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Abstract: In the process of human–robot collaborative assembly, robots need to recognize and predict
human behaviors accurately, and then perform autonomous control and work route planning in
real-time. To support the judgment of human intervention behaviors and meet the need of real-time
human–robot collaboration, the Fast Spatial–Temporal Transformer Network (FST-Trans), an accurate
prediction method of human assembly actions, is proposed. We tried to maximize the symmetry
between the prediction results and the actual action while meeting the real-time requirement. With
concise and efficient structural design, FST-Trans can learn about the spatial–temporal interactions of
human joints during assembly in the same latent space and capture more complex motion dynamics.
Considering the inconsistent assembly rates of different individuals, the network is forced to learn
more motion variations by introducing velocity–acceleration loss, realizing accurate prediction of
assembly actions. An assembly dataset was collected and constructed for detailed comparative
experiments and ablation studies, and the experimental results demonstrate the effectiveness of the
proposed method.

Keywords: human motion prediction; human–robot collaboration; collaborative assembly; real time

1. Introduction

After the concept of Industry 4.0 (I 4.0) was introduced, the significance of collabora-
tive robots in the sector of production and manufacturing have gradually increased, and
collaborative robots have become one of the main drivers of Industry 4.0 [1]. Traditional
industrial robots are typically “hard-coded” and assigned highly specified and repeti-
tive tasks. In contrast, collaborative robots are expected to be “intelligent” and possess
higher levels of initiative, mobility, and flexibility. Robots will share the same workspace
with workers and perform tasks together seamlessly and efficiently, resulting in increased
productivity and the development of large-scale personalized manufacturing.

In a shared workspace, collaborative robots can physically interact with humans and
perform various manufacturing tasks like assembly and disassembly. In order to achieve
the goal of integrating collaborative robots into the manufacturing process, there is a
need to develop a robotic system that safely works with humans under minimal human
supervision. Safety is one of the key factors for human–robot collaborative system [2,3],
because workers are the direct partners of collaborative robots, and robots possess greater
strength and speed. When collisions occur, the worker may be injured. In order to reduce
the probability of collisions between robots and workers, and to protect the workers’
safety, robots must have the ability to understand correctly the behavior and intentions
of humans and make predictions actively to support reasonable and safe path planning.
Taking collaborative assembly as an example, when a worker’s hand performs an assembly
action, the robot should recognize the current hand position in real time and accurately
predict the subsequent movement to avoid the potential target position of the human hand
in path planning and minimize the probability of collisions. Therefore, it is crucial to

Symmetry 2024, 16, 118. https://doi.org/10.3390/sym16010118 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16010118
https://doi.org/10.3390/sym16010118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1112-0895
https://orcid.org/0000-0001-5519-5990
https://doi.org/10.3390/sym16010118
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16010118?type=check_update&version=3


Symmetry 2024, 16, 118 2 of 15

investigate a rapid and accurate method for human motion prediction (HMP) in human–
robot collaboration.

Advances in deep learning have led to increasing accuracy in human motion pre-
diction, and recurrent neural networks (RNNs) or graph convolutional networks (GCNs)
have been used to model in many previous works. However, RNNs lack the ability to
capture spatial features and suffer from long-term memory decay. GCNs are better at
learning human structural features and usually work together with temporal convolutional
networks (TCNs) [4], but the temporal receptive field in TCNs is not wide enough, leading
to weak long-term prediction. This paper addresses the challenge of predicting long-term
human motion in assembly scenarios and introduces a novel Transformer-based network
for making long-term predictions about upper body motion during assembly. The main
contributions of this paper include the following: (1) A Transformer-based model for HMP,
the Fast Spatial–Temporal Transformer network, is introduced in this work. By simplifying
and optimizing the structure of the vanilla Transformer, the computational complexity has
been reduced, and the single-layer network is equipped with the ability of simultaneous
extraction of spatial–temporal features to model long-term human body motion. (2) Noting
the individual differences in motion during the assembling process, and taking the rate
of motion as the key point, the introduction of velocity–acceleration loss contributes to
improving the ability of motion dynamic learning and symmetry between predicted motion
and ground truth. (3) By recording the assembly process of multiple people, an assem-
bly dataset has been created, and detailed comparative experiments and ablation studies
have been carried out. The experiments results demonstrate that the proposed model
outperforms the comparative methods, and meets the needs of real time and accuracy in
human–robot collaboration.

