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Abstract: In this work, we determine the maximum general Randić index (a general symmetric
function of vertex degrees) for η0 ≤ η < 0 among all n-vertex unicyclic graphs with a fixed maximum
degree ∆ and the maximum and the second maximum general Randić index for η0 ≤ η < 0 among
all n-vertex unicyclic graphs, where η0 ≈ −0.21. We establish sharp inequalities and identify the
graphs attaining the inequalities. Thereby, extremal graphs are obtained for the general Randić index,
and certain open gaps in the theory of extremal unicyclic graphs are filled (some open problems are
provided). We use computational software to calculate the Randić index for the chemical trees up
to order 7 and use the statistical (linear regression) analysis to discuss the various applications of
the Randić index with the physical properties of drugs on the said chemical trees. We show that the
Randić index is better correlated with the heat of vaporization for these alkanes.
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1. Introduction

Consider a simple graph G = (V, E) with a set of vertices V = V(G) and a set of edges
E = E(G). The degree of a vertex u, denoted by d(u), is the number of edges incident with
u. The neighbor set of u, denoted by N(u), is the set of all vertices that are connected to u
by an edge, and the maximum degree of vertices in G is denoted by δ(G). G + uv denotes
the graph that is obtained from G by adding an edge uv /∈ E(G), and G − uv denotes the
subgraph of G that is obtained by deleting an edge uv ∈ E(G) from G. Consider the path
and cycle graphs on n ≥ 3 vertices, denoted by Pn and Cn, respectively. To attach Pr to a
vertex u in G means to add an edge from u and any endpoint of Pr. For r = 1, we attach a
vertex of degree 1 to u. NG(u) denotes the neighborhood of u.

In [1], Randić introduced one of the most widely used molecular descriptors (topo-
logical index) in structure–activity and structure–property relationship studies, which was
called the Randić index R(G) [2–5]. Moreover, the product-connectivity index is another
way to refer to this index, and it is defined as follows:

R(G) = ∑
uv∈E(G)

(d(u)d(v))−
1
2 .

The authors in [6] generalized R(G) by introducing the general Randić index as

Rη(G) = ∑
uv∈E(G)

(d(u)d(v))η ,

where η is real.
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Determining the upper and lower bounds for the general Randić index and the
characterization of the corresponding extremal graphs have received increasing attention.
Several results related to extremal graphs have been published for various topological
indices among the different classes of graphs, since for general graphs extremal problems
are very hard. Most of the time, these extremal problems are studied for classes of graphs so
that a deep analysis can be carried out and thereby some extremal families with respect to a
topological index can be identified. In this study, we consider the general Randić index for
the class of unicyclic graphs with order n and fix their invariants like the maximum degree.

In [7,8], two variants of Rη(G) were studied along with lower and upper bounds for
connected graphs, trees, and chemical trees. Also, in [9], Li and Yang found the maximum
and the minimum general Randić indices of graphs for any value of η. Researchers have
recently made progress on several open problems related to the general Randić index. Rada
and Cruz [10] studied an unsolved case, while Cavers et al. [11] established a relationship
between the general Randić index and the normalized eigenvalues of the Laplacian matrix
of a graph. Guji and Vumar [12] determined, for η ≥ 1, the maximum general Randić index
of bicyclic graphs, and in [13] the minimum Rη(G) was found for chemical trees with a
given number of pendent vertices for any η. Hu et al. [14,15] determined the maximum
and minimum general Randić indices of trees for certain ranges of η. An extensive survey
of the Randi index was carried out by Li and Shi in [16]. Dalfó [17] obtained interesting
results related to the Randić of graphs. Recently, some new results related to the Randić
index were given in [18]. Zhand and Wu [19] and Liang and Wu [20] obtained results for
the Randić index of line graphs. The Randić index and the Randić energy of graphs is a well
studied branch of theory (see the recently published [21] and the references cited therein).

