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Abstract: The accelerated degradation testing (ADT) Bayesian evaluation method comprehensively
utilizes product degradation data under accelerated stress levels collected over a short period of
time and multiple sources of prior information, such as historical information, similar product
information, simulation information, etc., to conduct life and reliability evaluation. Through the prior
distribution, prior information affects the ADT Bayesian evaluation results ultimately. However,
different evaluators may obtain different prior distributions based on the same prior information
due to varying experiences or rules, which may lead to differences in the ADT Bayesian evaluation
results. Therefore, it is necessary to analyze and study the impact of prior distribution uncertainty
on the ADT Bayesian evaluation results while also finding criteria to judge the quality of prior
distributions. This paper focuses on the ADT Bayesian evaluation method based on the Wiener
process and the Arrhenius relation, studying the influence of different prior distributions on the
robustness of ADT Bayesian evaluation results. Additionally, based on the deviance information
criterion (DIC), a criterion for selecting prior distributions in the ADT Bayesian evaluation method
is proposed. Through carrying out uncertainty analysis of prior distribution in the ADT Bayesian
evaluation method, a theoretical system and framework for analyzing prior uncertainty in ADT
Bayesian evaluation based on DIC are established, providing a better foundation for the practical
application of the ADT Bayesian evaluation method in engineering.

Keywords: prior distribution; accelerated degradation testing; Bayesian evaluation; deviance
information criterion

1. Introduction

Through quickly collecting product degradation data in a short period of time, acceler-
ated degradation testing (ADT) technology can fully utilize experimental resources under
limited conditions, reduce test duration, and save testing costs. It is very suitable for the
evaluation of high-reliability and long-life products [1]. Meanwhile, the Bayesian evalua-
tion method can comprehensively use information from multiple sources and conduct life
and reliability assessment through Bayesian information fusion methods, which is suitable
for evaluating small-sample products [2]. The ADT Bayesian evaluation method com-
bines ADT technology with Bayesian theory, which can improve its accuracy in reliability
assessment of small-sample and long-life products.

In recent years, a great deal of research has been conducted on ADT Bayesian analysis.
Prakash, G. [3] conducted reliability analysis work on rolling element bearings and pre-
sented two Bayesian hierarchical models—one utilizing the life-time data and the other
using the degradation data. Guo, J. [4] proposed three novel Bayesian information fusion
models to characterize the inherent relationship between the failure-time data and the
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degradation data and integrate the heterogeneous data to obtain accurate reliability analy-
sis results with a small sample size. Fan, T.-H. [5] focused on the failure time other than the
degradation model and used Bayesian predictive analysis based on the inverse Gaussian
process with conjugate priors to deduce the failure time inference, which is associated with
the degradation model and its goodness-of-fit test, from a complete Bayesian perspective.
However, most of the current research on ADT Bayesian evaluation is focused on mod-
eling, data fusion, posterior inference, and so on. They usually assume a certain prior
distribution for analysis, thus overlooking the impact of prior distribution uncertainty on
the analysis results [6]. Therefore, the analysis of the impact of different prior distributions
on evaluation results and how to choose an appropriate prior distribution is still in need of
further research.

In the ADT Bayesian evaluation method, prior distribution is primarily obtained
through the product’s own historical test data, similar products’ data, engineering experi-
ence, etc. Information accumulated in related work in the field before ADT can all serve
as prior information [7]. Rich prior information can bring more convenience to the ADT
Bayesian evaluation method, but different evaluators using the same prior information
may construct different prior distributions. The difficulty lies in how to transform prior
information into an objective understanding of the prior parameters, rather than using
subjective information to construct the prior distribution. Ferguson, T.S. [8] pointed out that
the construction of prior distributions should have sufficient support for prior information
in order to ensure flexibility and generality when using prior distributions for inference.
Currently, the construction of prior distributions usually relies on some classical statisti-
cal methods, including Jeffreys’ prior [9], reference prior [10], noninformative prior [11],
ML-II prior [12], maximum entropy prior [13], maximum data information prior [14], and
multi-level prior [15].

Appropriate prior distribution can improve the accuracy of ADT Bayesian evaluation,
while unreliable prior distribution may have the opposite effect. Currently, research on
prior distribution mainly focuses on how to construct prior distribution. However, there
is a lack of criteria for evaluating the accuracy and rationality of the constructed prior
distributions [16]. Chipman, H. [17] studied the choice of prior distributions and the impact
of this choice on subset selection, computation, and practical analysis. Bayarri, M. [18]
presented a new approach called the prior-based Bayes information criterion (PBIC) to
prior distribution selection based on Laplace expansions. Villa, C. [19] introduced a novel
approach to objectively determining model prior probabilities based on measuring the
worth using the Kullback–Leibler divergence between densities from different models.
Liu, C.C. [20] showed how Bayes factors can be very sensitive to prior assumptions and
discussed model generalizability and the generalization criterion. Currently, there is
relatively little research directly focused on the criteria for selecting prior distributions,
with most studies drawing on the model selection criteria. Therefore, this paper also
considers using the deviance information criterion (DIC) from model selection to conduct
research on prior distribution selection.