The contents of the following sections are as follows: in Section 2, related works will
be present briefly; in Section 3, the proposed method will be described in detail; in Section 4,
the dataset, metrics, implement details, and experiment results will be shown; ablation
experiments and discussions are in Section 5, and the overall conclusions are in Section 6.

2. Related Works

To achieve a more interactive collaboration process, proactive HRC requires collabora-
tive robots to perform prospective planning, and human motion prediction is one of the
crucial aspects [5]. Predicting the future movement of the cooperation object in advance
is conducive to the robot performing more reasonable path planning, which is important
for work efficiency and safety. Many researchers have conducted important explorations
to achieve this goal. Some work on motion prediction in human–robot collaboration will
be introduced.

2.1. Machine Learning-Based Predition

Unhelkar et al. [6] predicted human movement trajectories via a Multiple-Predictor
System (MPS) and used the predicted trajectories to plan the movement of a single-axis
robot. Three-dimensional vision sensors were used to acquire human skeleton data in [7],
and the cost function for the robot’s moving target and the position of the human body
was optimized by using the rapidly exploring random tree method, and a hybrid Gaussian
process was used to predict the human movement and compute the optimal trajectory
of the robot from the current position to the target position. Vianello et al. [8] predicted
human pose in a probabilistic form for a given robot trajectory executed in a collaborative
scenario. The key idea was to learn the null spatial distribution of the Jacobian matrix and
the weighted weights of the pseudo-inverse from the demonstrated human movement,
so that consistency between the predicted pose and the robot end-effector position could
be ensured. In [9,10], the human transition model was approximated by a feed-forward
neural network, whereby two inputs had been leveraged, human pose estimation and
action labels. The output layer of the network was adapted online using recursive least
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squares parameter adaption algorithm (RLS-PAA) to address the challenges of time-varying
characteristic of human trajectories.

2.2. Recursive Neural Networks

RNNs process the time series sequentially and learn time correlation between frames,
and they are widely used in HMP. Fragkiadaki et al. [11] proposed an Encoder–Recycle–
Decoder (EDR) architecture and implemented it using LSTM, which is one of the earliest
works to use RNNs to predict human motion. Prediction was achieved by inputting a
single-frame feature vector at each step, where the elements of the feature vector are
body joint angles. Noise has been added to the output of the current step as the input
for the next prediction. But this mode is subject to cumulative error. Kartzer et al. [12]
trained two RNN networks simultaneously to analyze the placeability affordance and
graspability affordance of the scene, and they optimized the trajectory prediction results of
the two different tasks of grasping and placing, respectively. Zhang et al. [13] divided the
human skeleton into five parts (two arms, two legs, and torso), designed the “Component”
module to extract features based on an RNN, and designed the “Coordination” module to
strengthen the inner-component connections. The outputs of the multi-layer RNN were
processed through two dense layers to predict human body poses. Ivanovic et al. [14]
proposed a sequence-to-sequence CVAE architecture which utilized an RNN to process
the temporal data for predicting the human body’s trajectory. The interaction history and
robot trajectory were projected into the latent space by encoder. Prediction samples are
generated based on the latent space state and the current human posture, and a decoder
was used for outputs. Lyu et al. [15] utilized LSTM to create an encoder–decoder model
for predicted human arm and hand trajectories during HRC. To enhance early prediction
accuracy, a Gaussian Mixture Model (GMM) was utilized to combine the observed and
predicted hand trajectories for forecasting the current arm motion target.

