(t)) in
the space BC∞ = BC(R+, l∞). Moreover, solutions of IS of IEs (1) are such that the thickness of
the bundle formed by graphs of functions belonging to those solutions tends to zero at infinity.

Proof. At the beginning we define three operators F, H, Q on the space BC∞ in the
following way:

(Fx)(t) = ((Fnx)(t)) = ( fn(t, x(t))) = ( fn(t, x1(t), x2(t), . . . )),

(Hx)(t) = ((Hnx)(t)) =
(∫ ∞

0
gn(t, τ)hn(τ, x1(τ), x2(τ), . . . )dτ

)
,

(Qx)(t) = ((Qnx)(t)) = (an(t) + (Fnx)(t)(Hnx)(t)).

At first, we show that the operator F acts from the space BC∞ into itself.
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To prove this fact let us choose a function x = x(t) = (xn(t)) ∈ BC∞.
Next, let us fix a natural number n and t ∈ R+. Then, keeping in mind the imposed

assumptions and Remark 1, we obtain

|(Fnx)(t)| ⩽ | fn(t, x1(t), x2(t), . . . )− fn(t, 0, 0, . . . )|+ | fn(t, 0, 0, . . . )|
⩽ k(||x(t)||l∞) sup{|xi(t)| : i ⩾ n}+ | f n(t)| ⩽ k(||x||BC∞)||x||BC∞ + F.

(10)

Further, we show that the function Fx is continuous on R+.
To this end, we will utilize the continuity of the function x = x(t) = (xn(t)) ∈ BC∞

on the interval R+. Indeed, this means that the following condition is satisfied:

∀
t0∈R+

∀
ε>0

∃
δ>0

∀
t∈R+

[|t − t0| ⩽ δ ⇒ ||x(t)− x(t0)||l∞ ⩽ ε].

Thus, let us take ε > 0 and t0 ∈ R+. Next, choose δ > 0 according to the above
condition. Then, for t ∈ R+ such that |t − t0| ⩽ δ, in view of Remark 1 we have:

|(Fnx)(t)− (Fnx)(t0)| ⩽ | fn(t, x1(t), x2(t), . . . )− fn(t0, x1(t), x2(t), . . . )|
+k(||x(t)||l∞)||x(t)− x(t0)||l∞

⩽ | fn(t, x1(t), x2(t), . . . )− fn(t0, x1(t), x2(t), . . . )|+ k(||x||BC∞)ε.

(11)

Now, taking into account assumption (v), we can find a number δ > 0 such that

| fn(t, x1(t), x2(t), . . . )− fn(t0, x1(t), x2(t), . . . )| ⩽ ε

for |t − t0| ⩽ δ and for n = 1, 2, . . . . Joining this fact with (11) we obtain the following
estimate

|(Fnx)(t)− (Fnx)(t0)| ⩽ (1 + k(||x||BC∞))ε,

for n = 1, 2, . . . and for t ∈ R+ such that |t − t0| ⩽ δ.
The above reasoning shows that the function Fx is continuous at the point t0. Keeping

in mind that t0 was chosen arbitrarily, we deduce that Fx is continuous on R+. Linking
this property with the boundedness of Fx, which was established earlier, we conclude that
the operator F acts from the space BC∞ into itself.

Next, we show that the operator H defined above maps the space BC∞ into itself.
To prove this fact let us take a function x = x(t) = (xn(t)) ∈ BC∞. Then, for a fixed number
t ∈ R+ and for n ∈ N, in virtue of assumptions (iii) and (ix), we obtain

|(Hx)(t)| ⩽
∫ ∞

0
|gn(t, τ)||hn(τ, x1(τ), x2(τ), . . . )|dτ

⩽
∫ ∞

0
|gn(t, τ)|hdτ ⩽ h

∫ ∞

0
|gn(t, τ)|dτ ⩽ G1h.

