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Abstract: The field of geometric function theory has thoroughly investigated starlike functions
concerning symmetric points. The main objective of this work is to derive certain geometric properties,
such as the starlikeness of order δ, convexity of order δ, k-starlikeness, k-uniform convexity, lemniscate
starlikeness and convexity, exponential starlikeness and convexity, and pre-starlikeness for the Galué
type Struve function (GTSF). Furthermore, the conditions for GTSF belonging to the Hardy space are
also derived. The results obtained in this work generalize several results available in the literature.

Keywords: analytic function; univalent function; starlike function; k-starlike function; pre-starlike
function; convex functions; k-uniformly convex function; lemniscate of Bernoulli; Hardy space; Galué
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1. Introduction

Let us consider the disk of radius r to be represented as Dr = {z ∈ C : |z| < r}, and for
simplicity, we denote D1 as D. Suppose the class of analytic functions f defined on D, and
normalized by the condition f (0) = f ′(0)− 1 = 0, can be denoted by A. If a function f ∈ A
is univalent in D, and f (D) is a starlike domain with respect to the origin, then it is said to
be starlike [1]. Analytically,

f ∈ A is starlike ⇐⇒ ℜ
(

z f ′(z)
f (z)

)
> 0 for z ∈ D.

For 0 ≤ δ < 1,

f ∈ A is starlike of order δ ⇐⇒ ℜ
(

z f ′(z)
f (z)

)
> δ for z ∈ D.

The class of the starlike function of order δ is denoted by ST (δ). We simply denote
ST (0) as ST .

Also, if a function f ∈ A is univalent in D, and f (D) is a convex domain, then the
function f is said to be convex [1]. Analytically,

f ∈ A is convex ⇐⇒ ℜ
(

1 +
z f ′′(z)
f ′(z)

)
> 0 for z ∈ D.

For 0 ≤ δ < 1, the function

f ∈ A is convex of order δ ⇐⇒ ℜ
(

1 +
z f ′′(z)
f ′(z)

)
> δ for z ∈ D.
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We denote the class of convex functions of order δ by CV(δ). For δ = 0, the class of the
convex function is simply denoted by CV .

Kanas and Wiśniowska in [2] introduced the class k-UCV of k-uniformly convex
functions, defined as the collection of functions f ∈ A such that the image of every circular
arc contained in D, with center ζ, where |ζ| ≤ k, is convex and also provided the one
variable characterization. Let f ∈ A and 0 ≤ k < ∞, then

f ∈ A is k-uniformly convex ⇐⇒ ℜ
(

1 +
z f ′′(z)
f ′(z)

)
> k

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ for z ∈ D.

According to [3], 1-UCV = UCV and 0-UCV = CV .
In [4], Kanas and Wiśniowska had also defined a similar class k-ST , related to the

starlike functions, known as the k-starlike function.

f ∈ A is k-starlike ⇐⇒ ℜ
(

z f ′(z)
f (z)

)
> k

∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ for z ∈ D.

In the case when k = 0, we obtain the known class ST of starlike functions. For k = 1,
the class 1-ST coincides with the class Sp, introduced by Rønning [5]. Geometrically, the
class k-ST (k-UCV) can be described as f ∈ k-ST ( f ∈ k-UCV) if the image of D under
the function SQ f (z) =

z f ′(z)
f (z) ,

(
CQ f (z) = 1 + z f ′′(z)

f ′(z)

)
is contained in the conic domain Ωk,

where 1 ∈ Ωk and Ωk is bounded by the curve given by

∂Ωk = {w = x + iy ∈ C : x2 = k2(x − 1)2 + k2y2}, 0 ≤ k < ∞.

Some of the widely known subclasses of starlike functions associated with domains
that are symmetric with respect to the real axis are the class of lemniscate starlike functions
S∗

L , which was studied by Sokól and Stankiewicz in [6] and the class S∗
e of starlike functions

associated with exponential functions, which was introduced by Mendiratta et al. [7]. These
classes are also characterized by the quantities SQ f and CQ f . A function f ∈ A is said to be

lemniscate starlike (lemniscate convex) on D if
{
SQ f (z) : |z| < 1

} ({
CQ f (z) : |z| < 1

})
contained in the interior of the region bounded by the right half of the lemniscate of
Bernoulli L = {w ∈ C : ℜ(w) > 0, |w2 − 1| = 1}. The classes of lemniscate starlike
functions and lemniscate convex functions are denoted by S∗

L and C∗
L, respectively. The

classes S∗
e and C∗

e represent the starlike and convex functions associated with exponential
functions, which are given by

S∗
e =

{
f ∈ A : SQ f (D) ⊂ E

}
and C∗

e =
{

f ∈ A : CQ f (D) ⊂ E
}

,

where E = {exp (z) : z ∈ D}. It can easily be observed that the domains L and E are
symmetric with respect to the real axis [8]. Geometric function theory shares a close con-
nection with symmetry. For example, both Möbius transformation theory and hyperbolic
geometry employ symmetric principles. Furthermore, within function theory, there has
been a comprehensive exploration of starlike functions in relation to symmetric points.

One of the special functions that has captured the interest of numerous researchers is
the Struve function, along with its generalizations that arise in the field of mathematical
physics and engineering. The generalized Struve function [9] is defined as a particular
solution of the second-order inhomogeneous differential equation

z2w′′(z) + bzw′(z) + [cz2 − p2 + (1 − b)p]w(z) =
4(z/2)p+1
√

πΓ(p + 1
2 )

, (1)

such that

wp,b,c(z) =
∞

∑
n=0

(−c)n(z/2)2n+p+1

Γ(n + 3
2 )Γ(p + n + b+2

2 )
, (2)
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where b, c, p ∈ C. This function generalizes the Struve function Hp of order p for b = 1, c = 1
and the modified Struve function Lp of order p for b = 1, c = −1. In [10], Nisar et al.
introduced another generalization of the Struve function named the Galué type Struve
function (GTSF), defined as

αWλ,µ
p,b,c,ξ(z) =

∞

∑
n=0

(−c)n(z/2)2n+p+1

Γ(λn + µ)Γ(αn + p
ξ + b+2

2 )
. (3)

It can be easily seen that the Function (3) is a generalization of (2) and various other
special functions frequently used in several branches of mathematics. For example:

(i) If we put α = ξ = λ = 1 and µ = 3
2 , we obtain

1W
1, 3

2
p,b,c,1(z) = wp,b,c(z),

where wp,b,c(z) is the generalized Struve function defined as (2).
(ii) If we put α = c = ξ = λ = µ = 1, p = n − 1, and b = 2, we obtain

1W1,1
n−1,2,1,1(z) = Jn(z),

where Jn(z) is the Bessel function [11].
(iii) If we put α = b = c = ξ = λ = 1 and µ = 3

2 , we obtain

1W
1, 3

2
p,b,c,1(z) = Hp(z),

where Hp(z) is the Struve function of order p.
(iv) If we put α = ξ = 1, b = 2, and p = c = −1, we obtain

1W
λ,µ
−1,2,−1,1(2

√
z) = ϕ(λ, µ; z),

where ϕ(λ, µ, z) is the Wright function [12].
(v) αWλ,µ

p,b,c,ξ(z) have a connection with the Fox–Wright function rΨs[z]:

αWλ,µ
p,b,c,ξ(2

√
z) =

(
z
p

)p+1

1Ψ2

[
(1, 1)

(λ, µ), ( p
ξ + b+1

2 , α)
;
−cz2

4

]
.