2.3. Graph Convolutional Networks

Due to a graph being a suitable mathematical representation for the human skeleton,
GCNs [16] have become increasingly popular in motion prediction. Initially, GCNs were
utilized for human motion recognition based on skeletal data [17], Mao et al. [18] later
introduced multilayer GCNs into HMP for short-term prediction. Cui et al. [19] proposed
a novel graph network as a generator. A learnable global graph was used not only to
explicitly learn the weights between joint pairs with a connection, but also to implicitly
connect geometrically separated joints to enhance the feature extraction capability of the
network. Dang et al. [20] used a hierarchical strategy to simplify the human skeleton and
proposed a multi-scale residual graph convolution network MSR-GCN, where multilevel
graph features were fused for predicting future motions. Sofianos et al. [21] considered
interactions between joints and time, and the space-time-separable graph convolution
network (STS-GCN) was proposed. The temporal and spatial interaction matrices were
decomposed into a product of time and space matrices, and the graph convolution was
able to extract skeletal graph features based on the spatial–temporal interaction matrix.
Li et al. [22] pointed out the spectrum band loss issue of deep graph convolution networks
and introduced the skeletal-parted graph scattering network (SPGSN) to solve it. The
model’s core is the cascaded multi-part graph scattering blocks (MPGSBs) which applied
a set of scattering filters to the adjacency matrices of the skeletal graph to obtain various
spectrum bands. As a result, multilevel graph convolution can extract features from differ-
ent spectrum bands, and richer spatial information was included in the prediction process.
Sampieri et al. [23] proposed the separable sparse graph convolutional network (SeS-GCN),
which employed a “teacher–student” framework to learn sparse graph adjacency matrices,
and tested the approach in an industrial laboratory.

In summary, RNNs and GCNs are the mainstream methods for motion prediction in
HRC. Both types of networks have low parameter counts and low computation costs to
ensure a real-time response for proactive HRC, but each has its own shortcomings. The
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RNN-based methods focus on temporal modeling, but long-term memory decay and error
accumulation pose challenges for researchers; the GCNs-based methods mine the human
body structure from various perspectives and establish joint spatial relationships, but
somewhat lack attention to temporal features. The Transformer [24] is a powerful universal
module which has a strong automatic correlation mining capability and has been applied
on some human action related works in recent years [25–29]. But the Transformer has more
parameters than RNNs and GCNs, its computational costs may not meet the needs of the
HRC system, and its simplification is rarely considered in HMP. Additionally, the velocity
and acceleration information are often ignored in many works, this paper addresses these
two points in its research.

3. Methodology
3.1. Action Definition

The human hands are the primary interaction objects for the robot during human–
robot collaborative assembly process. To prevent collisions with human hands and upper
body during robot motion, it is essential to predict the next future positions of the worker’s
arms. Focusing on hand trajectory predicting during assembly process, this work considers
the joints of a worker’s upper body, including neck, left (right) clavicle, left (right) shoulder,
left (right) elbow, left (right) wrist, left (right) hand, and left (right) fingertip, representing a
total of 13 joints which form a symmetrical structure. The human upper body skeleton is
shown in Figure 1.
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Figure 1. Upper body skeleton.

The historical observation for frame length H is represented as X1:H = (x1, . . . , xH) ∈ RH×J×3,
where J is the number of joints and xi ∈ RJ×3 represents the human pose at ith frame consisting
of the 3D coordinates of J joints, i ∈ (1, H). The future human motion of length F is XH+1:H+F =
(xH+1, . . . , xH+F) ∈ RF×J×3. Given historical observation X1:H, human motion prediction aims to
predict the future skeletal position sequence X̂H+1:H+F and to maximum the symmetry between
X̂H+1:H+F and the ground truth XH+1:H+F.

3.2. Discrete Cosine Transform

The discrete cosine transform (DCT) transforms the joint coordinate trajectories from
Cartesian space to trajectory space with a set of pre-constructed discrete orthogonal bases,
and the original joint trajectories are then converted to linear combinations of the base
trajectories. The DCT operation could extract both current and periodic temporal properties
from the motion sequences, which more intuitively represents the motion dynamics of the
joints and is beneficial for obtaining continuous motions [30]. In [18], the DCT operation
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was firstly applied to the motion prediction problem, and its effectiveness was verified.
Therefore, keeping precedents [18], the DCT transform is firstly used to process the joint
trajectory sequence.

