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Abstract: In this paper, some one-step iterative schemes with memory-accelerating methods are
proposed to update three critical values f ′(r), f ′′(r), and f ′′′(r) of a nonlinear equation f (x) = 0
with r being its simple root. We can achieve high values of the efficiency index (E.I.) over the bound
22/3 = 1.587 with three function evaluations and over the bound 21/2 = 1.414 with two function
evaluations. The third-degree Newton interpolatory polynomial is derived to update these critical
values per iteration. We introduce relaxation factors into the Džunić method and its variant, which are
updated to render fourth-order convergence by the memory-accelerating technique. We developed
six types optimal one-step iterative schemes with the memory-accelerating method, rendering a
fourth-order convergence or even more, whose original ones are a second-order convergence without
memory and without using specific optimal values of the parameters. We evaluated the performance
of these one-step iterative schemes by the computed order of convergence (COC) and the E.I. with
numerical tests. A Lie symmetry method to solve a second-order nonlinear boundary-value problem
with high efficiency and high accuracy was developed.

Keywords: optimal fourth-order one-step iterative schemes; memory-accelerating method; optimal
combination function; optimal relaxation factor; Lie symmetry method

1. Introduction

An elementary, yet very important problem is solving a nonlinear equation f (x) = 0.
Given an initial guess x0, suppose that it is quite close to the real root r with f (r) = 0; we
can approximate the nonlinear equation by

f (x0) + f ′(x0)(x − x0) = 0. (1)

When f ′(x0) ̸= 0, solving the equation for x yields

x = x0 −
f (x0)

f ′(x0)
. (2)

Along this line of thinking,

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, . . . (3)

is coined as the Newton method (NM), which exhibits quadratic convergence. Since
then, there have arisen many studies, and this work continues to now, while different
fourth-order methods have been used to modify the Newton method, which aim to more
quickly and stably solve the nonlinear equations [1–7]. In general, the fourth-order iterative
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methods are two-step with at least three function evaluations. Kung and Traub conjectured
that a multi-step iterative scheme without memory based on m evaluations of functions
has an optimal convergence order p = 2m−1. When the fourth-order iterative method is
optimal, the bound of the efficiency index (E.I.) is 1.587.

When the one-step iterative scheme with two function evaluations is considered, like
the NM, its optimal order is two, while the E.I. reduces to 1.414. From this aspect, the
multi-step iterative scheme is superior to the one-step iterative scheme with multi-function
evaluations. In the local convergence analysis of the iterative scheme for solving nonlinear
equations near the root r, three critical values f ′(r), f ′′(r), and f ′′′(r) and their ratios are
dominant, which appear as the first three Taylor coefficients. In many iterative schemes,
the accelerating parameter and optimal parameter are determined by these critical values.
But, the root r is itself an unknown constant, such that the precise values of f ′(r), f ′′(r),
and f ′′′(r) are not available. The primary goal of many memory methods is to develop a
powerful updating technique based on the memory of the previous values of the variables
to quickly obtain f ′(r), f ′′(r), and f ′′′(r) step-by-step, which will be used in several one-
step iterative schemes developed in the paper for achieving high values of the computed
order of convergence (COC) and the E.I. with the memory-accelerating technique.

Traub [8] was the first to develop a memory-dependent accelerating method from
Steffensen’s iterative scheme by giving x0 and γ0:

wn = xn + γn f (xn),

xn+1 = xn − f (xn)
f [xn ,wn ]

,

γn+1 = − 1
f [xn ,xn+1]

.

(4)

With this modification, by taking the memory of (xn, wn) into account, the computa-
tional order of convergence is raised from 2 to at least 2.414. The iterative methods using
information from the current and previous iteration are the methods with memory. In
Equation (4), when xn is a step variable, wn is an adjoint variable, which does not have an
iteration for itself. The role of wn is different from yn in the two-step iterative scheme. Later,
we will introduce a supplementary variable, which just provides the extra datum used in
the data interpolation, and its role is different from xn and wn.

In 2013, Džunić [9] proposed a modification of Steffensen’s and Traub’s iterative
schemes by introducing two parameters γ and p in

wn = xn + γ f (xn),

xn+1 = xn − f (xn)
f [xn ,wn ]+p f (wn)

.
(5)

The error equation was derived as

en+1 = [1 + γ f ′(r)](a2 + p)e2
n +O(e3

n), (6)

where a2 = f ′′(r)/[2 f ′(r)] is a ratio of the second and first Taylor coefficients. Taking
γ = −1/ f ′(r) is sufficient for the vanishing of the second-order error term; hence, there is
freedom to assign the value for the accelerating parameter p.

There are only a few papers that have been concerned with the one-step iterative
schemes with memory [9–11]. In this paper, we develop several memory-dependent
one-step iterative methods for a high-performance solution of nonlinear equations. The
methodologies involve introducing a free parameter and a combination function, and then,
they are optimized to raise the order of convergence, which is original and highly novel.
The strategy for updating the values of the parameters with the memory-accelerating
method can significantly speed up the convergence and raise the value of the E.I. to a
limit bound.
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The novelties involved in the paper are as follows:

• Introducing a free parameter in the existing or newly created model of the itera-
tive scheme.

• Inserting a combination function into two iterative schemes; then, the parameter or
combination function is optimized to raise the order of convergence.

• Several ideas presented here are novel and have not yet appeared in the literature,
which can promote the development of fourth-order one-step iterative schemes while
saving the computational cost.

• For the application of the derivative-free one-step iterative schemes, we developed a pow-
erful Lie symmetry method to solve a second-order nonlinear boundary-value problem.

The rest of the paper’s contents proceed as follows. In Section 2, we introduce two
basic one-step iterative schemes, which are the starting point and motivate the development
of the accelerating techniques to update the critical parameters f ′(r) and f ′′(r) appearing
in the third-order iterative schemes. Section 3 gives a detailed local convergence analysis
of these two basic one-step iterative schemes; a new concept of the optimal combination
of these two basic one-step iterative schemes is given in Theorem 3. In Section 4, some
numerical experiments are carried out with the computed order of convergence (COC) to
evaluate the performance upon comparing to some fourth-order optimal two-step iterative
schemes. In Section 5, we introduce the updating techniques of the three critical parameters
f ′(r), f ′′(r), and f ′′′(r) by using the memory-updating technique and the third-degree
Newton interpolation polynomial. The idea of the supplementary variable is introduced,
and the result is the first memory-accelerating technique. In Section 6, we first derive a new
third-order iterative scheme as a variant of Džunić’s method; then, the updating techniques
of two parameters and three parameters by the memory methods are developed; the second
memory-accelerating technique is developed. In Section 7, we improve Džunić’s method
and propose the new optimal combination methods; three memory-accelerating techniques
are developed. In Section 8, we introduce a relaxation factor into Džunić’s method, and the
optimal value of the relaxation factor is derived; the sixth memory-accelerating technique
is developed. As a practical application, a Lie symmetry method is developed in Section 9
to solve the second-order boundary-value problem. Finally, we conclude the achievements
in Section 10.