(vi) Setting δ = µ = 1, λ = b = 0, and c = −1, we obtain generalized the Mittag-Leffler
function [13]:

αWλ,µ
p−1,0,−1,1(2

√
z) = (z)

p
2 αEp(z), (p, α > 0).

The GTSF in (3) does not belong to the class A; thus, we use the following normaliza-
tion for our study:

αGλ,µ
p,b,c,ξ(z) := 2p+1Γ(µ)Γ

(
p
ξ
+

b + 2
2

)
z

1−p
2 αWλ,µ

p,b,c,ξ(
√

z). (4)

It is noteworthy that research on special functions, such as the Struve functions, is a broad
and ongoing field. Scholars subsequent to Struve have persisted in investigating diverse aspects,
uses, and expansions of these functions. Further studies have broadened our knowledge
and application of Struve functions in a variety of domains, such as engineering, physics,
and mathematical analysis. The GTSF also plays a significant role in mathematical analysis,
including applications in fractional calculus and integral transformations (see [10,14,15]).

Several researchers have investigated the geometric properties such as univalency,
starlikeness, convexity, close to convexity, exponential starlikeness, exponential convexity,
and the Hardy space of Struve functions and its generalizations, e.g., [9,16–21]. In [22],
the strong starlikeness, strong convexity, and uniform convexity properties of GTSF were
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obtained. Motivated by these developments, we aim, here, to obtain the geometrical
properties related to various kinds of starlikeness and convexity for normalized GTSF.

Outline

The rest of this paper is organized as follows. The Lemmas that are used to prove the
main results are listed in Section 2. Section 3 contains the results related to the starlikeness
and convexity of order δ and the geometrical properties on D 1

2
for αGλ,µ

p,b,c,ξ(z). The k-
starlikeness and k-uniform convexity properties are given in Section 4. In Section 5, the
starlikeness and convexity associated with the exponential function and lemniscate of
Bernoulli for αGλ,µ

p,b,c,ξ(z) are obtained. The conditions under which the function αGλ,µ
p,b,c,ξ(z)

belongs to the class L[ρ, δ] are provided in Section 6. In Section 7, the results associated
with the Hardy space for αGλ,µ

p,b,c,ξ(z) are presented.

2. Useful Lemmas

This section contains some Lemmas that will be useful in proving the main results.

Lemma 1 ([23]). For any real number s > 1, the digamma function ψ(s) = Γ′(s)
Γ(s) satisfies the

following inequality:

log(s)− γ ≤ ψ(s) ≤ log(s),

where γ is the Euler–Mascheroni constant.

Lemma 2 ([24]). Let f ∈ A and
∣∣∣∣ f (z)

z
− 1
∣∣∣∣ < 1 for each z ∈ D, then f is univalent and starlike

in D 1
2
= {z : |z| < 1

2}.

Lemma 3 ([25]). Let f ∈ A and
∣∣ f ′(z)− 1

∣∣ < 1 for each z ∈ D, then f is convex in D 1
2
= {z :

|z| < 1
2}.

Lemma 4 ([4]). Assume that f ∈ A with f (z) = z +
∞

∑
n=2

anzn. If

∞

∑
n=2

(n + k(n + 1))|an| < 1, for some 0 ≤ k < ∞,

then f ∈ k-ST .

Lemma 5 ([2]). Assume that f ∈ A with f (z) = z +
∞

∑
n=2

anzn. If

∞

∑
n=2

n(n + 1)|an| <
1

k + 2
, for some 0 ≤ k < ∞,

then f ∈ k-UCV .

Lemma 6 ([26]). If the function f , convex of order δ (0 ≤ δ < 1), is not of the following form:

f (z) =


m + d · z(1 − zeiη)2δ−1 δ ̸= 1

2
,

m + d · log(1 − zeiη) δ =
1
2

,

for d, m ∈ C, η ∈ R, then the following statements hold true:

(i) If 0 ≤ δ < 1
2 , then ∃ σ > 0, such that f ∈ Hσ+ 1

1−2δ .
(ii) If δ ≥ 1

2 , then f ∈ H∞.
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(iii) ∃ ρ > 0, such that f ′ ∈ Hρ+ 1
2(1−δ) .

Here, the notation Hp(0 < p ≤ ∞) is associated with the Hardy space described
in Section 7.

3. Starlikeness and Convexity of GTSF

In this section, we establish various properties related to starlikeness and convexity
for the normalized GTSF. Additionally, some corollaries and examples for particular cases
of the GTSF are provided. Initially, we derive conditions for the starlikeness and convexity
of order δ of αGλ,µ

p,b,c,ξ(z).

Theorem 1. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αe1+γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;

(ii) |c|(2 − δ)Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
< (4 − |c|)(1 − δ)Γ(µ + λ)Γ

(
p
ξ
+

b + 2
2

+ α

)
,

then αGλ,µ
p,b,c,ξ ∈ ST (δ).

Proof. To establish the required result, it suffices to show that

∣∣∣∣∣∣
z αGλ,µ

p,b,c,ξ
′(z)

αGλ,µ
p,b,c,ξ(z)

− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

αGλ,µ
p,b,c,ξ

′(z)−
αGλ,µ

p,b,c,ξ(z)

z
αGλ,µ

p,b,c,ξ(z)

z

∣∣∣∣∣∣∣∣∣ < 1 − δ, (∀z ∈ D).

Now, by a calculation, we have

∣∣∣∣∣∣αGλ,µ
p,b,c,ξ

′(z)−
αGλ,µ

p,b,c,ξ(z)

z

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞

∑
n=0

Γ(µ)Γ
(

p
ξ + b+2

2

)
n
( c

4
)nzn

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
)
∣∣∣∣∣∣

< Γ(µ)Γ
(

p
ξ
+

b + 2
2

) ∞

∑
n=1

dn(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n, (∀z ∈ D), (5)

where
dn = dn(α, p, b, c, ξ, λ, µ) =

n

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
) , n ∈ N.

Next, consider the function D1 : [1, ∞) → R as

D1(s) :=
s

Γ(µ + λs)Γ
(

p
ξ + b+2

2 + αs
) , s ∈ [1, ∞). (6)

Therefore,
D ′

1(s) = D1(s)D2(s), (7)

where D2 is given by

D2(s) =
1
s
− λψ(µ + λs)− αψ

(
p
ξ
+

b + 2
2

+ αs
)

, s ∈ [1, ∞). (8)

From Lemma 1, we obtain

D2(s) ≤
1
s
− λ log(µ + λs)− α log

(
p
ξ
+

b + 2
2

+ αs
)
+ γ(λ + α) = D3(s), s ∈ [1, ∞).
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This leads to

D ′
3(s) =

−1
s2 − λ2

µ + λs
− α2

p
ξ + b+2

2 + αs
< 0, s ∈ [1, ∞).