Given an (H + F)-frame motion sequence X ∈ R(H+F)×J×3, the sequence is projected
to the DCT domain via the DCT operation:

Y = DCT(X) = DX (1)

where D ∈ R(H+F)×(H+F) is the predefined DCT basis and Y ∈ R(H+F)×J×3 is the DCT
coefficients. As the DCT transform is an orthogonal transform, the inverse discrete cosine
transform iDCT can be used to recover the trajectory sequence based on the DCT coefficients.
iDCT uses the transpose of D as the basis matrix:

X = iDCT(Y) = D⊤Y (2)

Considering the requirement of rapid response for HRC and the smoothness property
of human motion, only the first L rows of D and D⊤ are selected for the transformation
denoted as DL, D⊤

L ∈ RL×(H+F), and an (H + F)-frame trajectory is compressed into an
L-dimensional coefficient vector. Although this operation is a lossy compression of the
original trajectory, it offers two benefits to MHP: (1) the high-frequency part of the motion
dynamics is discarded, the subtle jitter of the prediction results will be reduced, and
the predicted trajectory becomes smoother; and (2) by compressing the length of the
sequence, computation costs during the training and inference are reduced, and the real-
time performance is enhanced [18].

3.3. Fast Spatial–Temporal Transformer Network

The inter-joint spatial–temporal relationship in movement plays a vital role in human
action prediction, and which were always modeled with RNNs or spatial–temporal GCNs.
However, RNNs cannot understand the spatial structure well, and GCNs have limited
temporal receptive field, which leads to their poor future prediction ability. On the full
spatial–temporal resolution, Transformer models have stronger spatial–temporal perception
and inference ability. However, due to the large number of linear layers, the model
parameter number s is larger than RNNs or GCNs, which causes higher computing power
requirements on HRC devices.

This work proposes the Fast Spatial–Temporal Transformer Network (FST-Trans) to ad-
dress the above two issues. The FST-Transformer Network is designed with a symmetrical
encoder–decoder structure, as shown in Figure 2:
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Firstly, the historical observation X1:H = (x1, . . . , xH) is padded with its final frame xH

to obtain an (H + F)-frame sequence X́1:H+F = (x1, . . . , xH , . . . , xH)∈ R(H+F)×J×3. After
DCT transformation, the DCT coefficients Y ∈ RL×J×3 are fed into the network. Feature
embedding is performed by single linear layer, and the initial feature H0∈ RL×J×d is
obtained by adding the temporal position encoding ET and joints position encoding ES:
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H0 = Linear(Y) + ES + ET (3)

where ES ∈ RJ×d, ET ∈ RL×d are both the learnable parameters, and d represents the
hidden dimension. The initial feature H0 goes through N layers of FST-Transformer block
to obtain the final feature HN∈ RL×J×d, using another single linear layer as the prediction
head to get the DCT coefficients of the predicted trajectory:

Ŷ = Linear(HN) (4)

Via an iDCT operation, a joint 3D coordinate trajectory can be obtained X̂1:H+F = iDCT
(
Ŷ
)
,

and X̂H:H+F is the future motion estimation.
Both the encoder and decoder consist of FST-Trans blocks, and skip-layer connections

are applied to minimize feature degeneracy. The sub-modules of single FST-Trans block
include a temporal multi-head attention, a spatial multi-head attention, and a feed-forward
neural network, and its computational flow is:

H́l−1 = LN1(Hi−1) (5)

AS =
1√
d

H́i−1QS
(

H́i−1KS
)⊤ (6)

AT =
1√
d

H́i−1QT
(
H́i−1KT

)⊤ (7)

H́i−1 = SM(AT)SM(AS)
(
H́i−1V

)
(8)

M = LN2
(
H́i−1 + Hi−1

)
(9)

Ḿ = σ(MW1 + b1)W2 + b2 (10)