2. Preliminaries

Mathematically speaking, f (x) = 0 is equivalent to

x f ′(x)− b0x f (x) = x f ′(x)− (1 + b0x) f (x), (7)

where the constant b0 is to be determined. If xn is known, we can find the next xn+1
by solving

[ f ′(xn)− b0 f (xn)]xn+1 = xn f ′(xn)− b0xn f (xn)− f (xn). (8)

Upon viewing the terms including xn as the coefficient on both sides and dividing by
f ′(xn)− b0 f (xn), we can obtain

xn+1 = xn −
f (xn)

f ′(xn)− b0 f (xn)
, (9)

which includes a parameter b0 ̸= 0 ∈ R to be assigned. The above iterative scheme was
developed in [12] for a one-step continuation Newton-like method; it is referred to as Wu’s
method [12]. The iterative scheme (9) was used by Lee et al. [13], Zafar et al. [14], and
Thangkhenpau et al. [15] as the first step in the multi-step iterative schemes for finding
multiple zeros. Recently, Singh and Singh [16] and also Singh and Argyros [17] gave a
detailed dynamical analysis of the continuous Newton-like method (9).
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As a variant of Equation (9), we consider

xn+1 = xn −
f (xn)

a0 + b0 f (xn)
, (10)

which is obtained from the equivalent form of f (x) = 0:

a0x + b0x f (x) = a0x − (1 − b0x) f (x). (11)

The iterative scheme (10) includes two parameters a0, b0 ̸= 0 ∈ R to be assigned. The
iterative scheme (10) is referred to as Liu’s method [18].

In 2021, Liu et al. [19] verified that the iterative scheme (10) is in general of one-order
convergence; however, if we take a0 = f ′(r), where r is a simple root of f (x) = 0, the order
rises to two; moreover, if we take a0 = f ′(r) and b0 = f ′′(r)/(2 f ′(r)), the order further
rises to three. This technique is somewhat like the method of using accelerating parameters
to speed up the convergence, whose optimal values can be determined by the convergence
analysis.

The memory methods reuse the information from the previous iteration; they are not
required to evaluate the function and its derivative at any new point, but it is required to
store this information. The so-called R-convergence order of the memory method increases,
and at the same time, the E.I. may go over the corresponding one without the memory
method. Džunić [9] earlier developed an efficient two-parameter method for solving
nonlinear equations by using the memory technique and Newton polynomial interpolation
to determine the accelerating parameters. For the progress of the memory methods with
accelerating parameters in the multi-step iterative schemes, one can refer to [20–29].

3. Convergence Analysis

Comparing to the Newton method in Equation (3), Equation (9) is still applicable
when f ′(xn) = 0. But, in this situation, the Newton method would fail, which restricts the
practical application of the Newton method. The iterative scheme (9) has some remarkable
advantages over the Newton method [30]. It is interesting to study the convergence
behaviors of the iterative scheme (9) and its variant in the iterative scheme (10).

Wang and Liu [31] proposed a two-step iterative scheme as an extension of
Equation (9): 

yn = xn − f (xn)
f ′(xn)−α f (xn)

,

xn+1 = yn − f (yn)
f ′(xn)−α f (xn)

,
(12)

where α ∈ [−1, 1] is a parameter. The error formula was proven to be

en+1 = (α2 − 3a2α + 2a2
2)e

3
n. (13)

The iterative scheme (12) is not the optimal one, which, with three function evaluations,
leads to the third-order convergence, not the fourth-order convergence. This motivated us
to further investigate the local convergence property of the iterative schemes (9) and (10).
A new idea of the optimal combination of the iterative schemes (9) and (10) is introduced,
such that a one-step optimal fourth-order iterative scheme can be achieved, which is better
than the two-step iterative scheme (12).

Theorem 1. The iterative scheme (9) for solving f (x) = 0 has third-order convergence, if

b0 = a2 =
f ′′(r)

2 f ′(r)
. (14)

Proof. Let
en = xn − r (15)
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which is small when xn and r are sufficiently close. Repeating Equation (15) for n + 1 and
subtracting yield

en+1 = en + xn+1 − xn. (16)

As usual, we have

f (xn) = f ′(r)[en + a2e2
n + a3e3

n + a4e4
n + · · · ], an :=

f (n)(r)
n! f ′(r)

, n = 2, . . . , (17)

f ′(xn) = f ′(r)[1 + 2a2en + 3a3e2
n + 4a4e3

n + · · · ]. (18)

Then, using Equation (14), we have

f (xn)

f ′(xn)− b0 f (xn)
=

en + a2e2
n + a3e3

n + a4e4
n + · · ·

1 + (2a2 − b0)en + (3a3 − b0a2)e2
n + (4a4 − b0a3)e3

n + · · ·
= en + C3e3

n + C4e4
n + · · · , (19)

where

C3 = (b0 − 2a2)
2 + b0a2 − 2a3 + a2(b0 − 2a2) = b2

0 − 2b0a2 + 2a2
2 − 2a3 = a2

2 − 2a3,

C4 = a3(b0 − 2a2) + a2(b0a2 − 3a3) + a2(b0 − 2a2)
2

+b0a3 − 3a4 + 2(b0 − 2a2)(b0a2 − 3a3). (20)

Inserting Equation (19) into Equation (9) and using Equation (16), we can obtain

en+1 = en − en − C3e3
n − C4e4

n + · · · = −C3e3
n − C4e4

n + · · ·
= (2a3 − a2

2)e
3
n +O(e4

n). (21)

This ends the proof of Theorem 1.

Theorem 2. If

a0 = f ′(r), b0 = a2 =
f ′′(r)

2 f ′(r)
, (22)

the iterative scheme (10) is cubically convergent.

Proof. It can be proven similarly by inserting Equation (17) into Equation (10):

f (xn)

a0 + b0 f (xn)
=

en + a2e2
n + a3e3

n + a4e4
n + · · ·

1 + b0en + b0a2e2
n + b0a3e3

n + · · ·
= en + D3e3

n + D4e4
n + · · · , (23)

where we use Equation (22), for which

D3 = a3 − 2a2b0 + b2
0 = a3 − a2

2,

D4 = 3b2
0a2 − b0a2

2 − 2b0a3 + a4. (24)

Inserting Equation (23) into Equation (10) and using Equation (16), we can obtain

en+1 = en − en − D3e3
n − D4e4

n + · · · = −D3e3
n − D4e4

n + · · ·
= (a2

2 − a3)e3
n +O(e4

n). (25)

This ends the proof of Theorem 2.

The combination of any two iterative schemes of the same order cannot yield a new
iterative scheme whose convergence order can be raised by one. The conditions for the
success of the combination are that, in the two error equations of these two iterative schemes,
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the coefficients preceding a2
2 cannot be the same, and at the same time, the coefficients

preceding a3 cannot be the same.