(12)

The obtained estimate shows that the function Hx is bounded on the interval R+.
Now, let us fix ε > 0 and choose a number δ > 0 according to assumption (ii). Then,

for arbitrary numbers t1, t2 ∈ R+ such that |t2 − t1| ⩽ δ, based on assumptions (ii) and (ix)
(taking, for example, that t1 < t2) we obtain

|(Hnx)(t2)− (Hnx)(t1)|

⩽

∣∣∣∣∫ ∞

0
gn(t2, τ)hn(τ, x1(τ), x2(τ), . . . )dτ −

∫ ∞

0
gn(t1, τ)hn(τ, x1(τ), x2(τ), . . . )dτ

∣∣∣∣
⩽
∫ ∞

0
|gn(t2, τ)− gn(t1, τ)||hn(τ, x1(τ), x2(τ), . . . )|dτ

⩽
∫ ∞

0
ωg(δ)|hn(τ, x1(τ), x2(τ), . . . )|dτ,
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where ωg(δ) denotes the common modulus of equicontinuity of the sequence of functions
t → gn(t, τ) (according to assumption (ii)). Obviously we have that ωg(δ) → 0 as δ → 0.

Further, let us notice that applying assumption (x), from the above derived estimate
we obtain

|(Hnx)(t2)− (Hnx)(t1)| ⩽ Hωg(δ). (13)

Hence, we obtain

||(Hx)(t2)− (Hx)(t1)||l∞ ⩽ Hωg(δ).

The above estimate shows that the function Hx is continuous on the interval R+.
Linking this fact with the boundedness of the function Hx on R+, we deduce that the
operator H maps the space BC∞ into itself.

Now, in view of the fact that the space BC∞ is a Banach algebra with respect to the
coordinatewise multiplication of function sequences and taking into account the definition
of the operator Q and assumption (i) we conclude that for arbitrarily fixed function x =
x(t) ∈ BC∞ the function (Qx)(t) = ((Qnx)(t)) = (an(t) + (Fnx)(t)(Hnx)(t)) transforms
the interval R+ into the space l∞. Indeed, in virtue of the fact that ((Fnx)(t)) ∈ l∞ for any
t ∈ R+ and in view of the estimate (12) we obtain

|(Qnx)(t)| ⩽ |an(t)|+ G1h|(Fnx)(t)|

for any n ∈ N. Hence, on the base of (10) we infer that ((Qx)(t)) = ((Qnx)(t)) ∈ l∞ for
any t ∈ R+.

Next, let us observe that the continuity of the function Qx in the interval R+ is a
consequence of the continuity of the functions Fx and Hx on R+. In a similar way, we
derive the boundedness of the function Qx on R+, provided we pay attention to the
assumption (i).

Summing up, gathering all the above-established properties of the function Qx, we
deduce that the operator Q transforms the space BC∞ into itself.

In what follows, let us notice that keeping in mind estimates (10) and (12), for arbitrar-
ily fixed n ∈ N and t ∈ R+, we obtain

|(Qnx)(t)| ⩽ |an(t)|+ |(Fnx)(t)||(Hnx)(t)|
⩽ A +

(
k(||x(t)||l∞)||x(t)||l∞ + F

)
G1h

⩽ A + FG1h + G1hk(||x||BC∞)||x||BC∞ .

Hence, we derive the following estimate

||Qx||BC∞ ⩽ A + FG1h + G1hk(||x||BC∞)||x||BC∞ .

The above estimate and the first inequality from assumption (xi) yields that there exists
a number r0 > 0 such that the operator Q transforms the ball Br0 (Br0 ⊂ BC∞) into itself.

Further on, we are going to show that the operator Q is continuous on the ball Br0 . To
this end, let us notice that taking into account the representation of the operator Q given at
the beginning of the proof, it is sufficient to show the continuity of the operators F and H
separately.

Thus, let us take an arbitrary number ε > 0 and choose x ∈ Br0 . Further, for an
arbitrary point y ∈ Br0 such that ||x − y||BC∞ ⩽ ε and for n ∈ N, t ∈ R+, in view of
assumption (vi) and Remark 1, we have

|(Fnx)(t)− (Fny)(t)| ⩽ | fn(t, x1(t), x2(t), . . . )− fn(t, y1(t), y2(t), . . . )|
⩽ k(r0)||x − y||BC∞ ⩽ k(r0)ε.

Hence, we obtain
||Fx − Fy||BC∞ ⩽ k(r0)ε.
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On the basis of the above estimate, we derive the desired continuity of the operator F
on the ball Br0 .