Hi = LN2
(
Ḿ
)
+ Hi−1 (11)

For the ith layer FST-Trans block, the input features are layer normalized by LN1(·) [31]
firstly, and then the joint attention coefficients matrix AS∈ RJ×J and temporal attention
coefficients matrix AT ∈ RL×L are computed, respectively, QS, KS, QT , KT , V∈ Rd×d are
all learnable weights for the Query, Key, Value feature vectors in the attention mechanism.
AS and AT are computed via the multi-head attention method [24], and SM(·) stands for
So f tMax operation:

A(p) =
1√
d

XQ(p)
(

XK(p)
)⊤

(12)

H(p) = SM
(

A(p)
)

XV(p) (13)

X́ = Concat
(

H(1), . . . , H(P)
)

(14)

After linear projection V, the normalized feature H́l−1 is multiplied with the atten-
tion coefficient matrices AS and AT , and then added to the origin layer input feature
Hi−1 to form the residual connection, and the layer normalization is performed to ob-
tain the feature M, which is used as the inputs for the feed-forward neural network
(Equations (10) and (11)). In Equation (10), σ(·) represents the GELU activation func-
tion [32], W1∈ Rd×1024, W2∈ R1024×d are two learnable weights, and b1∈ R1024, b2∈ Rd

are the learnable bias. The output of feed forward neural network Ḿ is added to the layer
input Hi−1 to obtain the block output feature Hi.

The structure difference between FST-Trans block and 2-layer vanilla Transformer
is demonstrated in Figure 3. To achieve spatial–temporal decoupled modeling [28,29],
two Transformer blocks are usually necessary for single layer; spatial and temporal features
are extracted in different latent spaces, respectively. Inspired by these results [33–35],
this work tries to simplify and merge two vanilla Transformer Blocks for better feature
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extraction and computational efficiency. In FTS-Trans, the spatial attention mechanism
shares Value vectors with the temporal attention. This design means the two attention
coefficient matrices AS and AT act in the same latent space to fuse of the spatial–temporal
features in a more compact manner. If the feature Hi−1∈ RL×J×d is reshaped into a 2D
tensor H̃i−1 ∈ R(L×J)×d, the application of the attention mechanism in the 0th dimension
can also achieve the simultaneous extraction of spatial–temporal features. Usually, the
number of joints J is pre-fixed, the size of attention coefficient matrix (L × J) × (L × J)
will be mainly influenced by the temporal dimension L. To make longer-term predictions,
the expanded temporal dimension will increase the runtime costs, affecting the real-time
performance of HRC system. There are 10 learnable parameter matrices (Q, K, V, W1, W2,
2 each) in 2 Transformer blocks, and only 1 feed-forward neural network is kept in the
FST-Trans block, so the number of learnable weights is reduced to 7. The number of layer
normalization and activation functions are halved, which reduces the overall computational
complexity significantly.
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3.4. Loss Function

To train the proposed model, the reconstruction loss function is firstly defined as the
average L2 distance between the real future joint motion and the predicted result, for one
sample, which is calculated as follows:
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lossrec =
1

J(H + F)

N+F

∑
n=1

J

∑
j=1

∥∥x̂n,j − xn,j
∥∥2 (15)

where x̂n,j∈ R3 is jth joint’s prediction of 3D coordinates at nth frame, and xn,j ∈ R3 is the
corresponding ground truth.

Then, the spatial position of human pose is only one of the characteristics of human ac-
tion, and the rate of movement and rate changes are also very distinctive human movement
characteristics. When different individuals perform the same assembly process, the motion
rate is often inconsistent due to various factors such as individual physical conditions and
proficiency. To make the model learn the motion dynamic better, the velocity–acceleration
loss was introduced, and the velocity of jth joint at the nth frame is:

vn,j =
∥∥xn,j − xn−1,j

∥∥
2 (16)

and the acceleration is:
an,j = vn,j − vn−1,j (17)

With the velocity–acceleration of real trajectory X1:H+F and predicted X̂1:H+F, the
velocity–acceleration loss is:

lossva =
1

J(H + F)

N+F

∑
n=1

J

∑
j=1

∥∥ĉn,j − cn,j
∥∥2 (18)

where cn,j =
(
vn,j, an,j

)
∈ R2 is the velocity–acceleration ground truth of the jth joint at the

nth frame, and ĉn,j is the corresponding prediction value. The overall loss function is the
sum of the reconstruction loss and the velocity–acceleration loss:

loss = lossrec + α ∗ lossva (19)

4. Experiment

Experiments are conducted on an assembly action dataset to evaluate the effectiveness
of proposed model.