This article focuses on the research of uncertainty issues for prior distribution. It
mainly studies the effect of prior distributions on ADT Bayesian evaluation results and
proposes a method for selecting prior distributions based on the DIC. The structure of this
paper is as follows: Section 2 provides an introduction to modeling for the ADT Bayesian
evaluation method; the Wiener process and the Arrhenius relation are selected as the
modeling basis for the degradation model and the accelerated model, respectively. In
Section 3, principles of how to construct prior distribution and robustness analysis of prior
distribution for the ADT Bayesian method are introduced. Through a brief introduction to
the DIC theory, the criterion for selecting prior distributions based on the DIC is considered
theoretically feasible. Section 4 introduces a simulation case: different combined forms of
distributions representing different types of prior information are selected as the prior input
for the ADT Bayesian evaluation method. The robustness of the results of the ADT Bayesian
evaluation method under the different distributions is investigated, and the reason for
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the differences in evaluation results caused by different prior distributions is analyzed.
Combining the robustness analysis results, the uncertainty of prior information in the ADT
Bayesian evaluation method is quantified based on the DIC. The research on analyzing the
uncertainty of prior distributions in ADT Bayesian evaluation based on the DIC provides
convenience for the engineering application of ADT Bayesian evaluation methods.

2. Modeling of ADT Bayesian Evaluation

This section introduces the basic process of ADT Bayesian evaluation modeling. The
key to ADT Bayesian evaluation modeling lies in two types of models, namely, stochastic
process models based on degradation paths and accelerated models describing the relation-
ship between accelerated stress and degradation rate. Currently, scholars have conducted a
large amount of relevant research on the modeling of ADT Bayesian. This paper chooses
the Wiener process for the degradation model and the Arrhenius relation for the accelerated
model, which provides a research foundation for analyzing the impact of prior distributions
on ADT Bayesian evaluation.

2.1. Modeling of Accelerated Degradation Processes

When using Bayesian theory to conduct an evaluation of ADT, it is necessary to
describe the degradation process of ADT and establish the corresponding ADT model.
Stochastic processes can effectively characterize the influence of some stochastic factors
in degradation processes and have therefore been widely applied in degradation model-
ing [21]. The Wiener process, as a stochastic process with continuous time and continuous
space parameters, is the most fundamental, simple, and important stochastic process, which
has been widely studied in many fields of product degradation modeling [22].

In a traditional ADT scenario, Y(t) is used to represent the degradation process of the
product’s performance. Assuming that Y(t) follows a Wiener process with drift constant u
and diffusion coefficient σ, the Wiener process can be represented as [23]:

Y(t) = u · t + σ · B(t). (1)

where B(t) represents the standard Brownian motion. yijk represents the degradation data
value at time tijk, where i denotes the number of accelerated stress levels, j denotes the
number of samples tested under accelerated stress levels, and k denotes the number of
inspections. The degradation increment of the product at time tijk can be represented as:

∆y
(

tijk

)
= yijk − yij(k−1). (2)

Defining the increment of degradation y(t) = ∆y(t) as a new form of data. When
the degradation process of product performance follows a Wiener process, y(t) follows a
normal distribution [2], i.e., y(t)~N (u·Λ(t), σ2·Λ(t)), where Λ(t) is a non-negative increasing
function of time, which is defined as a linear function of time in this paper. The probability
density function y(t) is given by

y(t) ∼ 1
σ
√

2π · Λ(t)
exp

{
− [y − u · Λ(t)]2

2σ2 · Λ(t)

}
. (3)

The acceleration model is used to describe the relationship between the acceleration
stress s and the degradation rate u [24]. This paper only considers the acceleration model
under a single stress. The Arrhenius relation based on failure physics is currently the
most widely used acceleration model [25]. Through logarithmic transformation, it can be
expressed as a simple linear equation as:

ln(u) = a + b/s. (4)

where a and b are constant parameters.
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2.2. ADT Bayesian Evaluation Model

Bayesian evaluation is a statistical inference based on three types of information
(overall information, sample information, and prior information), known as Bayesian
statistics [26]. Its main difference from classical probability statistics lies in whether prior
information is used for inference analysis. Through the collection, mining, and processing
of historical information or empirical knowledge, a prior distribution is formed, which is
then incorporated into the statistical analysis of products through data fusion to improve
the quality of assessment [27]. The expression for the Bayesian equation is as follows:

π(θ|y ) = f (y|θ) · π(θ)

m(y)
. (5)

where π(θ) is the prior distribution of the prior parameter θ in the absence of sample
information. f (y|θ), denoted as a likelihood function, represents the probability distribution
of the data y given the parameter θ. The marginal density function m(y) contains no
information about the parameter θ; it is a “normalizing” constant that is important for
determining the posterior distribution. π(θ|y) is the posterior distribution, which is the
description of θ given the sample information of y. The posterior distribution is obtained
after integrating the three types of information: overall information, sample information,
and prior information.