This implies that D3(s) is decreasing on [1, ∞). Also, under the given hypothesis (i),
D3(1) < 0 and, thus, D ′

1(s) < 0 for s ∈ [1, ∞). Consequently, {dn}n≥1 is a decreasing
sequence. Now, from (5), we have

∣∣∣∣∣∣αGλ,µ
p,b,c,ξ

′(z)−
αGλ,µ

p,b,c,ξ(z)

z

∣∣∣∣∣∣ < Γ(µ)Γ
(

p
ξ
+

b + 2
2

) ∞

∑
n=1

d1(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n,

= Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
d1(α, p, b, c, ξ, λ, µ)

|c|
4 − |c| , (∀z ∈ D). (9)

Now, ∣∣∣∣∣∣ αGλ,µ
p,b,c,ξ(z)

z

∣∣∣∣∣∣ ≥ 1 −
∞

∑
n=1

rn(α, p, b, c, ξ, λ, µ)

(
|c|
4

)n
, (∀z ∈ D), (10)

where

rn = rn(α, p, b, c, ξ, λ, µ) =
Γ(µ)Γ

(
p
ξ + b+2

2

)
Γ(µ + λn)Γ

(
p
ξ + b+2

2 + αn
) .

Similarly, it can be shown that {rn}n≥1 is a decreasing sequence. Therefore, using (10),
we have ∣∣∣∣∣∣ αGλ,µ

p,b,c,ξ(z)

z

∣∣∣∣∣∣ ≥ 1 −
∞

∑
n=1

r1(α, p, b, c, ξ, λ, µ)

(
|c|
4

)n

= 1 − r1(α, p, b, c, ξ, λ, µ)|c|
4 − |c| , (∀z ∈ D). (11)

Combining (9) and (11), we have

∣∣∣∣∣∣∣∣∣
αGλ,µ

p,b,c,ξ
′(z)−

αGλ,µ
p,b,c,ξ(z)

z
αGλ,µ

p,b,c,ξ(z)

z

∣∣∣∣∣∣∣∣∣
<

Γ(µ)Γ
(

p
ξ + b+2

2

)
|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
− |c|Γ(µ)Γ

(
p
ξ + b+2

2

) . (12)

From the condition (ii), the following holds:

Γ(µ)Γ
(

p
ξ + b+2

2

)
|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
− |c|Γ(µ)Γ

(
p
ξ + b+2

2

) < 1 − δ, (∀z ∈ D).

Hence, the theorem is proved.

Corollary 1. Following are special cases from Theorem 1 when α = ξ = λ = 1, and µ respectively
3/2 and 1:



Symmetry 2024, 16, 211 7 of 24

(i) If p +
b + 2

2
> max

{
2e1+2γ

5
− 1,

4|c|
3(4 − |c|)

}
, then the function 1G

1, 3
2

p,b,c,1 is starlike in D.

(ii) If p +
b + 2

2
> max

{
e1+2γ

2
− 1,

3|c|
(4 − |c|)

}
, then the function 1G1,1

p,b,c,1 is starlike in D.

Example 1. Following examples can be construct from Theorem 1

(i) 1G
1, 3

2
−1.05,1,1,1 is starlike in D.

(ii) 1G1,1
−1.3,2,1,1 is starlike in D.

Now, in this following theorem, the conditions for the convexity of order δ are derived
for GTSF.

Theorem 2. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αe
3
2+γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;

(ii) 2|c|(2 − δ)Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
< (4 − |c|)(1 − δ)Γ(µ + λ)Γ

(
p
ξ
+

b + 2
2

+ α

)
,

then αGλ,µ
p,b,c,ξ ∈ CV(δ).

Proof. Clearly, we are finished if we can show that∣∣∣∣∣∣
z αGλ,µ

p,b,c,ξ
′′(z)

αGλ,µ
p,b,c,ξ

′(z)

∣∣∣∣∣∣ < 1 − δ, (∀z ∈ D).

Now,

∣∣∣zαGλ,µ
p,b,c,ξ

′′(z)
∣∣∣ =

∣∣∣∣∣∣
∞

∑
n=0

Γ(µ)Γ
(

p
ξ + b+2

2

)
n(n + 1)

( c
4
)nzn

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
)

∣∣∣∣∣∣
< Γ(µ)Γ

(
p
ξ
+

b + 2
2

) ∞

∑
n=1

hn(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n, (∀z ∈ D), (13)

where

hn = hn(α, p, b, c, ξ, λ, µ) =
n(n + 1)

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
) , n ∈ N.

Now, consider the function H1(s) as

H1(s) :=
s(s + 1)

Γ(µ + λs)Γ
(

p
ξ + b+2

2 + αs
) , s ∈ [1, ∞). (14)

Therefore,
H ′

1 (s) = H1(s)H2(s), (15)

where H2 is given by

H2(s) =
1
s
+

1
s + 1

− λψ(µ + λs)− αψ

(
p
ξ
+

b + 2
2

+ αs
)

, s ∈ [1, ∞). (16)

From Lemma 1, we obtain
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H2(s) ≤
1
s
+

1
s + 1

− λ log(µ + λs)− α log
(

p
ξ
+

b + 2
2

+ αs
)

+ γ(λ + α) = H3(s), s ∈ [1, ∞).

This leads to

H ′
3 (s) = − 1

s2 − 1
(s + 1)2 − λ2

µ + λs
− α2

p
ξ + b+2

2 + αs
< 0, s ∈ [1, ∞).

This implies that H3(s) is decreasing on [1, ∞). Also, under the given hypothesis
(i) H3(1) < 0 and, thus, H ′

1 (s) < 0 for s ∈ [1, ∞). Consequently, {hn}n≥1 is decreasing
sequence. Now, from (13), we have∣∣∣zαGλ,µ

p,b,c,ξ
′′(z)

∣∣∣ < Γ(µ)Γ
(

p
ξ
+

b + 2
2

) ∞

∑
n=1

h1(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n,

= Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
h1(α, p, b, c, ξ, λ, µ)

|c|
4 − |c| , (∀z ∈ D). (17)

Now, ∣∣∣αGλ,µ
p,b,c,ξ

′(z)
∣∣∣ ≥ 1 −

∞

∑
n=1

jn(α, p, b, c, ξ, λ, µ)

(
|c|
4

)n
, (∀z ∈ D), (18)

where

jn = jn(α, p, b, c, ξ, λ, µ) =
Γ(µ)Γ

(
p
ξ + b+2

2

)
(n + 1)

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
) .

By similar arguments, we see that {jn}n≥1 is a decreasing sequence. Therefore, us-
ing (18), we have ∣∣∣αGλ,µ

p,b,c,ξ
′(z)

∣∣∣ ≥ 1 −
∞

∑
n=1

j1(α, p, b, c, ξ, λ, µ)

(
|c|
4

)n

= 1 − j1(α, p, b, c, ξ, λ, µ)|c|
4 − |c| , (∀z ∈ D). (19)

Combining (17) and (19), we have∣∣∣∣∣∣
zαGλ,µ

p,b,c,ξ
′′(z)

αGλ,µ
p,b,c,ξ

′(z)

∣∣∣∣∣∣ <
2Γ(µ)Γ

(
p
ξ + b+2

2

)
|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
− 2|c|Γ(µ)Γ

(
p
ξ + b+2

2

) . (20)

Finally, using the given hypothesis (ii), the desired result can be established.

