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Abstract: Chiral β-azido- and β-cyanocarbonyl compounds are extremely useful building blocks in
asymmetric synthesis, thanks to the manyfold reactivity of their functional groups. The enantioselec-
tive synthesis of such compounds, until the beginning of the 21st century, has been mostly achieved
using transition-metal chiral catalysts. The explosion of enantioselective organocatalysis, however,
has enabled the development of efficient metal-free methodologies with significant benefits in terms
of costs and environmental safety. An overview of the advances made in recent years in this field is
herein presented.
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1. Introduction

Asymmetric synthesis is an indispensable and fascinating tool for generating chiral
molecules useful in many sectors of organic chemistry, especially in the context of medicinal
chemistry and the pharmaceutical industry for the preparation of chiral drug candidates.

At the beginning of the current century, enantioselective synthesis heavily started to rely
on organocatalysis, which is based on reactions mediated by small organic molecules [1–4].

The landscape of catalysis has significantly changed over the last decades, and an
increasing number of organic transformations are now carried out using organocatalysts,
which have superior air and moisture tolerance and excellent compatibility with a wide
range of functional groups in comparison with transition-metal catalysts [5]. In addition,
most organocatalysts are inexpensive, non-toxic, and safe for the environment.

Chiral azides and nitriles are interesting building blocks and key intermediates for the
synthesis of several enantioenriched compounds. One of the most useful means to prepare
such molecules is the enantioselective conjugate azidation or cyanation of electron-poor
alkenes, which has long been confined to transition-metal catalyzed processes. The potential
advantages of metal-free synthesis have inspired this review, which describes the advances
for asymmetric organocatalytic conjugated hydroazidation and hydrocyanation reactions.

2. Enantioselective Conjugate Azidation

In recent decades, azides have received a lot of interest as useful and versatile inter-
mediates in synthetic organic chemistry, serving as precursors among others of amines,
amides, or heterocycles like pyrroles, pyridines, and 1,2,3-triazoles [6–9]. Additionally, they
are commonly employed in chemical biology and pharmaceutical chemistry [10].

In spite of their toxicity and explosiveness, numerous synthetic techniques have been
developed to install the azide moiety in an enantioselective fashion, via both nucleophilic
and electrophilic azidations [11].

In 1999, Jacobsen and coworkers described the asymmetric synthesis of β-amino acid
derivatives via conjugate addition of hydrazoic acid to unsaturated imides (Scheme 1A)
in the presence of a chiral (salen)Al(III) complex [12]. Subsequently, the same research
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group reported the asymmetric hydroazidation of α,β-unsaturated ketones (Scheme 1B)
using a similar catalytic system [13]. The major drawback of this highly enantioselective
methodology is the high toxicity and explosivity of hydrazoic acid.
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2.1. Organocatalyzed Enantioselective Hydroazidation

Various research groups, with the purpose of meeting green chemistry principles,
explored enantioselective metal-free catalyzed azidation reactions under mild conditions,
avoiding the direct use of hydrazoic acid as a nucleophilic azide source.

The first organocatalytic hydroazidation was reported by Miller and collaborators
in 1999 [14]. Tertiary amines were employed as catalysts for the β-azidation of α,β-
unsaturated carbonyl compounds. The azide source was generated by mixing TMSN3 and
AcOH (Scheme 2).
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In 2000, the same research group reported the asymmetric organocatalytic hydroazi-
dation promoted by the small β-turn peptide derivative 7, armed with a τ-(benzyl)-His
residue (Table 1) [15].

Based on these results, Miller and coworkers in 2002 elaborated an enantioselective azi-
dation/cycloaddition sequence achieving optically enriched triazoles and triazolines [16].

Various organocatalytic systems have been developed to carry out the enantioselective
conjugate addition of the azide group to unsaturated nitroalkenes.

In 2007, Jørgensen and coworkers described the first asymmetric conjugate addition of
azide to α,β-unsaturated nitroalkenes catalyzed by Cinchona alkaloids derivatives [17]. In
this methodology, the simultaneous presence of TMSN3 and a carboxylic acid provided
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hydrazoic acid in situ. The best Cinchona alkaloid-derived catalyst 9 led to adducts in high
conversions but moderate enantioselectivities (27–62% ee) (Scheme 3).