For the n-vertex trees with k (3 ≤ k ≤ n − 2) pendent vertices with −1 ≤ η < 0,
Liu et al. [22] found bounds for Rη(G). Cui and Zhong [23] determined the maximum
general Randić indices of n-vertex trees and chemical trees with k pendent vertices for
4 ≤ k ≤

⌊ n+2
3

⌋
and η0 ≤ η < 0, where η0 ≈ −0.5122. Liu et al. [24] characterized

the trees with extremal Rη(G) for trees with the maximum degree. See [25–32] for more
mathematical properties of the general Randić index. There are several other well-known
indices and spectral invariants like in [33,34].

In this paper, we start with some lemmas and use them to determine the maximum
general Randić index for η0 ≤ η < 0 among all n-vertex unicyclic graphs with a fixed maxi-
mum degree ∆ and characterize the extremal graphs attaining the bounds (see Theorem 1).
Moreover, in Theorem 2, we find the maximum and the second maximum general Randić
index for η0 ≤ η < 0 among all n-vertex unicyclic graphs, where η0 ≈ −0.21 is a solution
of the equation 9η + 2η − 2 × 4η = 0, and some unique maximal graphs are identified with
respect the mentioned invariants. At the end of Section 2, some open problems are given. In
Section 3, we carry out QSPR/QSAR analysis of the Randić index and its linear regression
analysis, with the help of computational software. We were able to successfully show that
the Randić index is better correlated with the heat of vaporization for these chemical tress
of orders up to 7 (alkanes).

2. Unicyclic Graphs with Maximum General Randić Index

Next, we give some lemmas, which will be applied in the main results.

Lemma 1. Consider a connected graph Q of order n ≥ 2. If G1 and G2 are the graphs obtained
from Q by attaching Pa and Pb to u ∈ V(Q) and attaching u to a path Pa+b, respectively, where a
and b are positive integers, then

Rη(G2) > Rη(G1) for η1 < η < 0,

where η1 ≈ −0.284 is a solution of the equation 2 · 6η + 2η − 3 · 4η = 0.
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Proof. Let dQ(u) = t and NQ(u) = {u1, u2, · · · , ut}. We have three cases.
(i) If a = b = 1, then

Rη(G1)− Rη(G2) =
t

∑
i=1

d(ui)
η

[
(t + 2)η − (t + 1)η

]
+ 2(t + 2)η − 2η(t + 1)η − 2η

< 0,

since η < 0, g′(t) = 2η
(
(t+ 2)η−1 − (2t+ 2)η−1) < 0, for g(t) = 2(t+ 2)η − 2η(t+ 1)η − 2η

and g(t) < g(0) = 2 · 2η − 2η − 2η = 0.
(ii) If a ≥ 2 and b = 1, then

Rη(G1)− Rη(G2) =
t

∑
i=1

d(ui)
η

[
(t + 2)η − (t + 1)η

]
+ 2η(t + 2)η + (t + 2)η

− 2η(t + 1)η − 4η

< 6η + 3η − 2 · 4η < 0.

In fact, let g(t) = 2η(t + 2)η + (t + 2)η − 2η(t + 1)η − 4η; then,

g′(t) = η
(
(2η + 1)(t + 2)η−1 − 2η(t + 1)η−1),

and
(2η + 1)(t + 2)η−1 − 2η(t + 1)η−1 > 0

if and only if ( t+2
t+1)

1−η < 1 + 2−η. We note that t ≥ 1, η < 0, ( t+2
t+1)

1−η ≤ ( 3
2)

1−η, and
( 3

2)
1−η < 1+ 2−η. So, g′(t) < 0, g(t) ≤ g(1) = 6η + 3η − 2 · 4η < 0 and Rη(G1)−Rη(G2) < 0,

which implies the result.
(iii) If a, b ≥ 2, then

Rη(G1)− Rη(G2) =
t

∑
i=1

d(ui)
η

[
(t + 2)η − (t + 1)η

]
+ 2 · 2η(t + 2)η + 2η

− 2η(t + 1)η − 2 · 4η .