Theorem 3. As a combination of the iterative schemes (9) and (10) with a function Q, the itera-
tive scheme:

xn+1 = xn −
Q f (xn)

f ′(xn)− b0 f (xn)
− (1 − Q) f (xn)

a0 + b0 f (xn)
(26)

has fourth-order convergence, if

a0 = f ′(r), b0 =
f ′′(r)

2 f ′(r)
, (27)

Q =
D3

D3 − C3
=

a3 − a2
2

3a3 − 2a2
2
=

1
2
+

f ′(r) f ′′′(r)
6[ f ′′(r)2 − f ′(r) f ′′′(r)]

. (28)

Proof. Inserting Equations (17) and (18) into Equation (26) leads to

Q f (xn)

f ′(xn)− b0 f (xn)
+

(1 − Q) f (xn)

a0 + b0 f (xn)

=
Q(en + a2e2

n + a3e3
n + a4e4

n + · · · )
1 + (2a2 − b0)en + (3a3 − b0a2)e2

n + (4a4 − b0a3)e3
n + · · ·

+
(1 − Q)(en + a2e2

n + a3e3
n + a4e4

n + · · · )
1 + b0en + b0a2e2

n + b0a3e3
n + · · ·

= Qen + QC3e3
n + QC4e4

n + (1 − Q)en + (1 − Q)D3e3
n + (1 − Q)D4e4

n + · · ·
= en + QC4e4

n + (1 − Q)D4e4
n + · · · , (29)

where we use Equations (27) and (28). Inserting Equation (29) into Equation (26) and using
Equation (16), we can obtain

en+1 = en − en − QC4e4
n − (1 − Q)D4e4

n + · · · = −[QC4 + (1 − Q)D4]e4
n + · · · . (30)

This completes the proof of Theorem 3.

4. Numerical Experiments

For the purposes of comparison, we list the fourth-order iterative schemes developed
by Chun [3]: 

yn = xn − f (xn)
f ′(xn)

,

xn+1 = xn − f (xn)
f ′(xn)

−
[
1 + 2 f (yn)

f (xn)
+ f 2(yn)

f 2(xn)

]
f (yn)
f ′(xn)

,
(31)

by King [4]: 
yn = xn − f (xn)

f ′(xn)
,

xn+1 = xn − f (xn)
f ′(xn)

− f (xn)+β f (yn)
f (xn)+(β−2) f (yn)

f (yn)
f ′(xn)

,
(32)

where β ∈ R, and by Chun and Ham [1]:
yn = xn − f (xn)

f ′(xn)
,

xn+1 = xn − f (xn)
f ′(xn)

− 4 f 2(xn)+6 f (xn) f (yn)+3 f 2(yn)
4 f 2(xn)−2 f (xn) f (yn)− f 2(yn)

f (yn)
f ′(xn)

.
(33)

Equations (31)–(33) are fourth-order optimal iterative schemes with the E.I. = 3
√

4 = 1.587.
However, the E.I. of the iterative scheme (26) can be larger, as shown in Section 5. Further-
more, the iterative scheme (26) is a single-step one, rather than the two steps of the iterative
schemes (31)–(33).
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The convergence criteria are given by

|xn+1 − xn| < ε and | f (xn+1)| < ε, (34)

where ε = 10−15 is fixed for all tests. In [32], the numerically computed order of convergence
(COC) is approximated by

COC :=
ln |(xn+1 − r)/(xn − r)|
ln |(xn − r)/(xn−1 − r)| , (35)

where r is a solution of f (x) = 0.
The iterative schemes in Equations (9), (10), and (26) are named, respectively,

Algorithm 1, Algorithm 2, and Algorithm 3. We considered a simple case of
f (x) = x3 − x = 0 and specify how to calculate the COC. By starting from x0 = 1.5,
the NM achieves the root r = 1 with seven iterations, Algorithms 1 and 2 with five itera-
tions, and Algorithm 3 with four iterations. For each triple of the data of x, we can compute
the COC by Equation (35). The triple (xn+1, xn, xn−1) comprises the last three values of x
before the convergence, and we set the convergence value of x to be r with f (r) = 0. If
ln |(xn+1 − r)/(xn − r)| is not computable due to xn+1 = r, we can shift the triple forward
to (xn, xn−1, xn−2), and so on.

By the data from Table 1, we take the COC of the NM to be 1.999, of Algorithm 1
to be 3.046, of Algorithm 2 to be 2.968 and of Algorithm 3 to be 4.899. As expected,
both Algorithms 1 and 2 have near third-order convergence; however, Algorithm 3 with
COC = 4.899 is greater than the theoretical value of fourth-order.

Table 1. The comparison of different methods for the COCs computed. ×: undefined.

n 2 3 4 5 6 7

NM 1.594 1.841 1.978 1.999 × ×

Algorithm 1 2.779 3.046 × ×

Algorithm 2 2.634 2.968 × ×

Algorithm 3 4.899 × ×

The test examples are given by

g1(x) = x3 + 4x2 − 10, (36)

g2(x) = x2 − ex − 3x + 2, (37)

g3(x) = (x − 1)3 − 2, (38)

g4(x) = (x + 2)ex − 1, (39)

g5(x) = sin2 x − x2 + 1. (40)

The corresponding solutions are, respectively, r1 = 1.3652300134, r2 = 0.2575302854,
r3 = 2.2599210499, r4 = −0.442854401002, and r5 = 1.4044916482.

Algorithm 1 was tested by Wu [12,30], and Algorithm 2 was tested by Liu et al. [19]. Be-
cause Algorithm 3 is a new iterative scheme, we tested it for the above examples. In Table 2,
for different functions, we list the NI obtained by the presently developed Algorithm 3,
which are compared to the NM, the method of Jarratt [33] (JM), the method of Traub–
Ostrowski [8] (TM), the method of King [4] (KM) with β = 3, and the method of Chun and
Ham [1] (CM).

Algorithm 3 theoretically has fourth-order convergence with the optimal values of
the parameters. For the first example, g1(x) = 0, Algorithm 3 converges faster than other
fourth-order iterative schemes. For other examples, Algorithm 3 is much better than
the NM and is competitive with the other fourth-order iterative schemes, JM, TM, KM,
and CM.
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Table 2. The comparison of different methods for the number of iterations.

Functions x0 NM JM TM KM CM Algorithm 3

g1 −0.3 55 46 46 49 9 5

g2 0 5 3 3 3 3 3

g3 3 7 4 4 4 4 4

g4 3.5 11 6 6 7 7 5

g5 1 7 4 4 8 4 4

5. Updating Three Parameters by Memory Method

In order to achieve the fourth-order convergence of the iterative scheme in
Equation (26), the values of f ′(r), f ′′(r), and f ′′′(r) must be known a priori; however,
these values are unknown because the root r is an unknown constant.