4.1. Dataset

The assembly dataset consists of 47 assembly videos with durations ranging from 10 to
over 20 s. The following assembly actions are performed by nine different people: (1) taking
and installing an interface; (2) taking the wrench to tighten the interface, and putting the
wrench back in its original position after completion; (3) taking a bolt and installing it;
(4) taking a nut and installing it; (5) taking the screwdriver to screw the bolt, and putting it
back in its original position after completion. The videos were recorded using an Azure
Kinect DK camera at 1080p@30FPS, and the 3D coordinates of the joints were extracted by
the Kinect human body tracking SDK. A total of 40 videos were randomly selected as the
training set, totaling 21,122 frames, while the remaining 7 videos were used for the test set,
totaling 3123 frames. An example of data acquisition is shown in Figure 4.
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4.2. Metrics

Following previous works, two metrics are used as evaluation metrics: (1) Mean Per-
Joint Position Error (MPJPE) is the average L2 distance between the predicted future joint
position and the ground truth, computed in the same way as the loss function. (2) Final
Displacement Error (FDE) is the L2 distance between the last frame of the prediction result
and the corresponding ground truth. The lower the values of two indicators, the more
accurate of the model prediction.

4.3. Implementation Details

The experimental model is composed of a four-layer FST-Trans Block with 256 hidden
dimensions d and eight attention heads. The model is trained on the training set for
300 Epochs with batch size of 64 by the Adam optimizer. The velocity–acceleration loss
coefficient α is set 0.1. The learning rate is initially 3 × 10−4, and a multistep learning rate
decay strategy is adopted with a decay rate γ of 0.9. The dropout technique was applied on
the attention coefficient matrix and the feed forward neural network to reduce overfitting
with a dropout rate of 0.2. The object of this paper is long-term assembly motion prediction,
so 25 frames (about 0.83 s) were selected as the historical motion, and 100 frames (about
3.3 s) were predicted, and the first 20 rows of the DCT matrix were taken for DCT operation.
In terms of data processing, the results of the Kinect human body tracking SDK are in
millimeters (mm) as the basic unit, and in order to prevent the gradient explosion caused
by values that are too large, the original value is divided by 1000 to convert the unit to
meters (m). The network model was implemented based on Pytorch [36] and trained on
experimental platforms with 9700k CPU, 32GB RAM, and a single RTX4090 GPU.

4.4. Experiments Results

The comparison methods are a 12-layer GCN [18], skeletal-parted graph scattering
network (SPGSN) [22], and spatial–temporal separatable graph convolutional network
(STSGCN) [21], and the model settings follow the original work.

From Table 1, the lowest MPJPE (0.2473) and FDE (0.3011) values are both obtained
by the proposed FST-Transformer Network, and the second lowest MPJPE (0.3288) and
FDE (0.4083) values are obtained by the 12-layer GCN. The Transformer architecture
models the overall spatial–temporal dynamics, and the motion feature extraction acts on
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the full spatial–temporal resolution, which results in a better overall motion perception
capability. Comparison methods mostly use GCN for spatial modeling and TCN or T-
GCN in temporal dimension where the receptive field only focuses on a local time period,
resulting in insufficient long-term motion capture ability and then poor prediction results.

Table 1. Experimental results of quantitative results.