In the ADT Bayesian evaluation model based on the Wiener process of Equation (3)
and the Arrhenius relation of Equation (4), the prior parameters θ include {a, b, σ}. Therefore,
the likelihood function of the ADT Bayesian evaluation model is:

l(θ|y ) = f (y|θ) =
l

∏
i=1

mi

∏
j=1

nij

∏
k=1

f
(

yijk

∣∣∣a, b, σ
)

. (6)

The logarithmic form of Equation (6) is as follows:

L(θ|y ) =
l

∑
i=1

mi

∑
j=1

nij

∑
k=1

− ln σ − 1
2

ln 2π · Λ
(

tijk

)
−

(
yijk − exp(a + b/s) · Λ

(
tijk

))2

2σ2Λ
(

tijk

)
. (7)

By maximizing the logarithmic form of the likelihood function, the maximum like-
lihood estimation θ̂ = {â, b̂, σ̂} can be obtained. Due to the complexity of the posterior
distribution, WinBUGS v.1.4.3 was chosen as calculation software, which can cover the need
to estimate the posterior distribution of any parameter of interest in complicated Bayesian
models through the Markov chain Monte Carlo (MCMC) method [28]. Doodle in WinBUGS
is a graphical interface in which a model can be defined by drawing the corresponding
directed acyclic graph (DAG). DAG describes the conditional dependencies of the Bayesian
model we wish to fit. Once the model, the data, and the initial values have been specified,
the MCMC algorithm can be compiled, run, and iterated to obtain the posterior distribu-
tion [29]. Then, through the posterior distribution π(θ|y) = π(a, b, σ|y), the reliability or
life expectancy information of the product under normal stress can be evaluated.

The reliability evaluation based on the Wiener process has been studied in refer-
ence [30], which suggests that the first-passage time of the Wiener process is a problem-
solving of crossing probability distribution for continuous boundary-crossing. Assuming
the failure threshold parameter is d, the first-passage time follows an inverse Gaussian
distribution, and the reliability function is given by:

R(t) = Φ

[
d − u · Λ(t)

σ
√

Λ(t)

]
− exp

(
2u · d

σ2

)
Φ

[
−d + u · Λ(t)

σ
√

Λ(t)

]
. (8)
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where Φ(·) is the standard normal cumulative distribution function. In fact, when the
value of u is much greater than σ, the latter term of Equation (8) can be ignored, and the
Wiener process can be considered non-decreasing [31]. Therefore, the reliability distribution
function of first-passage time can be approximated by a normal distribution, i.e., Y(t) is
approximately normally distributed with mean u·Λ(t) and variance σ2·Λ(t).

R(t) ≈ Φ

[
d − u · Λ(t)

σ
√

Λ(t)

]
. (9)

3. Uncertainty Analysis of Prior Distributions

This section briefly introduces the principles of how to construct prior distributions,
robustness analysis of prior distributions for the ADT Bayesian method, and criteria for
prior distribution selection based on DIC. Combined with the ADT Bayes evaluation results
and robustness analysis of prior distribution, DIC can prove to be a good selection criterion
for prior distribution.

3.1. Principles for Constructing Prior Distributions

According to the theories of the Wiener process for the degradation model and the
Arrhenius relation for the accelerated model, θ of the ADT Bayesian evaluation method
includes three prior parameters {a, b, σ}. Assuming that the parameters a, b, and σ are
independent of each other. To evaluate the impact of different prior distributions on the
ADT Bayesian evaluation results, it is possible to consider setting several types of prior
distribution schemes with different prior information for each of the three prior parameters.
Different forms of prior distributions and different values of parameters can be considered
for each type of prior distribution scheme in order to evaluate the uncertainty of different
prior distributions.

Based on whether there is prior information that can be referred to, the construction
of prior distributions can usually be divided into two categories: one category is when
there is prior information available, and the other is when there is no prior information
available. In cases with prior information, the construction of a prior distribution can be
considered based on prior parameter samples. Cases with the absence of prior information
generally refer to situations where there is no historical data or similar product data
available for reference in constructing the prior parameters. In this case, non-informative
prior distributions are constructed, which typically include Bayesian assumptions, Jeffreys’
prior distribution, reference prior distribution, uniform distribution, etc.

This paper establishes three types of prior distribution schemes in order to conduct
an uncertainty analysis of prior distribution. The first type of scheme represents prior
distribution combinations of three parameters with biased information, indicating that
partial information about the prior parameters, mainly including the mean and variance of
the prior parameters, is known through prior information. However, this information is
biased with respect to sample information, which is a common occurrence in the Bayesian
method during ADT processes. The normal distribution and gamma distribution are
often used as representative fitting distributions. The normal distribution is a widely
applicable and important probability distribution with characteristics such as centrality,
symmetry, and uniform variability, while the gamma distribution is an independent and
non-negative probability distribution. Both distributions are well-suited for use as prior
parameter distributions. This article selects normal distribution and gamma distribution as
specific forms of distribution in these schemes, ensuring that the means and variances of the
two types of distributions are the same and examining their impact on the ADT Bayesian
evaluation results. The second type of scheme represents prior distribution combinations
without prior information, i.e., the mean or variance information of the prior parameters
cannot be known through historical information, which is also a common occurrence in the
application of ADT Bayesian evaluation. To simplify calculations, it is possible to consider
using a uniform distribution over a certain range to replace the non-information prior
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distribution [32]. The third type of scheme represents prior distribution combinations with
accurate prior information, where the mean and variance information of prior distributions
is more consistent with sample data information. In such cases, the prior parameters
usually have a better fit with the sample data. The purpose of adding the third type of
scheme is to analyze the influence of different values of parameters under the same prior
distribution on the evaluation results. It can also be understood as a sensitivity analysis of
parameters under the same prior distribution.