Therefore, we introduce a supplementary variable predicted by the Newton scheme
used in the data interpolation:

wn = xn −
f (xn)

f ′(xn)
. (41)

Based on the updated data of xn+1 and wn+1 = xn+1 − f (xn+1)/ f ′(xn+1) and the
previous data of (xn, wn), we can construct a third-degree Newton interpolatory polyno-
mial by

N3(x) = f (xn) + f [xn, wn](x − xn) + f [xn, wn, xn+1](x − xn)(x − wn)

+ f [xn, wn, xn+1, wn+1](x − xn)(x − wn)(x − xn+1), (42)

where

f [xn, wn] =
f (xn)− f (wn)

xn − wn
, f [xn, wn, xn+1] =

f [xn, wn]− f [wn, xn+1]

xn − xn+1
,

f [xn, wn, xn+1, wn+1] =
f [xn, wn, xn+1]− f [wn, xn+1, wn+1]

xn − wn+1
. (43)

It is easy to derive

N ′
3(x) = f [xn, wn] + f [xn, wn, xn+1](2x − xn − wn)

+ f [xn, wn, xn+1, wn+1][(x − wn)(x − xn+1) + (x − xn)(x − xn+1) + (x − xn)(x − wn)],

N ′′
3 (x) = 2 f [xn, wn, xn+1] + f [xn, wn, xn+1, wn+1](6x − 2xn − 2wn − 2xn+1),

N ′′′
3 (x) = 6 f [xn, wn, xn+1, wn+1]. (44)

We update the values of A = f ′(r), B = f ′′(r)/[2 f ′(r)] and Q in Equation (28) by

An+1 = N ′
3(wn+1), Bn+1 =

N ′′
3 (wn+1)

2N ′
3(wn+1)

, (45)

Qn+1 =
1
2
+

N ′
3(wn+1)N ′′′

3 (wn+1)

6[N ′′
3 (wn+1)2 −N ′

3(wn+1)N ′′′
3 (wn+1)]

. (46)

Now, we have the first memory-accelerating technique for the iterative scheme (26)
in Theorem 3, which reads as (i) giving A0, B0, and Q0 and w0 = x0 − f (x0)/ f ′(x0) and
(ii) performing for n = 0, 1, . . .:
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xn+1 = xn −
Qn f (xn)

f ′(xn)− Bn f (xn)
− (1 − Qn) f (xn)

An + Bn f (xn)
, (47)

wn+1 = xn+1 −
f (xn+1)

f ′(xn+1)
, (48)

An+1 = f [xn, wn] + f [xn, wn, xn+1](2wn+1 − xn − wn) + f [xn, wn, xn+1, wn+1]

×[(wn+1 − wn)(wn+1 − xn+1) + (wn+1 − xn)(wn+1 − xn+1) + (wn+1 − xn)(wn+1 − wn)],

Dn+1 = 2 f [xn, wn, xn+1] + f [xn, wn, xn+1, wn+1](6wn+1 − 2xn − 2wn − 2xn+1),

En+1 = 6 f [xn, wn, xn+1, wn+1],

Bn+1 =
Dn+1

2An+1
,

Qn+1 =
1
2
+

An+1En+1

6[D2
n+1 − An+1En+1]

. (49)

Some numerical tests of the first memory-accelerating technique for the iterative
scheme are listed in Table 3, for which we can observe that the values of the COC are
very large. Because the differential term f ′(xn) was included, the E.I. = (COC)1/3 was
computed. All E.I.s are greater than the E.I. = 1.587 of the optimal fourth-order iterative
scheme without memory; they have the same numberof function evaluations. The last
four E.I.s are also greater than the E.I. = 1.682 of the optimal eighth-order iterative scheme
without memory and with four function evaluations.

Table 3. The NI, COC, and E.I. for the method by updating three parameters, A, B, and Q, in the first
memory-accelerating technique.

Functions x0 [A0, B0] Q0 NI COC E.I. = (COC)1/3

g1 1.3 [17.09, 0.48] −0.1 3 4.207 1.614

g2 0.2 [−3.94,−0.027] −0.5 3 5.433 1.758

g3 2.1 [3.99, 0.87] 0 3 5.090 1.720

g4 −0.5 [2.503, 0.627] 0.3 3 6.095 1.827

g5 1.3 [−1.926, 0.927] 0 3 6.795 1.894

6. A New Fourth-Order Iterative Scheme with Memory Updating

Below, we will develop the memory-accelerating technique without using the differen-
tial term f ′(xn). The test examples will be changed to

f1(x) = x3 + 4x2 − 10, (50)

f2(x) = (x − 1)(x6 + 1/x6 + 4) sin(x2), (51)

f3(x) = (x − 1)3 − 2, (52)

f4(x) = (x + 2)ex − 1, (53)

f5(x) = sin2 x − x2 + 1. (54)

The corresponding solutions are, respectively, r1 = 1.3652300134, r2 = 1,
r3 = 2.2599210499, r4 = −0.442854401002, and r5 = 1.4044916482.

In order to compare the numerical results with that given in [9], a new function f2 is
added in Equation (51). For consistency, the other four functions are rewritten as f1, f3, f4,
and f5 to replace the g1, g3, g4, and g5 appearing in Equations (36) and (38)–(40).

In this section, a new one-step iterative scheme with the aid of a supplementary
variable and a relaxation factor is introduced. The detailed convergence analysis is derived.
Then, we accelerate the introduced parameters by the memory-updating technique.
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6.1. A New Third-Order Result

We address the following iterative scheme:
wn = xn + γ f (xn),

xn+1 = xn − f (xn)
f [xn ,wn ]+p f (xn)

,
(55)

which is a novel one-step iterative scheme with wn an adjoint variable. Equation (55) is a
variant of Džunić’s method [9], where f [xn, wn] + p f (wn) appears in the denominator, not
f [xn, wn] + p f (xn).

To derive the convergence order of Equation (55), let

f (xn) = F(en) f ′(r) = f ′(r)[en + a2e2
n + a3e3

n + a4e4
n + · · · ], (56)

f ′(xn) = G(en) f ′(r) = f ′(r)[1 + 2a2en + 3a3e2
n + 4a4e3

n + · · · ], (57)

f ′′(xn) = 2H(en) f ′(r); H(en) = a2 + 3a3en + 6a4e2
n + · · · . (58)

Theorem 4. The iterative scheme (55) has third-order convergence:

en+1 = −[(1 + 3η)a3 + a2
2]e

3
n +O(e4

n), (59)

where η ∈ (−1, 1] is a relaxation factor, and

γ = −1 + η

f ′(r)
, p = ηa2. (60)

If we take

η = −1
3
−

a2
2

3a3
= −1

3
− f ′′(r)2

2 f ′(r) f ′′′(r)
, (61)

then the order of convergence is further increased to four.

Proof. Using the Taylor series yields

f (wn)− f (xn) = f ′(xn)(wn − xn) +
1
2

f ′′(xn)(wn − xn)
2 + · · · , (62)

where
wn − xn = γ f ′(r)F(en). (63)

Hence, it follows from Equations (57) and (58) that

f [xn, wn] = f ′(r)G(en) + γ f ′(r)2F(en)H(en). (64)

Inserting Equations (56) and (64) into the second one in Equation (55), we have

en+1 = en −
F(en)

G(en) + γ f ′(r)F(en)H(en) + pF(en)
. (65)

Through some operations, we can obtain

G(en) + γ f ′(r)F(en)H(en) + pF(en) = 1 + 2a2en + 3a3e2
n + 4a4e3

n + · · ·
+γ f ′(r)(en + a2e2

n + a3e3
n + · · · )(a2 + 3a3en + 6a4e2

n + · · · )
+p(en + a2e2

n + a3e3
n + · · · ), (66)

which can be written as

G(en) + γ f ′(r)F(en)H(en) + pF(en) = 1 + P1en + P2e2
n + P3e3

n + · · · , (67)
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where

P1 = 2a2 + a2γ f ′(r) + p,

P2 = 3a3 + (a2
2 + 3a3)γ f ′(r) + pa2,

P3 = 4a4 + γ f ′(r)(6a4 + 4a2a3) + pa3. (68)

Then, Equation (65) is further reduced to

en+1 = en −
F(en)