Corollary 2. If p +
b + 2

2
> max

{
2e

3
2+2γ

5
− 1,

8|c|
3(4 − |c|)

}
, then the function 1G

1, 3
2

p,b,c,1 is

convex in D.

Example 2. Following examples can be construct from Theorem 2

(i) 1G
1, 3

2
−0.6,1,1,1 is convex in D.

(ii) 1G1,1
−0.65,2,1,1 is convex in D.

Next, we will obtain the starlikeness and convexity conditions over D 1
2
.
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Theorem 3. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αeγ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;
(ii) |c|Γ(µ)Γ( p

ξ + b+2
2 ) < (4 − |c|)Γ(µ + λ)Γ( p

ξ + b+2
2 + α),

then αGλ,µ
p,b,c,ξ(z) is starlike in D 1

2
.

Proof. A simple computation gives∣∣∣∣∣∣ αGλ,µ
p,b,c,ξ(z)

z
− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞

∑
n=0

Γ(µ)Γ
(

p
ξ + b+2

2

)( c
4
)nzn

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
)
∣∣∣∣∣∣

< Γ(µ)Γ
(

p
ξ
+

b + 2
2

) ∞

∑
n=1

kn(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n, (∀z ∈ D), (21)

where
kn = kn(α, p, b, c, ξ, λ, µ) =

1

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
) , n ∈ N.

Now, we define the function K1(s) as

K1(s) :=
1

Γ(µ + λs)Γ
(

p
ξ + b+2

2 + αs
) , s ∈ [1, ∞). (22)

Therefore,
K ′

1 (s) = K1(s)K2(s), (23)

where

K2(s) = −λψ(µ + λs)− αψ

(
p
ξ
+

b + 2
2

+ αs
)

, s ∈ [1, ∞).

Again, applying Lemma 1, we obtain

K2(s) ≤ −λ log(µ + λs)− α log
(

p
ξ
+

b + 2
2

+ αs
)
+ γ(λ + α) = K3(s), s ∈ [1, ∞). (24)

Therefore,

K ′
3 (s) = − λ2

µ + λs
− α2

p
ξ + b+2

2 + αs
< 0, s ∈ [1, ∞).

This implies that the function K3(s) is decreasing on [1, ∞) and by hypothesis (i),
K3(1) < 0. So, K3(s) < 0 for all s ≥ 1. Consequently, the function K1(s) is decreasing with
the aid of (23) and (24). Hence, the sequence {kk}n≥∞ is decreasing. Therefore, using (21),
we obtain ∣∣∣∣∣∣ αGλ,µ

p,b,c,ξ(z)

z
− 1

∣∣∣∣∣∣ < Γ(µ)Γ
(

p
ξ
+

b + 2
2

) ∞

∑
n=1

k1(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n

≤
Γ(µ)Γ

(
p
ξ + b+2

2

)
|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
) , (∀z ∈ D). (25)

Thus, the condition (ii) completes the proof.

Corollary 3. Following are special cases from Theorem 3 when α = ξ = λ = 1, and µ respectively
1 and 3/2:
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(i) If p +
b + 2

2
> max

{
2e2γ

5
− 1,

2|c|
3(4 − |c|)

}
, then the function 1G

1, 3
2

p,b,c,1 is starlike in D 1
2
.

(ii) If p +
b + 2

2
> max

{
e1+2γ

2
− 1,

3|c|
(4 − |c|)

}
, then the function 1G1,1

p,b,c,1 is starlike in D 1
2
.

Example 3. Following examples can be construct from Theorem 3

(i) 1G
1, 3

2
−1.2,1,1,1 is starlike in D 1

2
.

(ii) 1G1,1
0.1,2,1,1 is starlike in D 1

2
.

Theorem 4. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αe
1
2+γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;

(ii) |c|Γ(µ)Γ( p
ξ + b+2

2 ) < (4 − |c|)Γ(µ + λ)Γ( p
ξ + b+2

2 + α),

then αGλ,µ
p,b,c,ξ(z) is convex in D 1

2
.

Proof. A direct computation gives

∣∣∣αGλ,µ
p,b,c,ξ

′(z)− 1
∣∣∣ =

∣∣∣∣∣∣
∞

∑
n=1

Γ(µ)Γ
(

p
ξ + b+2

2

)
(n + 1)

( c
4
)nzn

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
)
∣∣∣∣∣∣

< Γ(µ)Γ
(

p
ξ
+

b + 2
2

) ∞

∑
n=1

xn(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n, (∀z ∈ D), (26)

where
xn = xn(α, p, b, c, ξ, λ, µ) =

n + 1

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
) , n ∈ N.

Now, we define the function X1(s) as

X1(s) :=
s + 1

Γ(µ + λs)Γ
(

p
ξ + b+2

2 + αs
) , s ∈ [1, ∞). (27)

Differentiation gives
X ′

1 (s) = X1(s)X2(s), (28)

where

X2(s) =
1

s + 1
− λψ(µ + λs)− αψ

(
p
ξ
+

b + 2
2

+ αs
)

, s ∈ [1, ∞).

Using Lemma 1, we obtain

X2(s) ≤
1

s + 1
− λ log(µ + λs)− α log

(
p
ξ
+

b + 2
2

+ αs
)

+ γ(λ + α) = X3(s), s ∈ [1, ∞). (29)

Thus, we have

X ′
3 (s) = − 1

(s + 1)2 − λ2

µ + λs
− α2

p
ξ + b+2

2 + αs
< 0, s ∈ [1, ∞).

We observe that the function X3(s) is decreasing on [1, ∞) and also by hypothesis (i),
X3(1) < 0. So, X3(s) < 0 for all s ≥ 1. Now, with the aid of (28) and (29), the function
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X1(s) is decreasing. Hence, the sequence {xn}n≥1 is decreasing. Therefore, using (26),
we obtain ∣∣∣αGλ,µ

p,b,c,ξ
′(z)− 1

∣∣∣ < Γ(µ)Γ
(

p
ξ
+

b + 2
2

) ∞

∑
n=1

x1(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n
≤

Γ(µ)Γ
(

p
ξ + b+2

2

)
|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
) , (∀z ∈ D). (30)

In view of condition (ii), the proof of this theorem is completed.

Corollary 4. If p +
b + 2

2
> max

{
e2γ+ 1

2

2
− 1,

2|c|
3(4 − |c|)

}
, then the function 1G

1, 3
2

p,b,c,1 is convex

in D 1
2
.

Remark 1. The significance of Figures 1–3 are illustrate below:

(i) Figure 1a and 1b illustrate the starlikeness and convexity of the Struve function, respectively.
(ii) The starlikeness and convexity of the Bessel function are depicted in Figure 2a and 2b, respec-

tively.
(iii) Figure 3a,b visually represent the starlikeness and convexity properties within the domain D 1

2

of αGλ,µ
p,b,c,ξ(z).