Now, let us take arbitrary points x = (xi), y = (yi) ∈ Br0 . Then, keeping in mind
assumption (viii), for fixed t ∈ R+ and n ∈ N, we obtain

|(Hnx)(t)− (Hny)(t)|

⩽
∫ ∞

0
|gn(t, τ)||hn(τ, x1(τ), x2(τ), . . . )− hn(τ, y1(τ), y2(τ), . . . )|dτ

⩽
∫ ∞

0
|gn(t, τ)|m(r0) sup{|xi(τ)− yi(τ)| : i ⩾ n}dτ

⩽ m(r0)
∫ ∞

0
|gn(t, τ)|(||x(τ)− y(τ)||l∞)dτ

⩽ m(r0) sup{||x(s)− y(s)||l∞ : s ∈ R+}
∫ ∞

0
|gn(t, τ)|dτ.

Hence, taking into account assumption (iii), we obtain the following inequality

|(Hnx)(t)− (Hny)(t)| ⩽ G1m(r0)||x − y||BC∞ .

This implies
||Hx − Hy||BC∞ ⩽ G1m(r0)||x − y||BC∞ .

From the above estimate we infer that the operator H is continuous on the ball Br0 .
In what follows, we will study the behavior of the operators F, H, and Q with

respect to the components of the MNC defined by the Formula (5). Let us recall that those
components are defined successively by Formulas (2), (3) and (4) (cf. also the extensions of
those formulas given by (6), (7) and (8)). To realize our goal, let us fix an arbitrary number
ε > 0. Next, choose t, s ∈ R+ such that |t − s| ⩽ ε and take a nonempty subset X of the ball
Br0 . Then, for a function x = x(t) = (xn(t)) ∈ X and for a fixed natural number n, in the
similar way as in (12), we obtain

|(Fnx)(t)− (Fnx)(s)| ⩽ k(r0) sup{|xi(t)− xi(s)| : i ⩾ n}
+ sup{| fn(t, x1, x2, . . . )− fn(s, x1, x2, . . . )| : |t − s| ⩽ ε, ||x||l∞ = ||(xn)||l∞ ⩽ r0}

⩽ k(r0)ω
∞(x, ε) + ω1

∞( f , ε),

where

ω1
∞( f , ε) = sup

n∈N
{sup{| fn(t, x1, x2, . . . )− fn(s, x1, x2, . . . )| : |t − s| ⩽ ε, ||x||l∞ = ||(xn)||l∞ ⩽ r0}}.

Obviously, taking into account assumption (v) we conclude that ω1
∞( f , ε) → 0 as

ε → 0.
Now, from the last estimate we infer that

ω∞(Fx, ε) ⩽ k(r0)ω
∞(x, ε) + ω1

∞( f , ε). (14)

Further on, let us notice that utilizing assumptions (ii), (ix), (x) and assuming addition-
ally that s < t, in a similar way as in (14), we can obtain the following estimate

|(Hnx)(t)− (Hnx)(s)| ⩽ Hωg(ε),

where the quantity ωg(ε) was defined earlier as the common modulus of equicontinuity of
the sequence of functions t → gn(t, τ). Let us recall that ωg(ε) → 0 as ε → 0.

Obviously, from the above estimate, we obtain the following one

ω∞(Hx, ε) ⩽ Hωg(ε). (15)
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Now, for a fixed function x ∈ X and for arbitrary numbers t, s ∈ R+, in virtue of the
representation of the operator Q, we obtain

||(Qx)(t)− (Qx)(s)||l∞ ⩽ ||a(t)− a(s)||l∞ + ||(Hx)(t)||l∞ ||(Fx)(t)− (Fx)(s)||l∞
+||(Fx)(s)||l∞ ||(Hx)(t)− (Hx)(s)||l∞ ,

where we put a(t) = (an(t)).
Next, let us fix ε > 0 and assume that |t − s| ⩽ ε. Then, keeping in mind (12), (14), (10)

and (15), from the above inequality we obtain

ω∞(Qx, ε) ⩽ ω∞(a, ε) + G1h
[
k(r0)ω

∞(x, ε) + ω1
∞( f , ε)

]
+
(
r0k(r0) + F

)
Hωg(ε).

Hence, taking into account the above established properties of the functions
ε → ω1

∞( f , ε), ε → ωg(ε) and assumption (i), we derive the following inequality

ω∞
0 (QX) ⩽ G1hk(r0)ω

∞
0 (X). (16)

Now, we are going to consider the second component of the MNC µ3
c defined by

Formula (9). Recall that the mentioned term is denoted by µ3
∞ and is given by Formula (7).