G(en) + γ f ′(r)F(en)H(en) + pF(en)

= en − (en + a2e2
n + a3e3

n + · · · )[1 − P1en − P2e2
n − P3e3

n + (P1en + P2e2
n + P3e3

n)
2]

= (P1 − a2)e2
n + (P2 + a2P1 − a3 − P2

1 )e
3
n + (P3 + a2P2 + a3P1 − 2P1P2 − a4)e4

n. (69)

Letting P1 − a2 = 0 for the vanishing of e2
n, we can derive a relation between γ and p:

a2[1 + γ f ′(r)] + p = 0 (70)

Taking 1 + γ f ′(r) = −η, we prove Equation (60). By using P1 = a2 and Equation (68),
the coefficient preceding e3

n in Equation (69) can be simplified to

(P2 + a2P1 − a3 − P2
1 )e

3
n = (P2 − a3)e3

n = [3a3 + (a2
2 + 3a3)γ f ′(r) + pa2 − a3]e3

n, (71)

which, further using γ f ′(r) = −(1 + η) and p = ηa2, reduces to

(P2 + a2P1 − a3 − P2
1 )e

3
n = [2a3 − (1 + η)(a2

2 + 3a3) + ηa2
2]e

3
n = −[(1 + 3η)a3 + a2

2]e
3
n. (72)

If Equation (61) is satisfied, the error equation becomes en+1 = O(e4
n). This completes

the proof of Theorem 4.

Theorem 4 gives us a clue to achieving a fourth-order iterative scheme (55), if γ and p
are given by Equations (60) and (61). However, there are three unknown parameters, f ′(r),
f ′′(r), and f ′′′(r). We will apply the memory-accelerating technique to adapt the values of
γ and p in Equation (55) per iteration. The accuracy of this memory-dependent adaption
technique depends on how many current and previous data are taken into account. Similar
to what was performed in [9], we can further estimate the lower bound of the convergence
order of such a memory-accelerating method, upon giving the updating technique for γ
and p. Instead of deriving the formulas of this kind of estimation, we use the numerical
values of the COC to display the numerical performance.

6.2. Updating Two Parameters

To mimic the memory-updating procedure in Section 5, we can obtain a memory
method of the iterative scheme in Equation (55) by (i) giving A0, B0, and η and
w0 = x0 − (1 + η) f (x0)/A0 and (ii) performing for n = 0, 1, . . .:

xn+1 = xn −
f (xn)

f [xn, wn] + ηBn f (xn)
, (73)

An+1 = f [xn, wn] + f [xn, wn, xn+1](2xn+1 − xn − wn), (74)

wn+1 = xn+1 −
(1 + η) f (xn+1)

An+1
, (75)
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Cn+1 = f [xn, wn] + f [xn, wn, xn+1](2wn+1 − xn − wn) + f [xn, wn, xn+1, wn+1]

×[(wn+1 − wn)(wn+1 − xn+1) + (wn+1 − xn)(wn+1 − xn+1) + (wn+1 − xn)(wn+1 − wn)],

Dn+1 = 2 f [xn, wn, xn+1] + f [xn, wn, xn+1, wn+1](6wn+1 − 2xn − 2wn − 2xn+1),

Bn+1 =
Dn+1

2Cn+1
. (76)

In the above iterative scheme, η is a given constant value of the parameter.
To demonstrate the usefulness of the above iterative scheme, we consider the solution

of f1(x) = 0. We fix x0 = 1.3, A0 = 17.09 and B0 = 0.4798 and vary the values of η
in Table 4. Because only two function evaluations are required, the E.I. = (COC)1/2 was
computed.

Table 4. The NI, COC, and E.I. for the method by updating two parameters, A and B.

η −0.9 −0.6 −0.3 −0.2 0.1 0.3 0.6 0.9

NI 3 3 3 3 3 3 3 3

COC 3.413 3.114 3.233 3.443 3.081 2.974 2.870 2.795

E.I. = (COC)1/2 1.847 1.765 1.798 1.855 1.755 1.724 1.694 1.672

6.3. Updating Three Parameters

Table 4 reveals an optimal value of η, such that the COC and E.I. are the best. Indeed, by
setting the coefficient preceding e3

n as zero in Theorem 4, we can truly obtain a fourth-order
iterative scheme, whose η is determined by Equation (61).

Thus, we have the second memory-accelerating technique for the iterative scheme (55)
in Theorem 4 using η in Equation (61), which reads as (i) giving A0, B0, and η0 and
w0 = x0 − (1 + η0) f (x0)/A0, and (ii) performing for n = 0, 1, . . .:

xn+1 = xn −
f (xn)

f [xn, wn] + ηnBn f (xn)
, (77)

An+1 = f [xn, wn] + f [xn, wn, xn+1](2xn+1 − xn − wn), (78)

wn+1 = xn+1 −
(1 + ηn) f (xn+1)

An+1
, (79)

Cn+1 = f [xn, wn] + f [xn, wn, xn+1](2wn+1 − xn − wn) + f [xn, wn, xn+1, wn+1]

×[(wn+1 − wn)(wn+1 − xn+1) + (wn+1 − xn)(wn+1 − xn+1) + (wn+1 − xn)(wn+1 − wn)],

Dn+1 = 2 f [xn, wn, xn+1] + f [xn, wn, xn+1, wn+1](6wn+1 − 2xn − 2wn − 2xn+1),

En+1 = 6 f [xn, wn, xn+1, wn+1], (80)

Bn+1 =
Dn+1

2Cn+1
,

ηn+1 = −1
3
−

B2
n+1

2An+1En+1
. (81)

Some numerical tests of the second memory-accelerating technique for the iterative
scheme are listed in Table 5. For the equation f2(x) = 0, the COC = 3.535 obtained is
slightly larger than the COC = 3.48 obtained in [9].
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Table 5. The NI, COC, and E.I. for the method by updating three parameters, A, B, and η, in the
second memory-accelerating technique.

Functions x0 [A0, B0] η0 NI COC E.I. = (COC)1/2

f1 1 [5.25, 0.9048] −0.3 4 4.680 2.163

f2 0.9 [14.44,−0.33] 4 4 3.535 1.880

f3 2 [3.25,−0.231] −0.3 4 3.992 1.998

f4 −0.5 [6.13, 0.54] 10 4 4.237 2.058

f5 1.5 [0.548,−1.318] 0.3 5 3.610 1.900

7. Improvement of Džunić’s Method and Optimal Combination

In this section, we improve Džunić’s method [9] by deriving the optimal parameters
and their accelerating techniques. The idea of two optimal combinations of Džunić’s and
Wu’s method, and Džunić’s and Liu’s method are introduced. Then, three new one-step
iterative schemes with the memory-updating techniques are developed.

7.1. Improvement of Džunić’s Memory Method

As was performed in [9], γ and p in Equation (5) were taken to be γ = −1/ f ′(r) and
p = −a2. To guarantee the third-order convergence of Džunić’s method, 1 + γ f ′(r) = 0 is
sufficient, as shown in Equation (6). Therefore, there exists the freedom to chose the value
of p.