(a) (b)

Figure 1. Starlikeness and convexity of Struve function of order p. (a) Image of D under αGλ,µ
p,b,c,ξ(z)

for α = 1, p = −1.05, b = 1, c = 1, ξ = 1; λ = 1; µ = 1.5; (b) image of D under αGλ,µ
p,b,c,ξ(z) for

α = 1, p = −0.6, b = 1, c = 1, ξ = 1; λ = 1; µ = 1.5.
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(a) (b)

Figure 2. Starlikeness and convexity of Bessel function of order p− 1. (a) Image of D under αGλ,µ
p,b,c,ξ(z)

for α = 1, p = −1.3, b = 2, c = −1, ξ = 1; λ = 1; µ = 1; (b) image of D under αGλ,µ
p,b,c,ξ(z) for

α = 1, p = −0.65, b = 2, c = 1, ξ = 1; λ = 1; µ = 1.

(a) (b)

Figure 3. Starlikeness and Convexity in D 1
2

of αGλ,µ
p,b,c,ξ(z). (a) Image of D 1

2
under αGλ,µ

p,b,c,ξ(z) for

α = 1, p = −1.2, b = 1, c = −1, ξ = 1; λ = 1; µ = 1.5; (b) image of D 1
2

under αGλ,µ
p,b,c,ξ(z) for

α = 1, p = −0.6, b = 2, c = 1, ξ = 1; λ = 1; µ = 1.

4. k-Starlikeness and k-Uniform Convexity of GTSF

In this section, the k-ST and k-UCV are discussed.

Theorem 5. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αe
k

2+k +γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;
(ii) |c|(2 + k)Γ(µ)Γ( p

ξ + b+2
2 ) < (4 − |c|)Γ(µ + λ)Γ( p

ξ + b+2
2 + α),

then αGλ,µ
p,b,c,ξ ∈ k-ST .

Proof. According to Lemma 4, it is enough to show that, under the given hypothesis, the
following inequality holds:

∞

∑
n=2

(n + k(n − 1))

∣∣∣∣∣∣
Γ(µ)Γ

(
p
ξ + b+2

2

)(−c
4
)n−1

Γ(µ − λ + λn)Γ
(

p
ξ + b+2

2 − α + αn
)
∣∣∣∣∣∣ < 1. (31)
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Let

yn = yn(α, p, b, c, ξ, λ, µ) =
n + k(n − 1)

Γ(µ − λ + λn)Γ
(

p
ξ + b+2

2 − α + αn
) , n ≥ 2.

Now, we define the function Y1(s) as

Y1(s) :=
s + k(s − 1)

Γ(µ − λ + λs)Γ
(

p
ξ + b+2

2 − α + αs
) , s ∈ [2, ∞). (32)

Therefore,
Y ′

1 (s) = Y1(s)Y2(s), (33)

where

Y2(s) =
k

s + k(s − 1)
− λψ(µ − λ + λs)− αψ

(
p
ξ
+

b + 2
2

− α + αs
)

, s ∈ [2, ∞).

Applying Lemma 1, we obtain

Y2(s) ≤
k

s + k(s − 1)
− λ log(µ − λ + λs)− α log

(
p
ξ
+

b + 2
2

− α + αs
)

+ γ(λ + α) = Y3(s). (34)

Thus, we have

Y ′
3 (s) = − k(k + 1)

((1 + k)s − k)2 − λ2

µ − λ + λs
− α2

p
ξ + b+2

2 − α + αs
< 0, s ∈ [2, ∞).

Hence, the function Y3(s) is decreasing on [2, ∞) and also by hypothesis (i), Y3(2) < 0.
So, Y3(s) < 0 for all s ≥ 2. Now, with the aid of (33) and (34), the function Y1(s) is
decreasing. Consequently, the sequence {yn}n≥2 is decreasing. Therefore,

∞

∑
n=2

(n + k(n − 1))

∣∣∣∣∣∣
Γ(µ)Γ

(
p
ξ + b+2

2

)(−c
4
)n−1

Γ(µ − λ + λn)Γ
(

p
ξ + b+2

2 − α + αn
)
∣∣∣∣∣∣

=
∞

∑
n=2

Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
yn(α, p, b, c, ξ, λ, µ)

∣∣∣ c
4

∣∣∣n−1

≤ Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
y2(α, p, b, c, ξ, λ, µ)

∞

∑
n=2

∣∣∣ c
4

∣∣∣n−1
(35)

=
Γ(µ)Γ

(
p
ξ + b+2

2

)
(2 + k)|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
) , (∀z ∈ D).

From the given condition (ii), Inequality (31) is satisfied and, hence, the theorem
is proved.

Theorem 6. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) 3(2ξ)αe1+γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;
(ii) 2|c|(2 + k)Γ(µ)Γ( p

ξ + b+2
2 ) < (4 − |c|)Γ(µ + λ)Γ( p

ξ + b+2
2 + α),

then αGλ,µ
p,b,c,ξ ∈ k-UCV .
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Proof. In view of Lemma 5, we show that

∞

∑
n=2

n(n − 1))

∣∣∣∣∣∣
Γ(µ)Γ

(
p
ξ + b+2

2

)(−c
4
)n−1

Γ(µ − λ + λn)Γ
(

p
ξ + b+2

2 − α + αn
)
∣∣∣∣∣∣ < 1

k + 2
. (36)

Let

un = un(α, p, b, c, ξ, λ, µ) =
Γ(n + 1)

Γ(µ − λ + λn)Γ
(

p
ξ + b+2

2 − α + αn
)

Γ(n − 1)
, n ≥ 2.

Now, we define the function U1(s) as

U1(s) :=
Γ(s + 1)

Γ(µ − λ + λs)Γ
(

p
ξ + b+2

2 − α + αs
)

Γ(s − 1)
, s ∈ [2, ∞). (37)

Therefore,
U ′

1 (s) = U1(s)U2(s), (38)

where

U2(s) = ψ(s + 1)− ψ(s − 1)− λψ(µ − λ + λs)− αψ

(
p
ξ
+

b + 2
2

− α + αs
)

, s ∈ [2, ∞).

By using Lemma 1, we have

U2(s) ≤ U3(s), (39)

where

U3(s) = log(s + 1)− log(s − 1)− λ log(µ − λ + λs)

− α log
(

p
ξ
+

b + 2
2

− α + αs
)
+ γ(1 + λ + α).

Thus, we have

U ′
3 (s) = − 2

s2 − 1
− λ2

µ − λ + λs
− α2

p
ξ + b+2

2 − α + αs
< 0, s ∈ [2, ∞).

Hence, the function U3(s) is decreasing on [2, ∞) and also by hypothesis (i), U3(2) < 0.
So, U3(s) < 0 for all s ≥ 2. Now, with the aid of (38) and (39), the function U1(s) is
decreasing. Consequently, the sequence {un}n≥2 is decreasing. Therefore,

∞

∑
n=2

n(n − 1)

∣∣∣∣∣∣
Γ(µ)Γ

(
p
ξ + b+2

2

)(−c
4
)n−1

Γ(µ − λ + λn)Γ
(

p
ξ + b+2

2 − α + αn
)
∣∣∣∣∣∣

=
∞

∑
n=2

Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
un(α, p, b, c, ξ, λ, µ)

∣∣∣ c
4

∣∣∣n−1

≤ Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
u2(α, p, b, c, ξ, λ, µ)

∞

∑
n=2

∣∣∣ c
4

∣∣∣n−1
(40)

=
2|c|Γ(µ)Γ

(
p
ξ + b+2

2

)
(4 − |c|)Γ(µ + λ)Γ

(
p
ξ + b+2

2 + α
) .
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From the given condition (ii), Inequality (36) is satisfied and, hence, the theorem
is proved.