Model MJPJE (m) FDE (m)

12-layer GCN 0.3288 0.4083
SPGSN 0.3555 0.4398

STSGCN 0.8941 0.8039
FST-Trans 0.2473 0.3011

The training time is the computational time consumption of one iteration of the train
set with same batch size, the testing time is time consumption of whole test set. From
Table 2, SPGSN has the largest number of parameters the highest training time and test
inference time, while the parameters of STSGCN is smallest, and so is the time consumption.
STSGCN’s low parameter number results in a lack of expression ability and poor prediction
performance. Although the parameter number of the proposed FST-Trans is several times
as that of STSGCN, the testing time and inference speed of FST-Trans are about the same as
STSGCN with a higher prediction accuracy.

Table 2. Parameters number and computation time costs.

Model Param Size (M) Training Time (s) Test Time (s)

12-layer GCN 2.128 15.28 1.1381
SPGSN 5.204 50.62 6.0328

STSGCN 0.353 0.98 0.8792
FST-Trans 1.852 3.94 0.8889

Figure 5 shows the visualization of the prediction results for the ground truth (blue
straight line), FST-Trans (green dashed), and 12-layer GCN [18] (black dotted). It shows
that the predicted poses of FST-Trans are closer to the ground truth than that of GCN, and
the amplitude of the pose changes is also larger than that of GCN, which indicates that the
proposed architecture has a stronger capability of modeling motion dynamics. However,
when the prediction time span is large (after 60 frames), both results have a large deviation
from the ground truth. In some cases, FTS-Trans can make predictions in line with the
actual motion, but an accurate long-term prediction is still more difficult. The end hand
position change is more difficult to capture, and how to predict the small range of subtle dis-
placement better is a challenge in HMP. In summary, from both quantitative and qualitative
result, it is clear that the proposed model outperformers than the comparison methods.
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5. Ablation Discussion

For the proposed FST-Trans, ablation studies are discussed in five aspects, namely
architecture design, hidden layer dimension d, number of network layers N, DCT coefficient
dimension L, and loss function, in order to verify the effectiveness of network design.

Comparison with vanilla Transformer. In this experiment, the 4-layer vanilla Trans-
former and FST-Trans’ hidden dimensions are both 256, and the number of layers is 4. In
each layer of the comparison model, there are two Transformer blocks, respectively, for
extracting features in joint and temporal dimensions, resulting in a total of eight original
Transformer Blocks. From Table 3, The FST-Trans achieved a better prediction accuracy
with fewer parameters, which indicates that the structural design of FST-Trans is more
concise and effective.

Table 3. Four-layer vanilla Transformer vs. FST-Trans.

Model MJPJE FDE Param Size

4-layer vanilla Transformer 0.2534 0.3087 2.116
FST-Trans 0.2473 0.3011 1.852

Hidden Dimension. In Table 4, when d is 512, the minimal FDE is 0.2905; and the
MPJPE is smallest when d is 256. Usually, an increase in the hidden dimension will
increase the network characterization ability. In the experimental environment of this
work, the performance is not significantly improved when the hidden layer dimension
increases; instead, it works best when d = 256. Therefore, considering the dataset size and
computational complexity, 256 is chosen as the optimal hidden dimension.

Table 4. Hidden dimension.

Hidden Dim d MPJPE FDE Param Size

512 0.2501 0.2905 7.374
384 0.2495 0.3048 4.155
256 0.2473 0.3011 1.852

The number of network layers. From Table 5, when the number of network layers is 2,
both MPJPE and FDE are at their maximum, and the prediction performance is the worst;
the min-MPJPE value is in the 4-layer network, and the min-FDE value is in the 6-layer
network. The prediction performance does not increase significantly with the increase in
the network layers, and the characterization ability of the 4-layer FST-Trans network with
256 hidden dimensions can satisfy the requirement.

Table 5. The number of network layers.

Layers Number N MPJPE FDE Param Size

8 0.2515 0.2979 3.693
6 0.2489 0.2959 2.773
4 0.2473 0.3011 1.852
2 0.2618 0.3045 0.932

DCT coefficients dimension. In Table 6, when the first 25 rows of the DCT matrix are
taken for transformation, the MPJPE rises to 0.2555 and the FDE rises to 0.3057; when the
first 15 rows of the DCT matrix are taken, the MPJPE rises to 0.2577 and the FDE rises
to 0.3130. The best result is achieved when L = 20, and any change in the DCT domain
coefficients can negatively affect the motion prediction.