Theorem 5. For solving f (x) = 0, the iterative scheme (5) has third-order convergence:

en+1 = −[a3 + pa2 + a2
2]e

3
n +O(e4

n), (82)

if γ = −1/ f ′(r). If we take, furthermore,

p = −a2 −
a3

a2
= − f ′′(r)

2 f ′(r)
− f ′′′(r)

3 f ′′(r)
, (83)

then Equation (5) has fourth-order convergence:

en+1 = O(e4
n). (84)

Proof. By Equations (62) and (63) and Equations (56)–(58), we have

f (wn) = f ′(r)F(en) + γ f ′(r)F(en)G(en) + γ2 f ′(r)3F2(en)H(en). (85)

At the same time, Equation (65) is modified to

en+1 = en −
F(en)

G(en) + γ f ′(r)F(en)[H(en) + pG(en)] + pF(en) + pγ2 f ′(r)2H(en)F2(en)
. (86)

Since we do not have interest in the details of the fourth-order error equation, we write

G(en) + γ f ′(r)F(en)H(en) + pγ f ′(r)F(en)G(en) + pF(en) + pγ2 f ′(r)2H(en)F2(en)

= 1 + P1en + P2e2
n + · · · , (87)

where

P1 = 2a2 + a2γ f ′(r) + p[1 + γ f ′(r)],

P2 = 3a3 + (a2
2 + 3a3)γ f ′(r) + pa2 + pa2[3γ f ′(r) + γ2 f ′(r)2]. (88)

Then, Equation (86) is reduced to
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en+1 = en − (en + a2e2
n + a3e3

n + · · · )[1 − P1en − P2e2
n − P3e3

n + (P1en + P2e2
n + P3e3

n)
2]

= (P1 − a2)e2
n + (P2 + a2P1 − a3 − P2

1 )e
3
n +O(e4

n), (89)

where P1 − a2 = (a2 + p)(1 + γ f ′(r)) was derived in [9].
Letting P1 = a2 for the vanishing of e2

n, we can derive

P2 + a2P1 − a3 − P2
1 = 2a3 + (a2

2 + 3a3)γ f ′(r) + pa2[1 + 3γ f ′(r) + γ2 f ′(r)2] = −a3 − a2
2 − pa2, (90)

if we take γ f ′(r) = −1. By using Equation (83), the coefficient preceding e3
n is reduced to

zero. This completes the proof of Theorem 5.

The third memory-accelerating technique for the iterative scheme (5) in Theorem 5
using p in Equation (83) reads as (i) giving A0 and p0 and w0 = x0 − f (x0)/A0 and
(ii) performing for n = 0, 1, . . .:

xn+1 = xn −
f (xn)

f [xn, wn] + pn f (wn)
, (91)

An+1 = f [xn, wn] + f [xn, wn, xn+1](2xn+1 − xn − wn), (92)

wn+1 = xn+1 −
f (xn+1)

An+1
, (93)

Cn+1, Dn+1, En+1 computed by Equation (80) ,

pn+1 = − Dn+1

2Cn+1
− En+1

3Dn+1
. (94)

Some numerical tests of the third memory-accelerating technique for the iterative
scheme are listed in Table 6. We can notice that, for the equation f2(x) = 0, the COC = 4.002
obtained is larger than the COC = 3.48 obtained in [9].

Table 6. The NI, COC, and E.I. for the method by updating two parameters, A and p, in the third
memory-accelerating technique.

Functions x0 A0 p0 NI COC E.I. = (COC)1/2

f1 1 5.25 −0.3 3 5.169 2.274

f2 1.3 4.44 −0.1 4 4.022 2.005

f3 2 5.11 −3 3 3.126 2.031

f4 −0.5 4.83 −10 3 7.227 2.688

f5 1.3 −1.926 −10 3 6.945 2.635

7.2. Optimal Combination of Džunić’s and Wu’s Iterative Methods

Theorem 6. If

γ = − 1
f ′(r)

, p = a2, b0 = a2, (95)

then the combination of the iterative schemes (5) and (9):
wn = xn + γ f (xn),

xn+1 = xn − Q f (xn)
f [xn ,wn ]+p f (wn)

− (1−Q) f (xn)
f ′(xn)−b0 f (xn)

(96)

has fourth-order convergence, where

Q =
2a3 − a2

2
3a3 + a2

2
. (97)
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Proof. By Equations (20), (21), and (82), we have

en+1 = −
[
(1 − Q)(2a2

2 − a3) + Qa3 + Qpa2 + Qa2
2

]
e3

n +O(e4
n). (98)

If we take p = a2 and Q by Equation (97), then Equation (98) becomes

en+1 = O(e4
n). (99)

This ends the proof of Theorem 6.

The fourth memory-accelerating technique for the iterative scheme (96) in
Theorem 6 reads as (i) giving A0, B0, and Q0 and w0 = x0 − f (x0)/A0 and (ii) performing
for n = 0, 1, . . .:

xn+1 = xn −
Q0 f (xn)

f [xn, wn]− Bn f (wn)
−− (1 − Q0) f (xn)

f ′(xn)− Bn f (xn)
, (100)

An+1 = f [xn, wn] + f [xn, wn, xn+1](2xn+1 − xn − wn), (101)

wn+1 = xn+1 −
f (xn+1)

An+1
, (102)

Cn+1, Dn+1, En+1 computed by Equation (80) ,

Bn+1 =
Dn+1

2Cn+1
,

Gn+1 =
En+1

6Cn+1
,

Qn+1 =
2Gn+1 − D2

n+1

3Gn+1 + D2
n+1

. (103)

Some numerical tests of the fourth memory-accelerating technique for the iterative
scheme are listed in Table 7, which shows that the values of COC are high, which, however,
need the differential term f ′(xn). We can notice that, for the equation f2(x) = 0, the
COC = 6.643 obtained is much larger than the COC = 3.48 obtained in [9].

Table 7. The NI, COC, and E.I. for the method by updating three parameters, A, B, and Q, in the
fourth memory-accelerating technique.

Functions x0 A0 B0 Q0 NI COC E.I. = (COC)1/3

f1 1.2 23.75 0.39 5 3 5.156 1.728

f2 1.4 −1.97 8.34 0.5 5 6.643 1.880

f3 2.2 3.25 −0.23 2 3 9.127 2.090

f4 −0.5 4.83 0.61 0.5 3 7.517 1.959

f5 1.3 −3.733 0.475 0.1 3 7.091 1.921

7.3. Optimal Combination of Džunić’s and Liu’s Iterative Methods

Theorem 7. If

γ = − 1
f ′(r)

, p = −a2, a0 = f ′(r), b0 = a2, (104)

then the combination of the iterative schemes (5) and (10):
wn = xn + γ f (xn),

xn+1 = xn − Q f (xn)
f [xn ,wn ]+p f (wn)

− (1−Q) f (xn)
f ′(r)+b0 f (xn)

(105)
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has fourth-order convergence, where
Q = 1 − a3

a2
2

. (106)

Proof. By Equations (24) and (82), we have

en+1 = −
[
(1 − Q)(a2

2 − a3) + Qa3 + Qpa2 + Qa2
2

]
e3

n +O(e4
n). (107)

If we take p = −a2 and Q by Equation (106), then Equation (107) becomes

en+1 = O(e4
n). (108)

This ends the proof of Theorem 7.