Remark 2. Figure 4a and 4b demonstrate that when the parameters adhere to the obtained results,
the function αGλ,µ

p,b,c,ξ(z) belongs to the class k-ST and k-UCV , respectively.

(a) (b)

Figure 4. (a) Image of D under
z αGλ,µ

p,b,c,ξ
′(z)

αGλ,µ
p,b,c,ξ (z)

for α = 1, p = −0.6, b = 1, c = −1, ξ = 1; λ = 1; µ = 1.5.

(b) Image of D under 1 +
z αGλ,µ

p,b,c,ξ
′′(z)

αGλ,µ
p,b,c,ξ

′(z)
for α = 1, p = 1.9, b = 1, c = 1, ξ = 1; λ = 1; µ = 1.

5. Starlikeness and Convexity Associated with Exponential Function and Lemniscate of
Bernoulli

Theorem 7. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αe1+γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;
(ii) |c|(2e − 1)Γ(µ)Γ( p

ξ + b+2
2 ) < (e − 1)(4 − |c|)Γ(µ + λ)Γ( p

ξ + b+2
2 + α),

then αGλ,µ
p,b,c,ξ ∈ S∗

e in D.

Proof. To prove the result, it is sufficient to show that

∣∣∣∣∣∣
zαGλ,µ

p,b,c,ξ
′(z)

αGλ,µ
p,b,c,ξ(z)

− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

αGλ,µ
p,b,c,ξ

′(z)−
αGλ,µ

p,b,c,ξ(z)

z
αGλ,µ

p,b,c,ξ(z)

z

∣∣∣∣∣∣∣∣∣ < 1 − 1
e

. (41)

Now, using the condition (ii) in (12), Inequality (41) follows, which concludes
the proof.

Theorem 8. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αe
3
2+γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α

(ii) 2|c|(2e − 1)Γ(µ)Γ( p
ξ + b+2

2 ) < (e − 1)(4 − |c|)Γ(µ + λ)Γ( p
ξ + b+2

2 + α),

then αGλ,µ
p,b,c,ξ ∈ C∗

e in D.
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Proof. Condition (ii) implies

2Γ(µ)Γ
(

p
ξ + b+2

2

)
|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
− 2|c|Γ(µ)Γ

(
p
ξ + b+2

2

) < 1 − 1
e

. (42)

Now combining, (20) and (42), we have∣∣∣∣∣∣
zαGλ,µ

p,b,c,ξ
′′(z)

αGλ,µ
p,b,c,ξ

′(z)

∣∣∣∣∣∣ < 1 − 1
e

.

Thus, αGλ,µ
p,b,c,ξ ∈ C∗

e .

Theorem 9. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αe1+γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;

(ii)
|c|Γ(µ)Γ( p

ξ + b+2
2 )

(4 − |c|)Γ(µ + λ)Γ( p
ξ + b+2

2 + α)

(
2 +

|c|Γ(µ)Γ( p
ξ + b+2

2 )

(4 − |c|)Γ(µ + λ)Γ( p
ξ + b+2

2 + α)

)
<

1
2

,

then αGλ,µ
p,b,c,ξ ∈ S∗

L in D.

Proof. To prove the result, it is enough to establish the following inequality:

∣∣∣∣∣∣∣
 zαGλ,µ

p,b,c,ξ
′(z)

αGλ,µ
p,b,c,ξ(z)

2

− 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣zαGλ,µ

p,b,c,ξ
′(z) +

αGλ,µ
p,b,c,ξ(z)

z

∣∣∣∣∣∣
∣∣∣∣∣∣zαGλ,µ

p,b,c,ξ
′(z)−

αGλ,µ
p,b,c,ξ(z)

z

∣∣∣∣∣∣∣∣∣∣∣∣ αGλ,µ
p,b,c,ξ(z)

z

∣∣∣∣∣∣
2 < 1. (43)

From a simple computation, we have∣∣∣∣∣∣αGλ,µ
p,b,c,ξ

′(z) +
αGλ,µ

p,b,c,ξ(z)

z

∣∣∣∣∣∣ < 2 +
∞

∑
n=1

Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
ln(α, p, b, c, ξ, λ, µ)

∣∣∣ c
4

∣∣∣n, (44)

where
ln = ln(α, p, b, c, ξ, λ, µ) =

n + 2
Γ(µ + λn)Γ( p

ξ + b+2
2 + αn)

.

Now, consider the function

L1(s) =
s + 2

Γ(µ + λs)Γ( p
ξ + b+2

2 + αs)
, s ∈ [1, ∞).

Taking logarithmic differentiation,

L ′
1(s) = L1(s)L2(s), (45)

where

L2(s) =
1

s + 2
− λψ(µ + λs)− αψ

(
p
ξ
+

b + 2
2

+ αs
)

.
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By use of Lemma 1, we obtain

L2(s) ≤
1

s + 2
− λ log(µ + λs)− α log

(
p
ξ
+

b + 2
2

+ αs
)
+ γ(λ + α)

:= L3(s), s ∈ [1, ∞) (say). (46)

Since

L ′
3(s) = − 1

(s + 2)2 − λ2

µ + λs
− α2

p
ξ + b+2

2 + αs
< 0,

and L3(1) < 0, we, therefore, eventually obtain that L1(s) is a decreasing function on
[1, ∞) and, hence, the sequence {ln}n≥1 is decreasing. Thus, from (44), the following holds:∣∣∣∣∣∣αGλ,µ

p,b,c,ξ
′(z) +

αGλ,µ
p,b,c,ξ(z)

z

∣∣∣∣∣∣ < 2 + Γ(µ)Γ
(

p
ξ
+

b + 2
2

)
l1(α, p, b, c, ξ, λ, µ)

∞

∑
n=1

∣∣∣ c
4

∣∣∣n
= 2 + Γ(µ)Γ

(
p
ξ
+

b + 2
2

)
l1(α, p, b, c, ξ, λ, µ)|c|

4 − |c| . (47)

Combining (9), (11), and (47), we obtain

∣∣∣∣∣∣zαGλ,µ
p,b,c,ξ

′(z) +
αGλ,µ

p,b,c,ξ(z)

z

∣∣∣∣∣∣
∣∣∣∣∣∣zαGλ,µ

p,b,c,ξ
′(z)−

αGλ,µ
p,b,c,ξ(z)

z

∣∣∣∣∣∣∣∣∣∣∣∣ αGλ,µ
p,b,c,ξ(z)

z

∣∣∣∣∣∣
2

<

2 +
Γ(µ)Γ

(
p
ξ + b+2

2

)
l1|c|

4 − |c|

Γ(µ)Γ
(

p
ξ + b+2

2

)
d1|c|

4 − |c|


(

1 − r1(α, p, b, c, ξ, λ, µ)|c|
4 − |c|

)2

=

2 +
Γ(µ)Γ

(
p
ξ + b+2

2

)
3|c|

Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
(4 − |c|)

 Γ(µ)Γ
(

p
ξ + b+2

2

)
|c|

Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
(4 − |c|)


1 −

Γ(µ)Γ
(

p
ξ + b+2

2

)
|c|

Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
(4 − |c|)

2 . (48)

The condition (ii) and (48) leads to Inequality (43), which concludes the proof.