3.2. Robustness Analysis of Prior Distributions for the ADT Bayesian Method

Uncertainty analysis of prior distributions primarily refers to analyzing the impact of
different forms of prior distributions and parameter fluctuations in distributions on the
robustness of ADT Bayesian evaluation results. Robustness generally refers to the ability of
a product’s performance to remain operational and stable within an acceptable range under
the influence of various factors in a specified operating environment or conditions [33]. In
uncertainty analysis of prior distributions on the robustness of evaluation results, “specified
operating environment” mainly refers to using different prior distributions as input under
the same prior information, while “performance” mainly refers to the accuracy of ADT
Bayesian evaluation results. Therefore, this paper establishes different prior distribution
schemes with different prior information, which contain different types of prior distribution
combinations, examining the impact of prior distribution on the ADT Bayesian evaluation
results. Robustness analysis of ADT Bayesian evaluation results caused by prior distribution
provides input on how to evaluate the quality of prior distribution and how to adjust the
modeling of prior distribution. The process of uncertainly analyzing prior distributions
based on ADT Bayesian evaluation results is shown in Figure 1.
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Figure 1. Robustness analysis of prior distributions on ADT Bayesian evaluation results.

Step 1: Select an appropriate degradation process and an acceleration model to con-
struct an ADT Bayesian evaluation model for the sample data.

Step 2: For the ADT Bayesian model, build several prior distribution scheme sets
{Πv} containing different prior information; each set includes different forms of prior
distribution {πi(θ)}.



Symmetry 2024, 16, 160 7 of 16

Step 3: Under the same Bayesian model and sample data, extract πi(θ) from Πv and
conduct ADT Bayesian evaluation calculations using WinBUGS software to obtain the
posterior distribution {πi(θ|y)}.

Step 4: Based on the posterior distribution, along with the MCMC method [34]
and Equation (9), compute the reliability evaluation curve to obtain the ADT Bayesian
evaluation results.

Step 5: Return to Step 2, repeat Steps 2~4 for each scheme of prior distribution in set
space; obtain evaluation results for all prior distributions.

Step 6: Analyze and compare the posterior distribution of parameters and reliabil-
ity evaluation results for all different prior distributions, obtaining the impact of prior
distribution uncertainty on the robustness of ADT Bayesian evaluation results.

3.3. Criteria for Prior Distribution Selection Based on DIC

DIC was proposed by Spiegelhalter, D.J. [35], which is very suitable for Bayesian model
selection problems where the posterior distributions are obtained by MCMC simulation.
DIC considers the model’s fit to the data and its own complexity. As the model parameters
increase, the fit of the model improves, but the bias function is penalized, leading to an
increase in the DIC value. DIC is defined as:

DIC = 2 · D(θ)− D
(
θ
)
. (10)

where D(θ) represents the mean of deviance for θ, D
(
θ
)

represents the deviance of the
posterior mean of θ. The expression of deviance of θ is given as follows:

D(θ) = −2 log[ f (y|θ)] + C (11)

where C is a constant that cancels out in the calculation of DIC and therefore does not need
to be known.

DIC can be calculated through MCMC simulation calculations using WinBUGS soft-
ware, which is one of the advantages of DIC over other criteria [36]. In fact, DIC was
initially proposed mainly for model selection, and a smaller DIC value means better model
fitting [35]. However, DIC incorporates both prior information and sample information,
ultimately influencing the calculation of DIC values through the posterior distribution. Dif-
ferent posterior distributions resulting from different prior distributions will cause different
DIC values to be calculated in the same Bayesian model [37]. Therefore, a smaller DIC value
means a better posterior distribution, which is due to the choice of the prior distribution
under the same Bayesian model. The prior distribution with a smaller DIC value will
be more helpful for posterior evaluation. Combining reliability assessment results under
different prior distributions can verify whether the prior distribution selection criteria can
effectively evaluate the quality of the prior distributions. The analysis process for selecting
prior distributions based on DIC is shown in Figure 2.

Step 1: Build an ADT Bayesian evaluation model.
Step 2: Build sets of prior distribution schemes {Πv}; each set includes different prior

distributions {πi(θ)}.
Step 3: Under the same Bayesian model and sample data, extract πi(θ) from Πv,

combine with WinBUGS software to conduct an ADT Bayesian evaluation calculation, and
obtain the posterior distribution {πi(θ|y)}.

Step 4: Calculate the DIC value based on the posterior distribution, combined with
the MCMC method.

Step 5: Go back to Step 2, repeating Steps 2~4 for each scheme in the prior distribution
set space; obtain the DIC value for all prior distributions within the set of schemes.