The fifth memory-accelerating technique for the iterative scheme (105) in Theorem 7 is
(i) giving A0 = C0, B0, and Q0 and w0 = x0 − f (x0)/A0 and (ii) performing for n = 0, 1, . . .:

xn+1 = xn −
Q0 f (xn)

f [xn, wn]− Bn f (wn)
− (1 − Q0) f (xn)

Cn + Bn f (xn)
, (109)

An+1 = f [xn, wn] + f [xn, wn, xn+1](2xn+1 − xn − wn), (110)

wn+1 = xn+1 −
f (xn+1)

An+1
, (111)

Cn+1, Dn+1, En+1 computed by Equation (80) ,

Bn+1 =
Dn+1

2Cn+1
,

Qn+1 = 1 − En+1

D2
n+1

. (112)

Some numerical tests of the fifth memory-accelerating technique for the iterative
scheme are listed in Table 8. We can notice that, for the equation f2(x) = 0, the COC = 5.013
obtained is larger than the COC = 3.48 obtained in [9].

Table 8. The NI, COC, and E.I. for the method by updating three parameters, A, B and Q, in the fifth
memory-accelerating technique.

Functions x0 A0 B0 Q0 NI COC E.I. = (COC)1/2

f1 1.2 9.99 0.67 2 3 5.028 2.242

f2 1.3 5.06 469,683 1 6 5.013 2.239

f3 2.2 3.25 −0.231 2 3 9.127 3.021

f4 −0.5 4.83 0.61 5 3 7.343 2.742

f5 1.3 −3.733 0.475 0.1 3 7.091 2.663

8. Modification of Džunić’s Method

As was performed in [9], γ and p in Equation (5) were taken to be γ = −1/ f ′(r)
and p = −a2. To guarantee the third-order convergence of Džunić’s method, p = −a2 is
sufficient, as shown in Equation (6). Therefore, there exists the freedom to chose the value
of γ. We propose a modification of Džunić’s method by

wn = xn − β
f (xn)
f ′(r) ,

xn+1 = xn − f (xn)
f [xn ,wn ]+p f (wn)

,
(113)
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that is, we take p = −a2 and γ f ′(r) = −β, where β is a relaxation factor to be determined
for increasing the order of convergence. If we take β = 1, Džunić’s method is recovered.
The present modification is different from that analyzed in Sections 7.1 and 7.2, where p is
a free parameter.

Theorem 8. For solving f (x) = 0, the iterative scheme (113) with p = −a2 has third-
order convergence:

en+1 = [(2 − 3β)a3 − a2
2(β2 − 2β + 1)]e3

n +O(e4
n), (114)

If we take, furthermore,

β =
2 − 3q +

√
9q2 − 4q

2
, q =

a3

a2
2

, (115)

then Equation (113) has fourth-order convergence:

en+1 = O(e4
n). (116)

Proof. Let β = 1 + η. It follows from Equations (89) and (90) that

en+1 = (P2 + a2P1 − a3 − P2
1 )e

3
n +O(e4

n) = (P2 − a3)e3
n +O(e4

n), (117)

P2 − a3 = 2a3 + (a2
2 + 3a3)γ f ′(r)− a2

2[1 + 3γ f ′(r) + γ2 f ′(r)2]

= (2 − 3β)a3 − a2
2[β

2 − 2β + 1], (118)

where P1 = a2, p = −a2, and γ f ′(r) = −β were inserted. For the vanishing of e3
n, we need

to solve

β2 +

(
3a3

a2
2
− 2

)
β + 1 − 2a3

a2
2

= 0, (119)

whose solution is given by Equation (115).

The sixth memory-accelerating technique for the iterative scheme (113) in Theorem 8
is (i) giving A0, B0, and β0 and w0 = x0 − β0 f (x0)/A0 and (ii) for n = 0, 1, . . ., performing

xn+1 = xn −
f (xn)

f [xn, wn]− Bn f (wn)
, (120)

An+1 = f [xn, wn] + f [xn, wn, xn+1](2xn+1 − xn − wn), (121)

wn+1 = xn+1 − βn+1
f (xn+1)

An+1
, (122)

Cn+1, Dn+1, En+1 computed by Equation (80) ,

Bn+1 =
Dn+1

2Cn+1
,

qn+1 =
En+1

D2
n+1

,

βn+1 =
2 − 3qn+1 +

√
9q2

n+1 − 4qn+1

2
. (123)

Some numerical tests of the sixth memory-accelerating technique for the iterative
scheme are listed in Table 9. For the equation f2(x) = 0, the COC = 8.526 is much larger
than the COC = 3.48 obtained in [9].

In Equation (113), if we take β = 1, then Džunić’s method is recovered. In Table 10,
the values of the COC are compared, which shows that the COC obtained by the sixth
memory-accelerating technique is larger than that obtained by Džunić’s memory method.
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Table 9. The NI, COC, and E.I. for the method by updating three parameters, A, B, and β, in the sixth
memory-accelerating technique.

Functions x0 A0 B0 β0 NI COC E.I. = (COC)1/2

f1 1.2 17.09 0.48 2 3 5.028 2.423

f2 1.3 −13.79 0.721 2 5 8.526 2.920

f3 2.2 3.25 −0.23 2 3 7.879 2.807

f4 −0.5 22.29 0.394 1 3 5.502 2.346

f5 1.3 −3.733 0.475 1 3 5.081 2.254

Table 10. The values of the COC for Džunić’s memory method and the sixth memory accelerat-
ing technique.

Functions f1 f2 f3 f4 f5

Džunić’s method 4.819 4.990 5.852 4.496 4.469

Equation (113) 5.028 8.526 7.879 5.502 5.081

Notice that, by using the suggested initial values of x0 = 1.3, A0 = 10, and B0 = 0.1
given in [9] and using

COC :=
ln |( f (xn+1)/ f (xn)|
ln | f (xn)/ f (xn−1)|

, (124)

instead of that in Equation (35), we can obtain the COC = 3.538 for f2(x) = 0, which is close
to the lower bound of 3.56 derived in [9]. However, using A0 = 15.63 and B0 = −0.077, the
COC = 4.990 is obtained by Equation (35), and the COC = 3.895 is obtained by Equation (124).
Most papers have used Equation (35) to compute the COC. In any case, the lower bound
derived in [9] may underestimate the true value of the COC. As shown in Table 10, all
COCs obtained by Džunić’s memory method are greater than 3.56.

9. A Lie Symmetry Method

As a practical application of the proposed iterative schemes, we developed a Lie
symmetry method based on the Lie group SL(2,R) to solve the second-order nonlinear
boundary-value problem. This Lie symmetry method was first developed in [34] for
computing the eigenvalues of the generalized Sturm–Liouville problem.

Let

u′′(y) =
3
2

u2(y), y ∈ (0, 1), (125)

u(0) = 4, u(1) = 1, (126)

whose exact solution is
u(y) =

4
(y + 1)2 . (127)

The conventional shooting method is assumed to have an unknown initial slope
u′(0) = x and integrated with Equation (125) with the initial conditions u(0) = 4 and
u′(0) = x, which results in an implicit equation f (x) = u(1, x)− 1 = 0 to be solved.