Theorem 10. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0. If the
following holds true:

(i) (2ξ)αe
3
2+γ(λ+α) < (µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;

(ii)

4|c|Γ(µ)Γ( p
ξ + b+2

2 )

(4 − |c|)Γ(µ + λ)Γ( p
ξ + b+2

2 + α)− 2|c|Γ(µ)Γ( p
ξ + b+2

2 )
(49)

×
(

1 +
|c|Γ(µ)Γ( p

ξ + b+2
2 )

(4 − |c|)Γ(µ + λ)Γ( p
ξ + b+2

2 + α)− 2|c|Γ(µ)Γ( p
ξ + b+2

2 )

)
< 1,
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then αGλ,µ
p,b,c,ξ ∈ C∗

L in D.

Proof. From (20), we have∣∣∣∣∣∣
zαGλ,µ

p,b,c,ξ
′′(z)

αGλ,µ
p,b,c,ξ

′(z)

∣∣∣∣∣∣
∣∣∣∣∣∣2 +

zαGλ,µ
p,b,c,ξ

′′(z)

αGλ,µ
p,b,c,ξ

′(z)

∣∣∣∣∣∣
<

2Γ(µ)Γ
(

p
ξ + b+2

2

)
|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
− 2|c|Γ(µ)Γ

(
p
ξ + b+2

2

) (50)

×

2 +
2Γ(µ)Γ

(
p
ξ + b+2

2

)
|c|

(4 − |c|)Γ(µ + λ)Γ
(

p
ξ + b+2

2 + α
)
− 2|c|Γ(µ)Γ

(
p
ξ + b+2

2

)
, (∀z ∈ D).

Using condition (ii) in (50), we have the following inequality:∣∣∣∣∣∣∣
1 +

zαGλ,µ
p,b,c,ξ

′′(z)

αGλ,µ
p,b,c,ξ

′(z)

2

− 1

∣∣∣∣∣∣∣ < 1, (∀z ∈ D),

which completes the proof.

Remark 3. Interpretation of Figures 5 and 6 are given below:

(i) Figure 5a,b illustrate that αGλ,µ
p,b,c,ξ(z) satisfies the starlikeness and convexity properties asso-

ciated with the exponential function when the values of the parameters are according to the
obtained result.

(ii) The lemniscate starlike and convexity properties are satisfied by αGλ,µ
p,b,c,ξ(z) when the values of

the parameters adhere to the obtained results, as depicted in Figure 6a,b.

(a) (b)

Figure 5. Starlikeness and convexity associated with exponential function of αGλ,µ
p,b,c,ξ(z). (a) Image

of D under
z αGλ,µ

p,b,c,ξ
′(z)

αGλ,µ
p,b,c,ξ (z)

for α = 1, p = −0.9, b = 1, c = 1, ξ = 1; λ = 1; µ = 1.5. (b) Image of D under

1 +
z αGλ,µ

p,b,c,ξ
′′(z)

αGλ,µ
p,b,c,ξ

′(z)
for α = 1, p = 0.75, b = 2, c = 1, ξ = 1; λ = 1; µ = 1.
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(a) (b)

Figure 6. Lemniscate starlikeness and convexity of αGλ,µ
p,b,c,ξ(z). (a) Image of D under

z αGλ,µ
p,b,c,ξ

′(z)

αGλ,µ
p,b,c,ξ (z)

for α = 1, p = −0.51, b = 1, c = 1, ξ = 1; λ = 1; µ = 1.5. (b) Image of D under 1 +
z αGλ,µ

p,b,c,ξ
′′(z)

αGλ,µ
p,b,c,ξ

′(z)
for

α = 1, p = 0.28, b = 2, c = 1, ξ = 1; λ = 1; µ = 1.

6. Pre-Starlikeness

Another important class of function Lρ known as pre-starlike functions, introduced
by Ruscheweyh [27], is defined in the following manner:

Lρ =
{

f ∈ A : gρ ∗ f ∈ ST (ρ)
}

, (0 ≤ ρ < 1),

where gρ(z) = z
(1−z)2−2ρ , z ∈ D and gρ ∗ f denote the Hadamard product of these functions.

The concept of pre-starlikeness is extended in [28] by generalizing the class Lρ to L[ρ, δ],
which is given by

L[ρ, δ] =
{

f ∈ A : gρ ∗ f ∈ ST (δ)
}

, (0 ≤ ρ, δ < 1).

In the following theorem, we obtain conditions for GTSF belonging to the class Lρ.

Theorem 11. Assume that α ∈ N, ξ, λ, µ > 0, |c| < 4, such that 2p + ξ(b + 2) > 0 and
0 ≤ ρ < 1

2 , 0 ≤ δ < 1. If the following holds true:

(i) ξα(3 − 2ρ)e1+γ(λ+α) < 2(µ + λ)λ(2p + ξ(b + 2) + 2ξα)α;
(ii) |c|(1 − ρ)(3 − δ)Γ(µ)Γ( p

ξ + b+2
2 ) < (4 − |c|)(1 − δ)Γ(µ + λ)Γ( p

ξ + b+2
2 + α),

then αGλ,µ
p,b,c,ξ ∈ L[ρ,δ].

Proof. To prove the theorem, we show that gρ ∗ αGλ,µ
p,b,c,ξ = h ∈ ST (δ) by establishing the

following inequality:

∣∣∣∣ zh′(z)
h(z)

− 1
∣∣∣∣ =

∣∣∣h′(z)− h(z)
z

∣∣∣∣∣∣ h(z)
z

∣∣∣ < 1 − δ, (∀z ∈ D). (51)

A calculation yields∣∣∣∣h′(z)− h(z)
z

∣∣∣∣ =
∣∣∣∣∣ ∞

∑
n=1

Γ(µ)Γ( p
ξ + b+2

2 )Γ(n + 2 − 2ρ)n
(−c

4
)nzn

Γ(2 − 2ρ)Γ(µ + λn)Γ( p
ξ + b+2

2 + αn)Γ(n + 1)

∣∣∣∣∣ (52)

<
Γ(µ)Γ( p

ξ + b+2
2 )

Γ(2 − 2ρ)

∞

∑
n=1

vn(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n, (∀z ∈ D),
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where

vn = vn(α, p, b, c, ξ, λ, µ) =
nΓ(n + 2 − 2ρ)

Γ(µ + λn)Γ( p
ξ + b+2

2 + αn)Γ(n + 1)
, n ≥ 1.

Let

V1(s) =
nΓ(n + 2 − 2ρ)

Γ(µ + λn)Γ( p
ξ + b+2

2 + αn)Γ(n + 1)
, s ∈ [1, ∞).