To this end let us fix a nonempty set X ⊂ Br0 and choose arbitrary functions x = x(t), y =
y(t) ∈ X. Then, for fixed t ∈ R+ and n ∈ N, we obtain:

|(Qnx)(t)− (Qny)(t)| ⩽ |(Fnx)(t)(Hnx)(t)− (Fny)(t)(Hny)(t)|
⩽ |(Hnx)(t)||(Fnx)(t)− (Fny)(t)|+ |(Fny)(t)||(Hnx)(t)− (Hny)(t)|.

(17)

Further, we intend to estimate the components on the right-hand side of inequality (17).
To realize this goal, let us fix a natural number n and a number T > 0. Then. for t ∈ [0, T]
and for k ∈ N, k ⩾ n, in view of assumptions (viii) and (iii), for arbitrarily fixed functions
x, y ∈ X, we obtain∫ ∞

0
|gk(t, τ)||hk(τ, x1(τ), x2(τ), . . . )− hk(τ, y1(τ), y2(τ), . . . )|dτ

⩽ m(r0)
∫ ∞

0
|gk(t, τ)|(sup{|xi(τ)− yi(τ)| : i ⩾ k})dτ

⩽ m(r0)
∫ ∞

0
|gk(t, τ)|

{
sup

t∈[0,T]

{
sup
i⩾k

|xi(t)− yi(t)|
}}

dτ

⩽ G1m(r0)

{
sup

t∈[0,T]

{
sup
i⩾k

{sup{|xi(t)− yi(t)| : x = x(t), y = y(t) ∈ X}}
}}

.

From the above estimate, we obtain

sup
t∈[0,T]

{
sup
k⩾n

{sup{|(Hkx)(t)− (Hky)(t)| : x = x(t), y = y(t) ∈ X}}
}

⩽ G1m(r0)

{
sup

t∈[0,T]

{
sup
i⩾n

{sup{|xi(t)− yi(t)| : x = x(t), y = y(t) ∈ X}}
}}

.

Hence, keeping in mind Formula (7), we obtain the following inequality

µ3
∞(HX) ⩽ G1m(r0)µ

3
∞(X). (18)
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In the similar way as above, for arbitrarily fixed n ∈ N, t ∈ R+ and for x = x(t), y =
y(t) ∈ X, taking into account assumption (vi), we obtain

|(Fnx)(t)− (Fny)(t)| ⩽ k(r0) sup{|xi(t)− yi(t)| : i ⩾ n}.

This yields the following estimate

sup
t∈[0,T]

{
sup
i⩾n

{sup{|(Fix)(t)− (Fiy)(t)| : x = x(t), y = y(t) ∈ X}}
}

⩽ k(r0)

{
sup

t∈[0,T]

{
sup
i⩾n

{sup{|xi(t)− yi(t)| : x = x(t), y = y(t) ∈ X}}
}}

.

Now, taking into account the above estimate and Formula (7), we derive the following
inequality

µ3
∞(FX) ⩽ k(r0)µ

3
∞(X). (19)

Finally, linking estimates (17), (12), (10), (18) and (19), we obtain

µ3
∞(QX) ⩽ G1hk(r0)µ

3
∞(X) + (r0k(r0) + F)G1m(r0)µ

3
∞(X). (20)

In what follows, we will investigate the third component of the MNC µ3
c defined by (9)

i.e., the term c(X) expressed by Formula (8). To this end, let us fix a nonempty subset X of
Br0 . Let us take functions x = x(t), y = y(t) ∈ X. Further, fix T > 0 and take t ⩾ T. Then,
for an arbitrary number n ∈ N, based on calculations performed before estimate (18), we
obtain

|(Hnx)(t)− (Hny)(t)| ⩽ G1m(r0)

{
sup
t⩾T

{
sup
i⩾n

|xi(t)− yi(t)|
}}

.

The above estimate leads to the following inequality

sup
t⩾T

{
sup

{
sup
n∈N

|(Hnx)(t)− (Hny)(t)| : x = x(t), y = y(t) ∈ X

}}

⩽ G1m(r0)

{
sup
t⩾T

{
sup

{
sup
n∈N

|xn(t)− yn(t)| : x = x(t), y = y(t) ∈ X

}}}
.