From Equation (125), a nonlinear system consists of two first-order ordinary differen-
tial equations:

d
dy

[
u(y)
u′(y)

]
=

[
0 1

3u(y)
2 0

][
u(y)
u′y)

]
. (128)
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Let

A :=

[
0 1

3u(y)
2 0

]
(129)

being the coefficient matrix. The Lie symmetry system in Equation (128) permits a Lie
group symmetry SL(2,R), a two-dimensional real-valued special linear group, because of
trA = 0.

By using the closure property of the Lie group, there exists a G ∈ SL(2,R), such that
the following mapping holds: [

u(1)
u′(1)

]
= G

[
u(0)
u′(0)

]
, (130)

where

G(x) = exp[A(û)], (131)

û(x) = xu(0) + (1 − x)u(1) = 3x + 1, (132)

and x ∈ (0, 1) is an unknown weighting factor to be determined.
We can derive

G =

 cosh
√

3û
2

√
2

3û sinh
√

3û
2√

3û
2 sinh

√
3û
2 cosh

√
3û
2

. (133)

Then, it follows from Equations (130) and (133) that

u(1) = cosh

√
3û
2

u(0) +

√
2

3û
sinh

√
3û
2

u′(0), (134)

u′(1) =

√
3û
2

sinh

√
3û
2

u(0) + cosh

√
3û
2

u′(0). (135)

Since u(0) = 4 and u(1) = 1 are given, we can obtain u′(0) from Equations (132)
and (134):

u′(0) =
1 − 4 cosh

√
3û
2√

2
3û sinh

√
3û
2

=
1 − 4 cosh

√
3(3x+1)

2√
2

3(3x+1) sinh
√

3(3x+1)
2

. (136)

It is interesting that the unknown slope u′(0) can be derived in Equation (136) by
using the Lie symmetry method, which is more powerful than the traditional shooting
method, of which no such explicit formula for u′(0) can be obtained.

Now, we apply the fourth-order Runge–Kutta method to integrate Equation (125)
with the initial conditions u(0) = 4 and u′(0) given in Equation (136) in terms of x. The
right-end value must satisfy u(1) − 1 = 0, which is an implicit function of x. We take
N = 2000 steps in the Runge–Kutta method and fix the initial guess x0 = 0.5. In Table 11,
we compare the NI, the error of u′(0), and the maximum error of u obtained by comparing
to Equation (127). The weighting factor x = 0.614814522263784 is obtained, such that u′(0)
computed from Equation (136) is very close to the exact one u′(0) = −8.
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Table 11. For Equations (125) and (126), comparing the performances of the second, third, fifth, and
sixth memory-accelerating techniques in the solution of a second-order nonlinear boundary-value
problem by the Lie symmetry method.

Methods Second Third Fifth Sixth

NI 4 3 3 4

Error of u′(0) 2.736 × 10−14 2.736 × 10−14 2.736 × 10−14 2.736 × 10−14

Maximum error of u 3.997 × 10−14 3.997 × 10−14 3.997 × 10−14 3.997 × 10−14

Instead of the Dirichlet boundary conditions in Equation (126), we consider mixed-type
boundary conditions:

u(0) = 4, u′(1) = −1. (137)

Now, from Equation (135), it follows that

u′(0) = −
1 + 4

√
3(3x+1)

2 sinh
√

3(3x+1)
2

cosh
√

3(3x+1)
2

. (138)

In Table 12, we compare the NI, the error of u′(0), and the maximum error of u. The
weighting factor x = 0.5602528690788923 is obtained, such that the u′(0) computed from
Equation (138) is very close to the exact one u′(0) = −8.

Table 12. For Equations (125) and (137), comparing the performances of the second, third, fifth, and
sixth memory-accelerating techniques in the solution of a second-order nonlinear boundary-value
problem by the Lie symmetry method.

Methods Second Third Fifth Sixth

NI 5 3 3 3

Error of u′(0) 2.665 × 10−13 2.647 × 10−13 2.647 × 10−13 2.647 × 10−13

Maximum error of u 4.352 × 10−14 4.397 × 10−14 4.397 × 10−14 4.397 × 10−14

10. Conclusions

In this paper, we addressed five one-step iterative methods: A (Wu’s method), B (Liu’s
method), C (a novel method), D (Džunić’s method), and E (a modification of Džunić’s
method). Without using specific values of the parameters and without memory, they all
have second-order convergence; when specific optimal values of the parameters are used,
they have third-order convergence. Three critical values of f ′(r), f ′′(r), and f ′′′(r) are
parameters in a2 and a3, which are crucial for achieving good performance in the designed
iterative scheme, such that the coefficients (involving a2 and a3) preceding e2

n and e3
n are

zeros. We introduced a combination function, which is determined by raising the order
of convergence. The optimal combination of A and B can generate a fourth-order one-
step iterative scheme. When the values of the parameters and combination function were
obtained by a memory-accelerating method with the third-degree Newton polynomial
to interpolate the previous and current data, we obtained the first memory-accelerating
technique to realize a fourth-order one-step iterative scheme.

In the novel method C, a relaxation factor appeared. If we used the memory-accelerating
method for updating the values of the relaxation factor and other parameters, we obtained
the second memory-accelerating technique to realize the fourth-order convergence of the
derived novel one-step iterative scheme.

We mathematically improved Džunić’s method to an iterative scheme with fourth-
order convergence, and the third memory-accelerating technique was developed to realize
a fourth-order one-step iterative scheme based on Džunić’s memory method.
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The optimal combination of A and D generated the fourth memory-accelerating
technique to realize a fourth-order one-step iterative scheme based on an optimal com-
bination function between Džunić’s and Wu’s methods. The optimal combination of B
and D generated the fifth memory-accelerating technique to realize a fourth-order one-
step iterative scheme based on an optimal combination function between Džunić’s and
Liu’s methods.

In E, we finally introduced a relaxation factor into Džunić’s method, which is opti-
mized to the fourth-order convergence by the sixth memory-accelerating technique.

In the first and fourth memory-accelerating techniques, three evaluations of the func-
tion and its derivative were required. In contrast, the second, third, fifth, and sixth memory-
accelerating techniques needed two evaluations of the function. Numerical tests confirmed
that these fourth-order one-step iterative schemes performed very well with high values of
the COC and E.I. Among them, the fifth memory-accelerating technique was the best one
with the COC > 5.028 and E.I. > 2.413 for all testing examples. Recall that the efficiency
index of the optimal fourth-order two-step iterative scheme with three evaluations of the
function and without memory is the E.I. = 3

√
4 = 1.587.

As an application of the derivative-free one-step iterative schemes with the second,
third, fifth, and sixth memory-accelerating technique, a second-order nonlinear boundary-
value problem was solved by the Lie symmetry method. It is remarkable that the Lie
symmetry method can derive the unknown initial slope to be an explicit formula of the
weighting factor x, whose implicit nonlinear equation f (x) = 0 can be solved with high
efficiency and high accuracy.

The basic iterative schemes in Equations (9) and (10) are applicable to find the multiple
roots of a nonlinear equation, for instance f3(x) = (x − 1)3 − 2 = 0 with a triple root
r = 21/3 + 1. It can be treated well by the proposed accelerated one-step iterative schemes.
As for the system of nonlinear equations, more studies are needed by extending the
presented accelerating techniques.
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