Step 6: Combine the robustness analysis of the uncertainty of prior distribution with
the results of the ADT Bayesian evaluation, analyze the characteristics of the DIC values
under different sets, and discuss the feasibility of prior distribution selection criteria based
on DIC.
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4. An Illustrative Simulation Case
4.1. Simulation Data Declaration

In order to study the uncertain analysis of prior distributions, it is necessary to make
some certain assumptions for ADT Bayesian evaluation. Through a simulation case, the
uncertainty of the prior distribution’s impact on the evaluation results of the ADT Bayesian
evaluation method can be analyzed, and the superiority or inferiority of the prior distri-
butions can be judged by DIC. The simulation case is designed for 3 levels of constant
stress ADT, whose models consist of the Wiener process for the degradation model and the
Arrhenius relation for the accelerated model, which facilitates the analysis and comparison
of results. The basic information settings of the illustrative simulation case are shown in
Table 1. The reliability curve obtained from the parameters in the table can represent the
true reliability level of the product.

Table 1. Basic information settings of the illustrative simulation case.

Content Values

Degradation process Wiener
Accelerated model Arrhenius

Simulation parameter θ a = 10, b = −5000, σ = 0.005
Stress levels (Temperature/◦C) 65, 85, 100

Normal stress level (Temperature/◦C) 45
Sample size under each stress level 6, 6, 6

Monitor times 10, 10, 10
Failure threshold 30

The sample data obtained from the simulation based on the parameters in Table 1
are shown in Figure 3. The horizontal axis in the figure represents the measurement time,
and the vertical axis represents performance data. If the performance degradation exceeds
30, i.e., the failure threshold d = 30, the product is considered to have failed. This evalua-
tion aims to assess the reliability level of the product under normal operating conditions
(T = 45 ◦C). Based on this simulated data, by comparing the evaluation results under
different prior distributions with the evaluation result under the hypothesis parameters
of Table 1, the impact of prior distribution uncertainty on the evaluation results can be
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analyzed, and criteria for selecting prior distributions based on the DIC criterion can
be examined.
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4.2. Construct Sets of Prior Distributions

To analyze the uncertainty of different prior distributions on the Bayesian evalua-
tion results of ADT, the simulation case builds three different sets Π1, Π2, Π3 for prior
distribution schemes.

According to the principles for constructing prior distributions, different combinations
of prior distribution forms and parameter settings in Table 2 are set to analyze the influence
of different prior distributions on ADT Bayesian results. Π1 represents the prior distribution
schemes with biased information. All πi(θ) in Π1 have mean(a)=12, mean(b) = −6000,
and mean(σ) = 0.01, which deviates from the hypothesis condition in Table 1. Normal
distribution and gamma distribution are selected as prior distribution forms to analyze.
In the prior distribution of π1(θ), the parameters a and b are chosen to follow the normal
distribution, and σ is chosen to follow the gamma distribution, for it represents the standard
deviation in the Wiener process, which has the characteristic of non-negativity. Then, based
on π1(θ), different distribution forms are sequentially set for the prior parameters a, b, and
σ, totaling 4 combinations, i.e., Π1 = {πi(θ)}, i = 1, 2, 3, 4. Π2 represents the schemes of non-
informative prior distributions. Similarly, based on π1(θ) in Π1, prior parameters a, b, and
σ are sequentially set to be uniform distribution for non-informative prior, while another
combination with all parameters follows uniform distribution, totaling 4 combinations, i.e.,
Π2={πi(θ)}, i = 5, 6, 7, 8. Π3 represents the prior distribution scheme of precise information.
All the prior distributions in Π3 are the same as in Π1, but the parameters’ values of the
prior distribution are consistent with the hypothesis condition, which follows mean(a) = 10,
mean(b) = −5000, and mean(σ) = 0.005.

4.3. Comparison of Prior and Posterior Distributions

Choosing WinBUGS as calculation software for the posterior parameter estimation
of the ADT Bayesian evaluation model. By establishing the Doodle model of the ADT
Bayesian method based on the Wiener process and Arrhenius acceleration relation, pos-
terior parameter data can be obtained through Bayesian inference with different prior
distributions πi(θ). After conducting 10,000 iterations, the posterior parameter sampling
chain stabilizes and converges. Discard the first 5000 data points from the posterior param-
eter vector as the aging stage, and extract the subsequent 5000 data sample points for the
analysis and calculation of the posterior distribution. Figures 4–6 show the comparison of
prior and posterior distributions for respective parameters under sets of Π1, Π2, and Π3.
Combining the changes from the prior distribution with the posterior distribution, partial
conclusions regarding the uncertainty analysis of the prior distribution can be drawn.
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Table 2. Information settings for sets of prior distributions.