Hence, we obtain
c(HX) ⩽ G1m(r0)c(X). (21)

In the sequel, arguing in the style of calculations preceded estimate (19), we derive the
inequality

c(FX) ⩽ k(r0)c(X). (22)

Finally, combining estimates (17), (21), (22), (10) and (12), we arrive to the following
inequality

c(QX) ⩽ G1hk(r0)c(X) + (r0k(r0) + F)G1m(r0)c(X). (23)

Now, linking estimates (16), (20), (23) and taking into account Formula (9) expressing
the MNC µ3

c , we obtain

µ3
c (QX) ⩽ G1hk(r0)ω

∞
0 (X)

+G1hk(r0)µ
3
∞(X) +

(
r0k(r0) + F

)
G1m(r0)µ

3
∞(X)

+G1hk(r0)c(X) +
(
r0k(r0) + F

)
G1m(r0)c(X).
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Hence, we deduce the following estimate

µ3
c (QX) ⩽

[
G1hk(r0) +

(
r0k(r0) + F

)
G1m(r0)

]
µ3

c (X).

Next, keeping in mind the above estimate, in virtue of the facts derived in the above-
conducted proof, and taking into account assumption (xi) as well as Theorem 1, we infer
that there exists at least one element x ∈ Br0 being a fixed point of the operator Q in the
ball Br0 . Obviously the function x = x(t) is a solution of IS of IEs (1) in the space BC∞.

Moreover, in view of the remark made after Theorem 1 and the description of the
kernel of the MNC µc given after Formula (5), we conclude that the thickness of the
bundle formed by graphs of solutions of IS of IEs (1) tends to zero at infinity. The proof is
complete.

The above proved theorem can be treated as the characterization of the set of solutions
of IS of IEs (1) in terms of the concept of asymptotic stability. To show this fact, we adopt
the definition of asymptotic stability accepted in the paper of Banaś and Rzepka [23] (cf.
also Hu and Yan [24]).

Indeed, let us consider a nonempty subset Ω of the space BC∞ = BC(R+, l∞). Let Q
be an operator defined on Ω with values in the space BC∞.

Consider the operator equation having the form

x(t) = (Qx)(t), t ∈ R+. (24)

Definition 2. We say that solutions of equation (24) are asymptotically stable if there exists a ball
B(x0, r) in the space BC∞ with B(x0, r) ∩ Ω ̸= 0 such that for every ε > 0 there exists a number
T > 0 with the property

||x(t)− y(t)|| ⩽ ε

for all solutions x, y of equation (24) such that x, y ∈ B(x0, r) ∩ Ω and for t ⩾ T.

Notice that in the light of Definition 2, we can formulate Theorem 2 exposing the
property of the asymptotic stability of solutions of IS of IEs (1).

In fact, we have the following version of the mentioned theorem.

Theorem 3. Under assumptions (i)–(xi) the IS of IEs (1) has at least one solution x = (xn(t)) in
the space BC∞. Moreover, solutions of the IS of IEs (1) are asymptotically stable.

4. An Example

This section is dedicated to presenting an example that illustrates the applicability of
our main result contained in Theorem 2 (cf. also Theorem 3).

Namely, we will consider the following IS of IEs:

xn(t) = cos
(

n2t + 1
t + n2

)
+

(
2xn(t)

x2
n(t) + n

+
x2

n+1(t) + 1
2n + 3

) ∫ ∞

0

1
βn + t2 + τ2

arctan(n + x2
n(τ))

γ + 2n + τ2 dτ,
(25)

where t ∈ R+ and n = 1, 2, . . . . Moreover, β and γ are positive constants which will be
specified later.

Observe that IS of IEs (25) is a particular case of IS (1) if we put

an(t) = cos
(

n2t + 1
t + n2

)
, (26)
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fn(t, x1, x2, . . . ) =
2xn

x2
n + n

+
x2

n+1 + 1
2n + 3

, (27)

gn(t, τ) =
1

βn + t2 + τ2 , (28)

hn(t, x1, x2, . . . ) =
arctan(n + x2

n)

γ + 2n + τ2 (29)

for n = 1, 2, . . . and for t ∈ R+.
To show that IS of IEs (25) has a solution in the space BC∞ we will apply Theorem 2.

To this end we show that functions defined by (26)–(29) satisfy assumptions (i)–(xi) of
that theorem.

Let us start with the observation that the function an(t) given by (26) satisfies the
Lipschitz condition with the constant L = 1 for n = 1, 2, . . . . Hence, we deduce that these
functions are equicontinuous on R+. Apart from this, we obtain

A = sup{|an(t)| : n = 1, 2, . . . , t ∈ R+} = 1.