Table 1. β-Azidation of α,β-unsaturated carbonyl compounds catalyzed by the small peptide
derivative 7.
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This process turned out to be strongly dependent on the steric and electronic nature of
the acid additive. As a matter of example, the reaction of 1-nitro-hept-1-ene performed in
the presence of benzoic acid led to 50% ee, whereas AcOH and 2,4,6-trimethoxy benzoic
acid furnished 57% ee and 62% ee, respectively.

In 2015, Della Sala and collaborators reported the asymmetric hydroazidation of
nitroalkenes promoted by the secondary amine-thiourea catalyst (11) [18]. After a thorough
screening of bifunctional catalysts, the asymmetric hydroazidation of various nitroalkenes
in the presence of TMSN3 and AcOH was achieved with a good level of enantioselectivity
(71–82% ee), as reported in Table 2. The only exception, in terms of enantioselectivity
(39% ee), is represented by nitrostyrene (Table 2, entry 7). However, it would be stressed
that this is the first example of asymmetric hydroazidation of nitrostyrenes.

A tandem hydroazidation–hydroxylation reaction of α,β-unsaturated aldehydes was
realized by Jang in 2014 by using TMSN3, TEMPO, FeCl3·6H2O, and the Jørgensen–Hayashi
catalyst 13 [19]. This methodology afforded optically active α,β-disubstituted aldehydes,
which are key intermediates of biologically interesting β-amino α-hydroxy esters [20–22].
Under the optimized reaction conditions, diverse α,β-unsaturated aldehydes were used
for the tandem azido/TEMPO addition, achieving moderate yields (42–71%) and good
enantioselectivities (71–90% ee) (Table 3).
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Table 2. Asymmetric hydroazidation of nitroalkenes catalyzed by tertiary amine-thiourea (14).
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Luo and coworkers reported, in 2017, the first example of asymmetric hydroazidation 

of α-substituted vinyl ketones carried out with TMSN3 and a chiral primary tertiary 

diamine catalyst (17) [23]. This transformation was performed under mild reaction 

conditions, achieving good yields (56–91%) and enantioselectivities, as reported in Table 

4. 

Table 4. Substrate scope of asymmetric hydroazidation of α-substituted vinyl ketones. 

 

Entry  R’ R Product Time (h) Yield (%) ee (%)  

1 H Me 18a 16 72 69 

2 4-F Me 18b 16 76 70 

3 4-Cl Me 18c 16 78 70 

4 4-Br Me 18d 16 91 75 

5 4-OMe Me 18e 18 78 69 

6 4-CF3 Me 18f 24 67 59 

7 4-Et Me 18g 16 90 45 

8 3-F Me 18h 18 72 44 

9 3-Cl Me 18i 18 74 55 

10 3-Br Me 18j 18 76 54 

11 3-OMe Me 18k 24 79 38 

12 3-Br,4-F Me 18l 24 69 56 

13 H Et 18m 18 68 43 

14 H n-Pr 18n 24 68 11 

15 H Br 18o 32 56 16 

With the aim of exploring the ability of hydrogen bonding amine bifunctional 

organocatalysts to activate TMSN3 and direct the enantioselective addition to Michael 

acceptors, Aleman and coworkers, in 2019, reported the asymmetric hydroazidation of 

α,β-unsaturated ketones using the bifunctional squaramide 19. This catalyst proved 

capable of simultaneously activating the enone and the TMSN3 without using any 

carboxylic acid additive [24]. The presence of trace amounts of water was found to be 
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Luo and coworkers reported, in 2017, the first example of asymmetric hydroazidation
of α-substituted vinyl ketones carried out with TMSN3 and a chiral primary tertiary di-
amine catalyst (17) [23]. This transformation was performed under mild reaction conditions,
achieving good yields (56–91%) and enantioselectivities, as reported in Table 4.

Table 4. Substrate scope of asymmetric hydroazidation of α-substituted vinyl ketones.
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Entry R’ R Product Time (h) Yield (%) ee (%)