Πk πi(θ) a b σ

Π1

π1(θ) N(12,1) 1 N(−6000,100) Γ(0.1,10)
π2(θ) Γ (144,12) N(−6000,100) Γ(0.1,10)
π3(θ) N(12,1) −b~Γ(360,000,60) 2 Γ(0.1,10)
π4(θ) N(12,1) N(−6000,100) N(0.01,0.001)

Π2

π5(θ) U(−100,100) 3 N(6000,100) Γ(0.1,10)
π6(θ) N(12,1) U(−10,000,0) Γ(0.1,10)
π7(θ) N(12,1) N(6000,100) U(0,10)
π8(θ) U(−100,100) U(−10,000,0) U(0,1)

Π3

π9(θ) N(10,1) N(−5000,100) Γ(0.05,10)
π10(θ) Γ(100,10) N(−5000,100) Γ(0.05,10)
π11(θ) N(10,1) −b~Γ(250,000,50) Γ(0.05,10)
π12(θ) N(10,1) N(−5000,100) N(0.005,0.0005)

1 N(p,q) represents normal distribution. 2 Γ(p,q) represents the gamma distribution. Due to the non-negativity
of the gamma distribution, −b~Γ(p,q) represents that the negative of parameter b follows gamma distribution.
3 U(p,q) represents uniform distribution within the interval [p,q].
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Figure 4. Comparison graph of prior and posterior distributions in Π1: (a) a; (b) b; (c) σ.
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Figure 5. Comparison graph of prior and posterior distributions in Π2: (a) a; (b) b; (c) σ.
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Figure 6. Comparison graph of prior and posterior distributions in Π3: (a) a; (b) b; (c) σ.

(1) From the comparison graphs, it is obvious that there is a difference between the prior
distribution and the posterior distribution. This result is consistent with Bayesian
theory, which means that by adjusting the prior distribution based on the sample data,
a posterior distribution can be obtained. However, the form of posterior distributions
is different from each other, which also indicates that the prior distribution settings
do have an impact on ADT Bayesian evaluation results.

(2) Under Π1, the posterior distributions of a and b are divided into two categories: for
πi(θ), i = 1, 2, 4, the posterior distributions of a and b are adjusted by the sample
information normally, but posterior distributions do not exhibit obvious distribution
characteristics; for π3(θ), when prior parameter b follows a gamma distribution, the
prior and posterior distributions of b are almost identical, without the expected ad-
justment in the posterior distribution, which in turn leads to an unexpected posterior
distribution of a.

(3) Under Π2, both posterior distributions of a and b fluctuate around the original simu-
lated hypothetical values. Compared to Π1, setting non-informative prior distribu-
tions has a significant impact on the posterior distributions of a and b. Additionally,
whether non-informative prior distributions are chosen between a and b will affect
the posterior distribution of the other parameter.

(4) Under Π3, the posterior distributions of a and b exhibit more noticeable distribution
characteristics, with less fluctuation. However, similar to π3(θ), the prior and posterior
distributions of parameter b under π11(θ) are almost identical.

(5) The common feature of π3(θ) and π11(θ) is that the prior parameter b is assigned
a gamma distribution. It can be seen from the figure that under the gamma prior
distribution, the prior data for parameter b is highly concentrated. But the construc-
tion of prior distributions should have sufficient support for prior information. An
overconcentrated prior distribution may not be conducive to posterior estimation [8].
Since parameter b represents the coefficient of stress level in the Arrhenius acceleration
model, when the prior distribution of b is highly concentrated, it may lead to insuffi-
cient adjustment capability of small sample data, thereby affecting the calculation of
the posterior distribution for a.

(6) Under all prior distributions πi(θ), σ exhibits noticeable distribution characteristics
with high consistency, indicating that the choice of different prior distributions has
little impact on the posterior distribution of σ.

(7) According to the posterior data points, Table 3 lists the mean, standard deviation (std),
2.5th percentile, and 97.5th percentile of the posterior parameters under different
prior distributions in Π1, Π2, and Π3 after convergence of the iterations, for the pur-



Symmetry 2024, 16, 160 12 of 16

pose of comparative analysis. Combining comparison graphs of prior and posterior
distributions, it can be concluded as follows:

Table 3. Posterior parameter information for sets of prior distribution schemes.

Πk πi(θ|y)
a b σ

Mean Std 1 2.5% 97.5% Mean Std 2.5% 97.5% Mean Std 2.5% 97.5%

Π1

π1(θ|y) 10.32 0.2662 9.787 10.93 −5110 98.04 −5336 −4913 0.005 0.00029 0.0045 0.0056
π2(θ|y) 10.69 0.3141 10.09 11.33 −5247 115.7 −5483 −5026 0.005 0.00029 0.0045 0.0056
π3(θ|y) 12.73 0.0326 12.66 12.79 −5999 9.981 −6018 −5979 0.0053 0.00031 0.0047 0.0059
π4(θ|y) 10.22 0.3272 9.557 10.67 −5073 120.4 −5243 −4828 0.0049 0.00028 0.0043 0.0054

Π2

π5(θ|y) 9.833 0.5913 8.899 10.93 −4931 217.4 −5335 −4587 0.005 0.00028 0.0045 0.0056
π6(θ|y) 10.51 0.3716 9.899 11.05 −5179 137 −5382 −4952 0.005 0.00029 0.0045 0.0056
π7(θ|y) 10.91 0.3424 10.19 11.37 −5329 126 −5496 −5060 0.0049 0.00027 0.0044 0.0055
π8(θ|y) 9.749 0.5756 8.649 10.61 −4901 211.5 −5216 −4497 0.0048 0.00027 0.0044 0.0054

Π3

π9(θ|y) 10.02 0.01714 9.985 10.05 −5000 0.5054 −5001 −4999 0.005 0.00029 0.0044 0.0056
π10(θ|y) 10.02 0.01751 9.985 10.05 −5000 0.5019 −5001 −4999 0.005 0.00029 0.0044 0.0056
π11(θ|y) 10.02 0.03202 9.954 10.08 −5000 9.906 −5019 −4980 0.005 0.0003 0.0044 0.0056
π12(θ|y) 10.02 0.01692 9.985 10.05 −5000 0.4979 −5001 −4999 0.0048 0.00027 0.0044 0.0054

1 std represents standard deviation.