Symmetry 2024, 16, 118 12 of 15

Table 6. DCT coefficients dimension.

DCT Coeff L MPJPE FDE

25 0.2555 0.3057
20 0.2473 0.3011
15 0.2577 0.3130

In Table 7, without DCT, the network takes 125-frame trajectory sequences (25 frames
of history and 100 frames of padding) as the input. Due to the expansion of the temporal
dimension by a factor of 6.25, the training time goes up by a factor of 6.95 consequently,
and the MPJPE goes up by a factor of 0.0147, and the bias of prediction results increases.
Therefore, the use of DCT not only reduces the computation costs, but also helps to improve
the prediction accuracy.

Table 7. Ablation w/ or w/o DCT transform.

MPJPE FDE Training Time

w/o DCT 0.2620 0.3065 27.38
w/ DCT (L = 20) 0.2473 0.3011 3.94

The effect of the velocity–acceleration loss coefficient α on the prediction performance
is demonstrated in Table 8. When α = 0.1, the min-MPJPE value is 0.2473 and the min-FDE
value is 0.3011. Increasing α to 0.2, the model shows a slight performance degradation.
α = 0 represents the non-use of velocity–acceleration loss. Comparing with α = 0.1, the
MPJPE of α = 0 rises by 0.01, while the FDE decreases by 0.0081. The introduction of the
velocity–acceleration loss has a positive impact on the prediction performance. Considering
that the MPJPE reflects the overall similarity of the trajectories, it is more appropriate to
take α to be 0.1.

Table 8. Vel–acc loss coefficient.

α MPJPE FDE

0.2 0.2493 0.3008
0.1 0.2473 0.3011

0.05 0.2483 0.3009
0 0.2483 0.2930

6. Conclusions and Discussion

In this work, a network model for predicting hand motion in human–robot collabora-
tive assembly is introduced. The model utilizes the FST-Trans block, a simplified version
of vanilla Transformer, to extract spatial–temporal features in a unified latent space. Ad-
ditionally, the introduction of velocity–acceleration loss improves the model’s ability to
learn temporal dynamic, finally achieving rapid and accurate motion prediction for human–
robot collaborative assembly. As can be seen from the evaluation metrics and visualization
of the results, the 4-layer FST-Trans network with a hidden dimension of 256 and DCT
coefficient L = 20 achieves the optimal results with an MPJPE of 0.2473 on the assembly
dataset, which is better than the second lowest MPJPE of 0.3288 via the 12-layer GCN [18].
Compared with the vanilla Transformer, not only do the parameters of the proposed model
decrease by about 12.5%, but also the prediction accuracy improves. The testing time
of the proposed model is only slightly larger than of STSGCN [21], which has the least
number of parameters. Other ablation experiments’ results have shown that the method
performance decreases when DCT and velocity–acceleration loss are removed, and thus,
the initial hypothesis has been verified.

Although the effectiveness of the network design has been verified, as shown in the
visualization of results, there is significant deviation in hand position especially when the
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prediction time is long. Accurately depicting tiny hand displacements remains a challenge.
As hand movements are mainly involved in the assembly process, the movements of the
shoulders and other joints are less significant. Therefore, the motion prediction model
should pay more attention to hands, and improving the weight of hand movements could
be a promising direction. A larger dataset size may bring a performance gain, and the size
of the assembly dataset will be expanded in the future. And the combination of motion
prediction and robot path planning will also be a future research focus. Reinforcement
learning, a method of learning decision-making strategies in response to changes in the en-
vironment, is commonly used to enhance collaboration between humans and robots [37–41].
Accurate motion prediction is for better human–robot collaboration, and the feedback of
HRC maybe also helpful to HMP. Reinforcement learning could act as a bridge between
HMP and HRC.
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