Further on, let us observe that the functions fn = fn(t, x1, x2, . . . ) defined by (27) act
from the set R+ ×R∞ into R for n = 1, 2, . . . . Since these functions do not depend explicitly
on t, we infer that there is a satisfied assumption (v).

Next, let us fix a number r > 0 and choose x = (xi), y = (yi) ∈ l∞ such that
||x||l∞ ⩽ r, ||y||l∞ ⩽ r. Then, taking into account Formula (27), for an arbitrary number
n ∈ N, we have

| fn(t, x1, x2, . . . )− fn(t, y1, y2, . . . )|

⩽ 2
∣∣∣∣ xn

n + x2
n
− yn

n + y2
n

∣∣∣∣+ 1
2n + 3

∣∣∣x2
n+1 − y2

n+1

∣∣∣
⩽

5
2
|xn − yn|+

2
5

r|xn+1 − yn+1|

⩽ max
{

5
2

,
2
5

r
}
{|xn − yn|+ |xn+1 − yn+1|}

⩽ 2 max
{

5
2

,
2
5

r
}

sup{|xi − yi| : i ⩾ n}.

The above inequality implies that there is a satisfied assumption (vi), where we can
put k(r) = 2 max

{ 5
2 , 2

5 r
}

.
Further, let us notice that f n(t) = | fn(t, 0, 0, . . . )| = 0. This implies that the functions

fn (n = 1, 2, . . . ) satisfy assumption (vii) with F = 0.
In what follows let us consider the functions gn(t, τ) defined by (28). Observe that

these functions are continuous on the set R2
+. Further, taking arbitrarily fixed numbers

t1, t2 ∈ R+ (without loss of generality we may assume that t1 < t2) and n ∈ N, τ ∈ R+, we
obtain the following estimates

|gn(t2, τ)− gn(t1, τ)| = 1
βn + τ2 + t2

1
− 1

βn + τ2 + t2
2

=
t2
2 − t2

1
(βn + τ2 + t2

1)(βn + τ2 + t2
2)

⩽ |t2 − t1|
t1 + t2

(βn + τ2 + t2
1)(βn + τ2 + t2

2)

= |t2 − t1|
(

t1

βn + τ2 + t2
1
+

t2

βn + τ2 + t2
2

)

⩽
1√

βn + τ2
|t2 − t1| ⩽

1√
βn

|t2 − t1| ⩽
1√

β
|t2 − t1|.

From the above estimate we conclude that the functions gn(t, τ) (n = 1, 2, . . . ) satisfy
assumption (ii).
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Next, let us notice that the following inequality holds for arbitrary t, τ ∈ R+ and for
n ∈ N:

|gn(t, τ)| = 1
βn + τ2 + t2

⩽
1

βn
⩽

1
β

.

Thus, the functions gn(t, τ) satisfy assumption (iv) with the constant G2 = 1
β .

Now, keeping in mind that the function gn(t, τ) (n = 1, 2, . . . ) is continuous on R2
+,

for any arbitrarily fixed n ∈ N we obtain∫ ∞

0
|gn(t, τ)|dτ =

∫ ∞

0

1
βn + t2 + τ2 dτ =

π

2
√

βn + t2
⩽

π

2
√

β
.

Hence, we derive that there is a satisfied assumption (iii) with the constant G1 = π

2
√

β
.

Further on, we intend to verify assumption (viii). To this end let us take r > 0 and
choose arbitrary x = (xi), y = (yi) ∈ l∞ such that ||x||l∞ ⩽ r and ||y||l∞ ⩽ r. Then, for an
arbitrary t ∈ R+ and n ∈ N, in view of Formula (29), we obtain:

|hn(t, x1, x2, . . . )− hn(t, y1, y2, . . . )|

=
1

γ + 2n + t2 | arctan(n + x2
n)− arctan(n + y2

n)|

⩽
1

γ + 2
|x2

n − y2
n| ⩽

1
γ + 2

|xn − yn|(|xn|+ |yn|)

⩽
1

γ + 2
2r|xn − yn| ⩽

2r
γ + 2

sup{|xi − yi| : i ⩾ n}.