Clearly, the function f (t) = 2 · 2η(t + 2)η + 2η − 2η(t + 1)η − 2 · 4η is decreasing, since
f ′(t) = 2ηη(2(t + 2)η−1 − (t + 1)η−1), and 2(t + 2)η−1 − (t + 1)η−1 > 0 if and only if
2 > ( t+2

t+1 )
1−η , and ( t+2

t+1 )
1−η ≤ ( 3

2 )
1−η < 2, for t ≥ 1 and −0.7 < η < 0. Thus,

2 · 2η(t + 2)η + 2η − 2η(t + 1)η − 2 · 4η ≤ 2 · 6η + 2η − 3 · 4η < 0

provided η1 < η < 0. So, we have

Rη(G1)− Rη(G2) < 0

for η1 < η < 0.
The proof is complete.

Lemma 2. Consider a connected graph M such that |V(M)| ≥ 3. Let u ∈ V(M) be a degree 2
vertex with its two neighbors u1 and u2. If d(u2) ≤ 3, H = M ∪ Pa + uv1 is the graph obtained
from M by attaching a path Pa = v1v2 · · · va to u and H′ = H − {uu2}+ {vau2}, then

Rη(H′) > Rη(H) for η0 ≤ η < 0,

where η0 ≈ −0.21 is a solution of the equation 9η + 2η − 2 × 4η = 0.

Proof. Note that f (x) = (2x)η − (3x)η is decreasing for x ≥ 1 and η < 0.
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If dH(u, va) = 1, i.e., a = 1, then, for η0 ≤ η < 0, we have

Rη(H)− Rη(H′) = 3η(d(u1))
η + 3η + 3η(d(u2))

η − 2η(d(u1))
η − 4η − 2η(d(u2))

η

= (3η − 2η)((d(u1))
η + (d(u2))

η) + 3η − 4η

< (3η − 2η)d(u2)
η + 3η − 4η

< 9η − 6η + 3η − 4η < 0.

If dH(u, u′) ≥ 2, i.e., a > 1, then, for η0 ≤ η < 0, we have

Rη(H)− Rη(H′) = 3η(d(u1))
η + 3η(d(u2))

η + 6η + 2η − 2η(d(u1))
η

− 2 · 4η − 2η(d(u2))
η

= (3η − 2η)((d(u1))
η + (d(u2))

η) + 6η + 2η − 2 · 4η

< (3η − 2η)(d(u2))
η + 6η + 2η − 2 · 4η

< 9η + 2η − 2 · 4η < 0,

as 9η + 2η − 2 · 4η < 0, for η0 ≤ η < 0.

Next, we consider the maximum Rη(G) of unicyclic graphs with a given maximum degree.
For n ≥ 3, let U (n, ∆) be a class of simple unicyclic graphs with n vertices and a

maximum degree of ∆ (2 ≤ ∆ ≤ n − 1). Specifically, U (n, ∆) = {Cn} for ∆ = 2.
For n+2

2 ≤ ∆ ≤ n− 1, Un,∆ denotes the unicyclic graph obtained by attaching n−∆− 1
paths of a length of at least one to a vertex of K3 and 2∆ − n − 1 pendant vertices.

In the following, we will determine the maximum value of Rη(G) of graphs in U (n, ∆)
along with identifying corresponding extremal graphs. Consequently, for η0 ≤ η < 0, we
find the unicyclic graph with the first and the second maximum Rη(G).

Theorem 1. Let G ∈ U (n, ∆) be a unicyclic graph and η0 ≤ η < 0. Then,

Rη(G) ≤


(n − ∆ − 1)2η + (n − ∆ + 1)(2∆)η + (2∆ − n − 1)(∆)η + 4η ,

i f n+2
2 ≤ ∆ ≤ n − 1

(∆ − 2)2η + ∆(2∆)η + (n − 2∆ + 2)4η , i f 2 ≤ ∆ ≤ n+1
2 .

with equality if and only if G = Un,∆ for n+2
2 ≤ ∆ ≤ n − 1, and G is a unicyclic graph obtained

from a cycle by attaching ∆ − 2 paths of a length of at least one to a vertex for 2 ≤ ∆ ≤ n+1
2 .