(1) Under Π1, for πi(θ|y), i = 1, 2, 4, mean(a) ≈ 10 and mean(b) ≈ −5000, which are close
to the values of simulation assumptions. However, for π3(θ|y), mean(a) ≈ 12.7 and
mean(b) ≈ −6000, showing a significant deviation from the simulated values.

(2) In Π2, the posterior means of a and b are close to the simulated values, and std(a) is
in the range of 0.3 to 0.6, and std(b) is in the range of 100 to 250, which shows a clear
trend of larger standard deviations compared to those of the posterior distribution
in Π1. It can be concluded that under non-informative prior distributions, the pos-
terior parameters are not easily converging and exhibit greater fluctuations in this
simulation case.

(3) For the posterior means under Π3, mean(a) ≈ 10 and mean(b) ≈ −5000, with a stan-
dard deviation significantly smaller than the posterior parameter standard deviations
under Π1 and Π2, making the results more accurate and closer to the simulated
hypothesis values.

(4) Under all prior distributions, the mean of the parameter σ is around 0.005, with a
standard deviation of around 0.0003. The 2.5th and 97.5th percentile values are also
very close. It can be seen that the different settings of prior distributions have a minor
impact on the parameter σ, which is mainly adjusted through the sample data.

(5) The choice of prior distribution for b has a noticeable impact on the posterior distri-
bution. In π3(θ) and π11(θ), due to the setting of the gamma distribution for b, the
posterior distribution’s mean and variance of b are almost identical to the set prior
distribution. In the case of π11(θ), although the posterior mean of b is very close to the
simulated hypothesis value, its variance still differs significantly from the variances
of other posterior distributions under Π3.

(6) Under Π2, when all three parameters a, b, and σ are assigned non-informative prior
distributions, the posterior distribution’s mean achieves results close to the simulated
hypothesis condition. This indicates that under non-informative prior distributions,
the Bayesian model can effectively find posterior parameters that better match the
sample data, but the downside is that the posterior data fluctuates significantly.

4.4. Robustness Analysis of Evaluation Results

Based on 5000 stable and convergent posterior sample data points for each prior
distribution, the reliability of the product is calculated. Figure 7 shows the reliability
curves of product ADT under the Bayesian evaluation results. The bold red line represents
the reliability curve under the hypothesis condition, which can be considered the true
performance of the product reliability. The other labeled lines represent the reliability curves
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for each prior distribution within Π1, Π2, and Π3. From Figure 7, several conclusions can
be drawn, as follows:

(1) Reliability curves under different prior distributions in Π1 and Π2 have certain
differences, even significant disparities, while under different prior distributions in
Π3, they are relatively consistent.

(2) The reliability curve under π1(θ) is quite close to the correct reliability curve. In π1(θ),
a and b both use a normal prior distribution, while σ uses a non-negative gamma
distribution, which corresponds well to the nature of σ representing the diffusion
coefficient of the degradation process. In this setting of prior distribution combination,
the reliability curve obtained through the posterior distribution adjusted from the
sample data are very accurate. However, the reliability curves under other prior
distributions in Π1 deviate from the correct reliability curve.

(3) In Π2, reliability curves under different prior distributions lie on both sides of the
correct reliability curve, showing a certain deviation from each other. Although using
non-informative prior distributions, compared to Π1, it still produces results that
are close to the correct reliability curve. Therefore, in the absence of explicit prior
information, using non-informative prior distributions is not a terribly bad choice for
constructing a prior distribution.

(4) Comparing the reliability curves under π1(θ) with other distributions under Π2,
it indicates that when conducting ADT Bayesian evaluation with the correct prior
distribution model, prior distributions with biased information will still yield better
assessment results than non-informative prior distributions.

(5) Under Π3, the reliability curves of all prior distributions are highly consistent and very
close to the true curve. This is mainly due to the fact that the posterior distribution of a,
b, and σ under Π3 is quite consistent and close to the simulated values, with very little
fluctuation. This means that when using prior distributions with precise information,
the sample data reinforces the prior information, resulting in a smaller variance of the
posterior distribution and obtaining a fairly accurate reliability evaluation result.

Symmetry 2024, 16, x FOR PEER REVIEW 14 of 17 
 

 

non-informative prior distributions, compared to Π1, it still produces results that are 
close to the correct reliability curve. Therefore, in the absence of explicit prior infor-
mation, using non-informative prior distributions is not a terribly bad choice for con-
structing a prior distribution. 