From the obtained estimate we infer that the functions hn(t, x1, x2, . . . ) (n = 1, 2, . . . )
satisfy assumption (vii) with the function m(r) = 2r

γ+2 .
Additionally, we obtain

|hn(t, x1, x2, . . . )| ⩽ π

2
· 1

γ + 2n
⩽

π

2(γ + 2)

for n ∈ N and t ∈ R+. This yields that there is a satisfied assumption (ix) with the constant
h = π

2(γ+2) .
In what follows, fixing n ∈ N and keeping in mind Formula (29), for an arbitrary

function x = (xn(t)) ∈ BC∞ we obtain

∫ ∞

0
|hn(s, x1(s), x2(s), . . . )|ds =

∫ ∞

0

arctan(n + x2
n(s))

γ + 2n + s2 ds

⩽
π

2

∫ ∞

0

ds
γ + 2n + s2 =

π

2
· π

2
· 1√

γ + 2n
=

π2

4
· 1√

γ + 2n
⩽

π2

4
√

γ + 2
.

This shows that there is satisfied assumption (x) with the constant H = π2

4
√

γ+2 .

Finally, combining the calculated values of the constants A, F, G1, G2, h, H and
keeping in mind the formulas expressing the functions k(r) and m(r), we conclude that the
first inequality from assumption (xi) has the form

1 +
π2

2
√

β(γ + 2)
· r · max

{
5
2

,
2
5

r
}
⩽ r.

We can easily check that taking, for example β = 36, γ = 34 we convert the above
inequality to the form

1 +
π2

432
· r · max

{
5
2

,
2
5

r
}
⩽ r. (30)
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Then, for r = r0 = 3, we see that there is satisfied inequality (30).
On the other hand, the second inequality from assumption (xi) has the form

G1hk(r0) + r0k(r0)G1m(r0) < 1. (31)

Taking into account the above established values of the constants G1, h and the form
of the functions k(r) and m(r) we obtain the following form of inequality (31):

π2

432
max

{
5
2

,
2
5

r0

}
+

πr2
0

108
· max

{
5
2

,
2
5

r0

}
< 1. (32)

It is easily seen that the number r0 = 3 satisfies inequality (32).
Now, taking into account Theorem 2, we infer that IS of IEs (25) has at least one solution

x(t) = (xn(t)) which belongs to the ball B3 in the space BC∞. Moreover, in the light of
Theorem 3 all solutions of IS of IEs (25) belonging to the ball B3 are asymptotically stable.

5. Discussion

We explain the new results of this study.

1◦. To the best of our knowledge, taking into account the existing literature, there are
no results concerning the existence of asymptotically stable solutions of an IS of
IEs of Hammerstein type. In this regard, the results obtained in the paper are new
and original.

2◦. The basic tool used in the paper is the technique of suitable chosen measures of
noncompactness. That technique is applied in the space BC∞ of functions defined on
the real half-axis R+ with values in the space of bounded real sequences. The space
BC∞ is very convenient in the study of ISs of IEs of various types.

3◦. In our opinion, the results obtained in the paper can be generalized for ISs of IEs of
Urysohn type. The results in this direction will appear elsewhere in due course.

6. Conclusions

Our study is rather developed since it discusses the subject of IS of IEs. It is significant
that the study of an IE generally requires extensive and developed theory as well as the use
of advanced tools of functional analysis.

In our investigations, we decided to use the advanced technique of nonlinear analysis
depending on measures of noncompactness. Such an approach enables us to simplify the
very extensive considerations expected in such a study.

The research presented above indicates that our direction of investigation seems
suitable for realizing the goals of the paper.

The investigations conducted in the paper are realized through the broad description
of the tools used in our study. Those tools are mainly determined by the concept of an
MNC. Therefore, we first present the mentioned concept as well as the fixed point theorem
of the Darbo type closely associated with the concept of MNCs. That theorem plays an
essential role in our investigations.

The main part of our paper is fulfilled by detailed considerations connected with the
solvability of IS of IEs of the Hammerstein type. All details of those considerations are
presented step-by-step in the paper. Let us pay attention to the fact that it would be very
interesting to provide a numerical simulation of the investigations of the paper associated
with the existence of solutions of IS of IEs and the asymptotic stability of those solutions.
However, such a task requires us to prepare a new, very extensive paper since we would
consider the IS of the equations in question.

Such a paper will be prepared in the future and appear elsewhere.
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21. Banaś, J.; Chlebowicz, A.; Woś, W. On measures of noncompactness in the space of functions defined on the half-axis with values

in a Banach space. J. Math. Anal. Appl. 2020, 489, 124187. [CrossRef]
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