Proof. Let G be a graph that belongs to U (n, ∆) with a maximum general Randić index, v
be a vertex in G with degree ∆, and C be the unique cycle of G.

The case ∆ = 2 is trivial since in this case G = Cn. In the following, we assume that
∆ ≥ 3.

If ∆ = 3 and there exists a vertex of degree 3 outside the cycle C, then Lemma 1 implies
that we can obtain a graph that belongs to U (n, 3) with a greater general Randić index, and
this gives a contradiction. If C has at least two vertices of degree 3, then, using Lemma 2,
the same conclusion is obtained. Thus, the unique vertex of degree 3 in G is v ∈ V(C).

Now, if v has a neighbor of degree 1, then

Rη(G) = (n − 3)4η + 2 × 6η + 3η for n ≥ 4.

But if v has no neighbors of degree 1, then

Rη(G) = (n − 4)4η + 3 × 6η + 2η for n ≥ 5.
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By subtracting the two values, we obtain

[(n − 3)4η + 2 × 6η + 3η ]−[(n − 4)4η + 3 × 6η + 2η ]

= 4η − 6η + 3η − 2η < 0 for η < 0.

Hence, G = U4,3 is a graph obtained by adding a vertex, which is a pendant to K3 (triangle)
for n = 4, and G is a graph that is obtained by attaching a cycle for n ≥ 5 to a path of a
length of at least 2.

Let ∆ ≥ 4. Similar to the case where ∆ = 3, it can be concluded that v is the unique
vertex with the maximum degree in G. We will show that v ∈ V(C). Otherwise, consider a
vertex w on the cycle C where dG(v, w) is equal to min{dG(v, y) : y ∈ V(C)}. If there is a
vertex different from v of a degree greater than 2 outside C, or if there is a vertex different
from w of a degree greater than 2 on C, then, using Lemmas 1 and 2, we can obtain a
graph in U (n, ∆) with a greater Rη(G), and this leads to a contradiction. Therefore, w and
v are vertices of a degree higher than 2 in G. Moreover, dG(v) = ∆ and dG(w) = 3. Now,
consider the path connecting v and w, say Q, and let v1, v2, · · · , v∆−1 be the neighbors of
v outside Q and di = dG(vi) for i = 1, · · · , ∆ − 1. Then, d1, · · · , d∆−1 ∈ {1, 2}. Otherwise,
we can obtain a graph in U (n, ∆) with a higher Rη(G) using Lemma 1. Now, let

G1 = G − {vv3, · · · , vv∆−1}+ {wv3, · · · , wv∆−1}.

Then, G1 ∈ U (n, ∆), dG1(w) = ∆, dG1(v) = 3, and

Rη(G1)− Rη(G) = (3d1)
η − (d1∆)η + (3d2)

η − (d2∆)η + 2(2∆)η − 2 × 6η

> 6η − (2∆)η + 6η − (2∆)η + 2(2∆)η − 2 × 6η = 0,

since the function (3x)η − (x∆)η is strictly decreasing for x ≥ 1 for ∆ ≥ 4.
Note that dG1(v) = 3. Using Lemma 1 again, we can obtain a graph G′ ∈ U (n, ∆) with

dG′(w) = ∆ and dG′(v) = 2 such that Rη(G′) > Rη(G1) ≥ Rη(G), a contradiction. Hence,
v is on C.

If a vertex of a degree higher than 2 exists outside cycle C or a vertex different from
v of a degree greater than 2 exists on C, then, using the same proof as before, we can
obtain a graph that belongs to U (n, ∆) with a greater general Randić index, and this is
a contradiction. Therefore, G is obtained from C by attaching v to ∆ − 2 paths. Now,
suppose that v has k neighbors of degree 2. Thus, k ≤ min{n − ∆ − 1, ∆ − 2}. When
n − ∆ − 1 ≥ ∆ − 2, i.e., ∆ ≤ n+1

2 , we have 0 ≤ k ≤ ∆ − 2. When n − ∆ − 1 < ∆ − 2, that is,
∆ ≥ n+2

2 , we have 0 ≤ k ≤ n − ∆ − 1. From the definition of the general Randić index,

Rη(G) = k2η + (k + 2)(2∆)η + (∆ − k − 2)∆η + (n − ∆ − k)4η

= (2η + (2∆)η − ∆η − 4η)k + (∆ − 2)∆η + 2(2∆)η + 4η(n − ∆).