(4) Comparing the reliability curves under π1(θ) with other distributions under Π2, it 
indicates that when conducting ADT Bayesian evaluation with the correct prior dis-
tribution model, prior distributions with biased information will still yield better as-
sessment results than non-informative prior distributions. 

(5) Under Π3, the reliability curves of all prior distributions are highly consistent and 
very close to the true curve. This is mainly due to the fact that the posterior distribu-
tion of a, b, and σ under Π3 is quite consistent and close to the simulated values, with 
very little fluctuation. This means that when using prior distributions with precise 
information, the sample data reinforces the prior information, resulting in a smaller 
variance of the posterior distribution and obtaining a fairly accurate reliability eval-
uation result. 

   
(a) (b) (c) 

Figure 7. (a) Reliability curve under Π1; (b) Reliability curve under Π2; (c) Reliability curve under 
Π3. 

4.5. Prior Distribution Analysis Based on DIC Value 
For prior distributions under Π1, Π2, and Π3, the DIC is used for analysis to compare 

DIC values under different prior distributions, which are shown in Figure 8. Combining 
reliability evaluation results under different prior distributions, some conclusions can be 
drawn as follows: 
(1) Different prior distribution sets exhibit similarity in DIC values: under Π1, the DIC 

values are in the range of 200 to 400; under Π2, the DIC values show significant fluc-
tuations, ranging from 300 to 900; under Π3, the DIC values are highly concentrated, 
ranging from 120 to 150.  

(2) According to the principle of selecting prior distributions based on DIC, which states 
that a smaller DIC value indicates better model fitting [35]. The performance of DIC 
values under prior distribution sets allows us to conclude the following ranking: ac-
curate prior information distribution > biased prior information distribution > non-
informative prior distribution. Similar conclusions can be found in reference [38]. 
This indicates that DIC can effectively screen the quality of prior distributions. 

(3) The DIC value of π1(θ) is the smallest in Π1, and the reliability result of π1(θ) is also 
the best in Π1, correspondingly. Additionally, the issue of significant posterior distri-
bution bias caused by the selection of gamma distribution as the prior distribution 

R
el

ia
bi

lit
y

R
el

ia
bi

lit
y

R
el

ia
bi

lit
y

Figure 7. (a) Reliability curve under Π1; (b) Reliability curve under Π2; (c) Reliability curve under Π3.

4.5. Prior Distribution Analysis Based on DIC Value

For prior distributions under Π1, Π2, and Π3, the DIC is used for analysis to compare
DIC values under different prior distributions, which are shown in Figure 8. Combining
reliability evaluation results under different prior distributions, some conclusions can be
drawn as follows:

(1) Different prior distribution sets exhibit similarity in DIC values: under Π1, the DIC
values are in the range of 200 to 400; under Π2, the DIC values show significant fluc-
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tuations, ranging from 300 to 900; under Π3, the DIC values are highly concentrated,
ranging from 120 to 150.

(2) According to the principle of selecting prior distributions based on DIC, which states
that a smaller DIC value indicates better model fitting [35]. The performance of DIC
values under prior distribution sets allows us to conclude the following ranking:
accurate prior information distribution > biased prior information distribution > non-
informative prior distribution. Similar conclusions can be found in reference [38].
This indicates that DIC can effectively screen the quality of prior distributions.

(3) The DIC value of π1(θ) is the smallest in Π1, and the reliability result of π1(θ) is also the
best in Π1, correspondingly. Additionally, the issue of significant posterior distribution
bias caused by the selection of gamma distribution as the prior distribution for b is
also reflected in the DIC values, with the DIC value of π3(θ) being larger than that of
other prior distributions.

(4) The DIC values under Π2 are generally large and exhibit significant fluctuations,
indicating that non-informative prior distributions generally yield larger DIC values
and are not the optimal choice for prior distributions.

(5) The relatively smaller DIC values under Π3 indicate that having accurate prior information
is significantly beneficial in selecting prior distributions for ADT Bayesian evaluation.

(6) It is worth noting that the DIC can serve as a guideline for selecting prior distributions,
but it is not an absolute rule. This is because in conducting ADT Bayesian evaluation,
there may not always be prior information available, or it may not be certain that the
prior information obtained matches the true models. Therefore, when using the DIC
as a guideline for selecting prior distributions, judgment based on the actual situation
is still necessary.
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5. Conclusions

This article is based on the ADT Bayesian evaluation method and studies the influence
of prior distribution uncertainty on the robustness of the evaluation results. It concludes
that the information content and form of the prior distribution both have a certain impact
on the ADT Bayesian evaluation method. To address the uncertainty of prior distribu-
tion, research on the issue of prior distribution selection for the ADT Bayesian evaluation
method is conducted by borrowing from the idea of model selection criteria. DIC is related
to the posterior distribution, which is obtained by combining the prior distribution with the
sample data. Different posterior distributions resulting from different prior distributions
will also cause different DIC values to be calculated in the same Bayesian model. Through
the simulation case, it is demonstrated that the DIC can help judge the quality of the prior
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distribution. Through an uncertain analysis of prior distribution in the ADT Bayesian eval-
uation method based on DIC, it is possible to fully utilize prior information in engineering
practice to develop a more robust and trustworthy ADT Bayesian evaluation method.
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