1 H Me 18a 16 72 69

2 4-F Me 18b 16 76 70

3 4-Cl Me 18c 16 78 70

4 4-Br Me 18d 16 91 75

5 4-OMe Me 18e 18 78 69

6 4-CF3 Me 18f 24 67 59

7 4-Et Me 18g 16 90 45

8 3-F Me 18h 18 72 44

9 3-Cl Me 18i 18 74 55

10 3-Br Me 18j 18 76 54

11 3-OMe Me 18k 24 79 38

12 3-Br,4-F Me 18l 24 69 56

13 H Et 18m 18 68 43

14 H n-Pr 18n 24 68 11

15 H Br 18o 32 56 16

With the aim of exploring the ability of hydrogen bonding amine bifunctional organocat-
alysts to activate TMSN3 and direct the enantioselective addition to Michael acceptors, Ale-
man and coworkers, in 2019, reported the asymmetric hydroazidation of α,β-unsaturated
ketones using the bifunctional squaramide 19. This catalyst proved capable of simultane-
ously activating the enone and the TMSN3 without using any carboxylic acid additive [24].
The presence of trace amounts of water was found to be essential to activate TMSN3 and
promote the conjugate addition without generating free hydrazoic acid. DFT calculations
demonstrated that the desilylation of TMSN3 and generation of azide anion is carried out
by an H2O molecule pre-coordinated to the tertiary nitrogen atom of the catalyst (Figure 1).

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 13 
 

 

essential to activate TMSN3 and promote the conjugate addition without generating free 

hydrazoic acid. DFT calculations demonstrated that the desilylation of TMSN3 and 

generation of azide anion is carried out by an H2O molecule pre-coordinated to the tertiary 

nitrogen atom of the catalyst (Figure 1).  

Using the optimized reaction condition, various differently substituted α,β-

unsaturated ketones were tested, resulting in good yields and enantioselectivities as 

described in Table 5. 

Table 5. Substrate scope of asymmetric conjugate azidation to enones catalyzed by 19. 

 

   
 

 
   

   

 

Figure 1. Plausible activation mode of the TMSN3. 

2.2. Organocatalyzed Enantioselective Hydrocyanation 

The asymmetric conjugate addition of cyanide to α,β-unsaturated carbonyl 

derivatives was first accomplished by Jacobsen [25–27] using chiral aluminum salen 

Figure 1. Plausible activation mode of the TMSN3.



Symmetry 2024, 16, 199 6 of 13

Using the optimized reaction condition, various differently substituted α,β-unsaturated
ketones were tested, resulting in good yields and enantioselectivities as described in Table 5.

Table 5. Substrate scope of asymmetric conjugate azidation to enones catalyzed by 19.
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2.2. Organocatalyzed Enantioselective Hydrocyanation

The asymmetric conjugate addition of cyanide to α,β-unsaturated carbonyl derivatives
was first accomplished by Jacobsen [25–27] using chiral aluminum salen complexes and by
Shibasaki [28] using chiral gadolinium catalyst, producing highly valuable chiral building
blocks for pharmaceuticals.

Bifunctional compounds, such as β-amino acids, can be synthesized from β-nitro
nitriles. The simple pathway to such molecules, according to an intuitive retrosynthesis
study, involves a direct conjugate cyanide addition to nitroalkenes. The great tendency of
nitroalkenes to polymerize under basic conditions, however, limits the development of
this reaction.

In 2010, Lassaletta and coworkers decided to explore the asymmetric unprecedented
cyanosilylation of nitroalkenes [29]. The employment of hydrogen bonding bifunctional
tertiary amine organocatalysts resulted in disappointing conversions, whereas much better
performances were achieved by using bifunctional Cinchona alkaloids derived from halide
or cyanide ammonium salts. After an in-depth screening of Cinchona alkaloid derivatives,
the model reaction was efficiently catalyzed by 21 in TBME. The products 22 were al-
ways produced with excellent yields and good enantioselectivities when with a variety of
aliphatic substrates (Table 6). The authors proposed a mechanism involving the activation
of TMSCN triggered by the nucleophilic attack of the halide or cyanide anion (Figure 2).
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Table 6. Substrate scope of asymmetric cyanosilylation of nitroalkenes.
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Figure 2. Proposed mechanism of bifunctional thiourea/ammonium catalyzed cyanosilylation
of nitroalkenes.

In the key stereoselective cyanation step, the CN– counterion attacks the substrate
bound to the thiourea moiety.

Both methods of Jacobsen and Lassaletta use trimethylsilyl cyanide (TMSCN), an
expensive source of cyanide ions. In 2010, Ricci and collaborators [30] started their inves-
tigation using acetone cyanohydrin as a cyanide donor under phase-transfer conditions
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for the addition to β,β-disubstituted nitroolefins promoted by Cinchona alkaloids derived
catalysts (Table 7).