As the function f (x) = (2x)η − xη is strictly increasing for x ≥ 1 with η < 0, we have
f (∆) ≥ f (4) > f (2) and

2η + (2∆)η − ∆η − 4η = f (∆)− f (2) > 0.

It follows that
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Rη(G) ≤



(2η + (2∆)η − ∆η − 4η)(n − ∆ − 1) + (∆ − 2)∆η + 2(2∆)η + 4η(n − ∆),
i f n+2

2 ≤ ∆ ≤ n − 1

(2η + (2∆)η − ∆η − 4η)(∆ − 2) + (∆ − 2)∆η + 2(2∆)η + 4η(n − ∆),
i f 2 ≤ ∆ ≤ n+1

2

=


(n − ∆ − 1)2η + (n − ∆ + 1)(2∆)η + (2∆ − n − 1)∆η + 4η ,

i f n+2
2 ≤ ∆ ≤ n − 1

(∆ − 2)2η + ∆(2∆)η + (n − 2∆ + 2)4η , i f 2 ≤ ∆ ≤ n+1
2 ,

with equality if and only if k = n − ∆ − 1; that is, G = Un,∆ for n+2
2 ≤ ∆ ≤ n − 1, and

k = ∆ − 2. G is unicyclic and obtained by adding ∆ − 2 paths of a length of at least one to a
common vertex on C for 2 ≤ ∆ ≤ n+1

2 .

The following result characterizes the extremal graphs with the first and the second
maximum general Randić index for η0 ≤ η < 0 among all n-vertex unicyclic graphs.

Theorem 2. Let η0 ≤ η < 0. Then, for all unicyclic graphs with at least four vertices, we have
the following:

(i) Cn is a unique graph attaining the maximum Rη(G) , and Rη(Cn) = n × 4η ;
(ii) In the case where n = 4, then U4,3 is a unique graph with the second largest Rη(G), and

Rη(U4,3) = 2 × 6η + 4η + 3η ;
(iii) For n ≥ 5, the graphs with the second maximum Rη(G) are the graphs that are obtained

by attaching a vertex on a cycle to a path of a length of at least one, and their general Randić indices
are equal to (n − 4)4η + 3 × 6η + 2η .

Proof. For n = 4, there are only two unicyclic graphs C4 and U4,3 such that

Rη(U4,3)− Rη(C4) = (2 × 6η + 4η + 3η)− 4 × 4η

= 2 × 6η − 3 × 4η + 3η < 0.

The result is true.
Now, let n ≥ 5 and G be an n-vertex unicyclic graph with the maximum degree ∆,

where 2 ≤ ∆ ≤ n − 1.
Let f (x) = (x − 2)2η + x(2x)η + (n − 2x + 2)4η .
If n+2

2 ≤ ∆ ≤ n − 1, then using Theorem 3,

Rη(G) ≤ (n − ∆ − 1)2η + (n − ∆ + 1)(2∆)η + (2∆ − n − 1)∆η + 4η

= f (∆) + (n − 2∆ + 1)(2η − 4η + (2∆)η − ∆η)

< f (∆),

since n − 2∆ + 1 < 0, and the function xη − (2x)η is strictly decreasing for x ≥ 1 and ∆ ≥ 4.
If 2 ≤ ∆ ≤ n+1

2 , then, using Theorem 3, we have Rη ≤ f (∆) with equality if G is a
unicyclic graph that is obtained by attaching a unique vertex of a cycle to ∆ − 2 paths of a
length of at least one.