Differentiating logarithmically,

V ′
1(s) = V1(s)V2(s), (53)

where

V2(s) =
1
s
+ ψ(s + 2 − 2ρ)− ψ(s + 1)− λψ(µ + λs)− αψ

(
p
ξ
+

b + 2
2

+ αs
)

.

In view of Lemma 1, the inequality follows:

V2(s) ≤
1
s
+ log

(
s + 2 − 2ρ

s + 1

)
− λ log(µ + λs)

− α log
(

p
ξ
+

b + 2
2

+ αs
)
+ γ(1 + λ + α) := V3(s), s ∈ [1, ∞) (say). (54)

Differentiating V3(s), we obtain

V ′
3(s) = − 1

s2 +
2ρ − 1

(s + 2 − 2ρ)(s + 1)
− λ2

µ + λs
− α2

p
ξ + b+2

2 + αs
< 0.

Thus, V3(s) is decreasing on s ∈ [1, ∞). Also, by the hypothesis (i), V3(1) < 0. Hence,
from (54) and (53), V1(s) is a decreasing function on s ∈ [1, ∞). Consequently, {vn}n≥1 is a
decreasing sequence. Therefore, from (52),∣∣∣∣h′(z)− h(z)

z

∣∣∣∣ < Γ(µ)Γ( p
ξ + b+2

2 )

Γ(2 − 2ρ)

∞

∑
n=1

v1(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n
=

Γ(µ)Γ( p
ξ + b+2

2 )v1(α, p, b, c, ξ, λ, µ)|c|
Γ(2 − 2ρ)(4 − |c|) , (∀z ∈ D). (55)

A simple computation leads to∣∣∣∣h(z)z

∣∣∣∣ > 1 −
Γ(µ)Γ( p

ξ + b+2
2 )

Γ(2 − 2ρ)

∞

∑
n=1

qn(α, p, b, c, ξ, λ, µ)
∣∣∣ c
4

∣∣∣n, (56)

where

qn(α, p, b, c, ξ, λ, µ) =
Γ(n + 2 − 2ρ)

Γ(µ + λn)Γ
(

p
ξ + b+2

2 + αn
)

Γ(n + 1)
, n ∈ N.

By similar arguments, it can be shown that {qn}n≥1 is a decreasing sequence. Now,
using (56), we obtain
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∣∣∣∣h(z)z

∣∣∣∣ > 1 −
Γ(µ)Γ( p

ξ + b+2
2 )

Γ(2 − 2ρ)
q1(α, p, b, c, ξ, λ, µ)

∞

∑
n=1

∣∣∣ c
4

∣∣∣n
= 1 −

Γ(µ)Γ( p
ξ + b+2

2 )q1(α, p, b, c, ξ, λ, µ)|c|
Γ(2 − 2ρ)(4 − |c|) . (57)

Combining (55) and (57), we have

∣∣∣∣h′(z)− h(z)
z

∣∣∣∣∣∣∣∣h(z)z

∣∣∣∣ <

Γ(µ)Γ( p
ξ + b+2

2 )v1(α, p, b, c, ξ, λ, µ)|c|
Γ(2 − 2ρ)(4 − |c|)

1 −
Γ(µ)Γ( p

ξ + b+2
2 )q1(α, p, b, c, ξ, λ, µ)|c|

Γ(2 − 2ρ)(4 − |c|)

(58)

=
2|c|(1 − ρ)Γ(µ)Γ

(
p
ξ + b+2

2

)
(4 − c)Γ(µ + λ)Γ

(
p
ξ + b+2

2 + α
)
− |c|(1 − ρ)Γ(µ)Γ

(
p
ξ + b+2

2

) .

Applying the condition (ii) on (58), Inequality (51) holds, which proves
the theorem.

Remark 4. In Figure 7, it can be observed that for suitable parameter values consistent with the
obtained results,

(
gρ ∗ z αGλ,µ

p,b,c,ξ

)
(z) maps the unit disk D onto a starlike domain. Consequently,

αGλ,µ
p,b,c,ξ(z) satisfies the pre-starlikeness property.

(a) (b)

Figure 7. Pre-starlikeness of αGλ,µ
p,b,c,ξ(z). (a) Image of D under

(
gρ ∗ z αGλ,µ

p,b,c,ξ

)
(z) for

α = 1, p = −1.7, b = 3, c = −1, ξ = 1; λ = 1; µ = 1. (b) Image of D under
(

gρ ∗ z αGλ,µ
p,b,c,ξ

)
(z)

for α = 1, p = −1.01, b = 1, c = 1, ξ = 1; λ = 1; µ = 1.5.
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7. Hardy Space of GTSF

Let H∞ represent the space of all bounded functions in D. We also assume that h is in
the class of the analytic functions in domain D and set

Mp(r, h) =


(

1
2π

∫ 2π

0

∣∣∣h(reiθ)
∣∣∣pdθ

) 1
p

(0 < p < ∞)

max{|h(z)| : |z| ≤ r} (p = ∞).

As per [29], the function h is considered to belong to the Hardy space, denoted as
Hp(0 < p ≤ ∞), if Mp(r, h) is bounded for all r ∈ [0, 1) and

H∞ ⊂ Hq ⊂ Hp (0 < p < q < ∞).

The study of the Hardy space of Mittag-Leffler functions is presented in [30]. In [31], the
results related to the Hardy space for the Fox–Wright function are derived.
Additionally, [17] establishes the conditions for generalized Struve functions belonging to the
Hardy space. In the following, we demonstrate a direct consequence of convexity for GTSF
connected to the Hardy space of analytic functions.

Theorem 12. Under the conditions in Theorem 2, the following holds:

αGλ,µ
p,b,c,ξ ∈


H

1
1−2δ if 0 ≤ δ <

1
2

,

H∞ if
1
2
≤ δ < 1.

Also, αGλ,µ
p,b,c,ξ

′ ∈ H
1

2(1−δ) .

Proof. Applying Lemma 6, for any δ ∈ [0, 1
2 ), there exists σ > 0, such that

αGλ,µ
p,b,c,ξ ∈ Hσ+ 1

1−2δ ,

and if δ ≥ 1
2 , then

αGλ,µ
p,b,c,ξ ∈ H∞.

Also, there exists ρ, such that

αGλ,µ
p,b,c,ξ

′ ∈ Hρ+ 1
2(1−δ) .

Now, since for any q, r with 0 < q < r < ∞, it is implied that H∞ ⊂ Hr ⊂ Hq. Hence,

αGλ,µ
p,b,c,ξ ∈ H

1
(1−2δ) for 0 ≤ δ <

1
2

.

Also,

αGλ,µ
p,b,c,ξ

′ ∈ H
1

2(1−δ) .

Hence, the proof is completed.

8. Concluding Remarks and Observations

In this article, we established various geometric properties for the normalized Galué
type Struve function (GTSF), including the starlikeness of order δ, convexity of order
δ, k-starlikeness, k-uniform convexity, lemniscate starlikeness and convexity, exponential
starlikeness and convexity, and pre-starlikeness. Moreover, Theorem 12 illustrates a direct
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implication of the convexity of GTSF connected to the Hardy space of analytic functions.
Several outcomes derived herein generalize the findings available in prior literature. The
findings of this study were supported by interesting examples and graphical representations.
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