Table 7. Substrate scope of addition of acetone cyanohydrin to β,β-disubstituted nitroolefins.
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4 4-ClC6H4 Me 25d 75 64
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6 4-MeOC6H4 Me 25f 64 56

7 2-furyl Me 25g 52 65

The organocatalytic ion pair is generated by the base-promoted decomposition of
cyanohydrin liberating cyanide ion. The transfer of the C-nucleophile to the electrophilic
nitroolefin’s conjugated site then occurs.

Some years later, Deng and coworkers [31] employed cupreidinium salts for the
asymmetric 1,4-addition of cyanide to enones with acetone cyanohydrin and Cs2CO3 in
toluene/CHCl3 (Scheme 4).
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Using the best PTC catalysts (27 and 28) (Figure 3), a wide range of acyclic enones
bearing linear and branched alkyl groups as the β substituents performed satisfactorily
(Table 8).
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Table 8. Substrate scope for the asymmetric 1,4 addition of cyanide.
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1 Ph Et 28 30a 24 77 95 (S)

2 Ph Et 29 30a 24 97 90 (R)

3 Ph Me 28 30b 24 78 97(S)

4 Ph Me 29 30b 24 92 91(R)

5 Ph n-C5H11 28 30c 96 89 96(S)

6 Ph n-C5H11 29 30c 24 73 92(R)

7 Ph iPr 28 30d 72 69 94(S)

8 Ph iPr 29 30d 24 80 93(R)

9 Ph CH2iPr 28 30e 72 80 97(S)

10 Ph CH2iPr 29 30e 24 91 93(R)

11 Ph CH2OSiEt3 28 30f 48 75 93(S)

12 Ph CH2OSiEt3 29 30f 24 77 87(R)

13 4-Me-C6H4 Me 28 30g 48 78 95(S)

14 4-Me-C6H4 Me 29 30g 24 99 92(R)

15 4-OMe-C6H4 Me 28 30h 48 88 97(S)

16 4-OMe-C6H4 Me 29 30h 24 98 94(R)

17 4-Cl-C6H4 Me 28 30i 6 82 96(S)

18 4-Cl-C6H4 Me 29 30i 4 77 90(R)

In 2010, Chen and coworkers described an enantioselective 1,4-addition of TMSCN
to aromatic chalcones catalyzed by a chiral sodium phosphate [32]. The catalytic sodium
salt was generated in situ from the corresponding phosphoric acid and sodium hydroxide.
After a screening of BINOL-derived phosphoric acid salts, the best catalysts was found
to be a derivative bearing bulky adamantyl groups at 3,3′ positions with excellent yields
(86–99%) and moderate enantioselectivities (53–72% ee).

Later, in 2013, the same research group reported the asymmetric conjugate hydrocya-
nation of enones with benzophenone cyanohydrin catalyzed by an anionic chiral phosphate
catalyst [33]. The best catalyst was 31, bearing adamantyl substituents at 6,6′ positions. In
the scope of reaction (Table 9), all the chalcone analogs exhibited excellent enantioselectivi-
ties (92–98% ee) with the exclusive formation of 1,4-adducts up to 96% yields.

A possible mechanism is described in Figure 4: firstly, the cyanohydrin decomposes
into HCN, reacting with the in situ generated sodium phosphate A, the real catalyst, to form
the negative-charged intermediate B. After being altered by the chiral anion via hydrogen
bonding, the HCN nucleophile gave an asymmetric conjugate addition to the enone to
produce a cyano-enolate C. This is then acidified by the phenol additive to produce sodium
phenolate D and the hydrocyanation product. Finally, the phenolate D deprotonates the
chiral phosphoric acid, regenerating A.
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Table 9. Asymmetric conjugate hydrocyanation of enones.
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3. Conclusions

Over the past few years, chemical synthesis has undergone a revolution via enantiose-
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and useful alternatives to metal catalysts for conjugate hydroazidation and hydrocyanation
reactions, avoiding the high toxicity and explosivity of reagents.

This review highlighted in the first section how it is possible to introduce the azide
moiety in an enantioselective fashion, via both nucleophilic and electrophilic azidations.
The second part analyzed the asymmetric conjugate addition of cyanide to α,β-unsaturated
carbonyl derivatives. These asymmetric metal-free transformations produced important
chiral building blocks for pharmaceutical industries. The main future goal will surely be
the design of even more efficient systems with optimal catalytic properties, leading to
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