In what follows, we shall prove that f (x) is strictly decreasing for x ≥ 2 by showing
that f ′(x) < 0. Therefore, we calculate

f ′(x) = 2η + (2x)η + 2ηx(2x)η−1 − 2 × 4η .

Let
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g(x) = (2x)η + 2ηx(2x)η−1 = 2η(1 + η)xη .

Then,

g′(x) = 2η(1 + η)ηxη−1 < 0,

i.e., g(x) is strictly decreasing for x ≥ 2, and this implies that g(x) ≤ 4η + η × 4η .
So,

f ′(x) ≤ 4η

((
1
2

)η

+ η − 1
)

.

Consider h(η) = η +
(

1
2

)η
. We have h′′(η) = (ln2)2

(
1
2

)η
> 0, and h(η) is strictly convex.

Since h(−1) = h(0) = 1, we have h(η) < 1 for −1 < η < 0, and f ′(x) < 0 for every
− 1

2 ≤ η < 0. Hence, f (x) is strictly decreasing for x ≥ 2.
It follows that

Rη(G) < f (∆) < f (3) < f (2) for 3 <
n + 2

2
≤ ∆ ≤ n − 1,

and
Rη(G) ≤ f (∆) ≤ f (3) < f (2) for 3 ≤ ∆ ≤ n + 1

2
.

Thus, among all n-vertex simple unicylic graphs, the maximum general Randić index is
f (2) and the corresponding extremal graph is Cn. Moreover, the second maximum general
Randić index is f (3), and the corresponding extremal graphs are these graphs with the
maximum Rη(G) among all n-vertex unicyclic graphs with ∆ = 3, i.e., n-vertex graphs that
are obtained by attaching a vertex on a cycle to a path of a length of at least one.

We know that Li et al. [29] found, for η > 0, the graphs with the maximum Rη(G)
among all n-vertex unicyclic graphs, and Liu et al. [24] characterized the trees with maximal
and minimal Rη(G), respectively, among all trees with ∆. In connection with these results,
the following problems are still open:

Problem 1. For η < 0, determine the graphs with the maximum Rη(G) among all unicyclic
graphs with n vertices.

Problem 2. Characterize the graphs with minimal and maximal Rη(G), respectively, among all
unicyclic graphs with a given ∆.

Problem 3. Characterize the graphs with minimal and maximal Rη(G), respectively, among all
bicyclic graphs with a given ∆, more generally, for c-cyclic graphs.

3. QSPR/QSAR of Randić Index

Topological indices are used for translating the chemical properties into numbers
that can be applied for statistical analysis like correlation with physical properties in
QSPR/QSAR (quantitative structure–property/activity relationship) studies. In recent
years, the topological indices have become one of the major research topics in QSPR and
QSAR analysis. For some applications of topological indices, see [33,35–39]. The use of
graph entities in QSPR/QSAR analysis has attracted attacted many researchers in recent
years. Topological indices have a wide range of application in non-empirical quantitative
structure–property relationships (QSPRs) and quantitative structure–activity relationships
(QSARs) like in [35,38,40–42]. These chemical properties are studied since they have a
direct impact on drug transits and bioactivity in the human body. Thus, with the help of
topological indices, we can design better drugs.

We will use the Randić index for modeling physical properties of 67 alkanes (n-butanes
to nonanes). The well-known physical properties are molar volumes (mv’s) at 20 ◦C, heats
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of vaporization (hv’s) at 25 ◦C, molar refractions (mr’s) at 20 ◦C, the boiling point (bp), and
surface tensions (st’s) at 20 ◦C. The data are taken from [39] (see also [43]). The values of
RA were calculated using the AutoGraphiX III system [44].

We consider the following linear regression model:

β = a + b(TI), (1)

where β is a physical property and TI is a topological index. Using (1), we carry out the
analysis for the Randić index R−1(G) with the bp, mv’s, mr’s, hv’s, and st’s.

The following table gives the correlation of the Randić index R−1(G) with the boiling
point (bp), the molar volumes (mv’s) at 20 ◦C, the molar refractions (mr’s) at 20 ◦C, the
heats of vaporization (hv’s) at 25 ◦C, and the surface tensions (st’s) 20 ◦C for chemical
graphs up to order 7.

From Table 1, we see that all the physical properties are very well correlated with the
Randić index R−1(G). Heats of vaporization (hv’s) at 25 ◦C give the best correlation with
R−1(G). This gives us a good sign for modeling physical properties of alkanes with the
Randić index.

Table 1. Correlation of R−1(G) with bp, mv, mr, hv, and st for chemical graphs up to order 7.

R−1(G) vs. bp R−1(G) vs. mv R−1(G) vs. mr R−1(G) vs. hv R−1(G) vs. st

0.976893697 0.947992593 0.952529194 0.987125973 0.893037379

The Table 2 gives the R2 (coefficient of determination) of R−1(G) with the bp, mv, mr,
hv, and st for chemical graphs up to order 7.

Table 2. Correlation of R−1(G) with bp, mv, mr, hv, and st for chemical graphs up to order 7.

R−1(G) vs. bp R−1(G) vs. mv R−1(G) vs. mr R−1(G) vs. hv R−1(G) vs. st

0.9543 0.8987 0.9073 0.9744 0.8307

The best coefficient of determination for R−1(G) is achieved by heats of vaporiza-
tion (hv’s).

Figure 1 shows the linear regression between R−1(G) and the boiling point (bp), with
the rounded equation

bp = 56.07 · R−1(G)− 93.727.

bp = 56.07 · R−1(G)− 93.727
R2 = 0.9543

Figure 1. Linear regression for bp vs. R−1(G).

Figure 2 shows the linear regression between R−1(G) and the molar volumes (mv’s),
with the rounded equation

mv = 29.575 · R−1(G) + 52.61.
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The linear regression illustrates that the correlation of the boiling point is better with
R−1(G), where R2 = 0.9543, than with molar volumes, where R2 = 0.8987.

mv = 29.575 · R−1(G) + 52.61
R2 = 0.8987

Figure 2. Linear regression for mv vs. R−1(G).

Figure 3 shows the linear regression between R−1(G) and the molar refractions (mr’s),
with the rounded equation

mr = 8.8376 · R−1(G) + 6.6387.

mr = 8.8376 · R−1(G) + 6.6387
R2 = 0.9073

Figure 3. Linear regression for mr vs. R−1(G).

Figure 4 shows the linear regression between R−1(G) and the heats of vaporization
(hv’s), with the rounded equation

hv = 9.3676 · R−1(G) + 4.033.

The linear regression illustrates that the correlation of the heats of vaporization is better
with R−1(G), where R2 = 0.9744, than with molar refractions, where R2 = 0.9073.

hv = 9.3676 · R−1(G) + 4.033.
R2 = 0.9744

Figure 4. Linear regression for hv vs. R−1(G).
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Figure 5 shows the linear regression between R−1(G) and the surface tension (st), with
the rounded equation

st = 3.2906 · R−1(G) + 8.6697

and R2 = 0.7975.

st = 3.2906 · R−1(G) + 8.6697
R2 = 0.7975

Figure 5. Linear regression for st vs. R−1(G).

The overall significant observation is that the Randić index R−1(G) gives a very high
correlation with the heats of vaporization of alkanes, and thereby it will help in designing
better models for the applicability of R−1(G) with such physical properties.

4. Conclusions

In this paper, some extremal results are presented that are related to the general
Randić index among classes of unicyclic graphs in terms of different parameters, like the
maximum degree and order n of the graph. In addition, we find the maximum and the
second maximum general Randić index for η0 ≤ η < 0 for classes of unicyclic graphs
with η0 = −0.21. Furthermore, we carried out statistical analysis of the Randić index with
physical properties of chemical graphs of alkanes up to order 7. We observed that the
Randić index is highly correlated with the heats of vaporization of alkanes. A similar type
of analysis can be studied for the general Randić index for the class of bicyclic graphs and
for c-cyclic graphs in general, though we need some more advanced tools and techniques
for handling extremal problems related to the general Randić index.
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