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mates on the first two Taylor–Maclaurin coefficients were found in these subclasses (see 

[7–10]). Several authors introduced initial Maclaurin coefficients bounds for subclasses of 

bi-univalent functions (see [11,12]). Many researchers ([11,13,14]) have studied numerous 

curious subclasses of the bi-univalent function class Ω and observed non-sharp bounds 

on the first two Taylor–Maclaurin coefficients. As well as this, the coefficient problem for 

all of the Taylor–Maclaurin coefficients |𝑎𝑛|, n = 3,4,... is as yet an open problem ([2]). 

Also, let 𝒫 represent the class of analytic functions 𝓅 that are normalized by the condi-

tion: 

𝓅(ᶎ) = 1 + 𝓅1ᶎ + 𝓅2ᶎ
2 +⋯, 𝑅𝑒(𝓅(ᶎ)) > 0, ᶎ ∈ 𝐷.  

Noonan and Thomas [15] defined the 𝑞𝑡ℎ Hankel determinant of 𝑓, in 1976 for 𝑛 ≥

1 and 𝑞 ≥ 1 by 

Ⱨ𝒒(𝒏) = |

𝒂𝒏                     𝒂𝒏+𝟏     ⋯      𝒂𝒏+𝒒−𝟏  
𝒂𝒏+𝟏                 𝒂𝒏+𝟐     ⋯      𝒂𝒏+𝒒      

⋮                            ⋮                         ⋮      
𝒂𝒏+𝒒−𝟏             𝒂𝒏+𝒒     ⋯      𝒂𝒏+𝟐𝒒−𝟐

| , (𝒂𝟏 = 𝟏). 
 

For 𝑞 = 2  and  𝑛 = 1 , we know that the function Ⱨ2(1) = 𝑎3 − 𝑎2
2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
2| − |𝑎4||𝑎4 − 𝑎2𝑎3| + |𝑎5||𝑎3 − 𝑎2

2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

3(1)). In this study, new constraints for the estimates of the third Hankel determinant for the class
S(β) are presented, which are of considerable interest in various fields of mathematics, including
complex analysis and geometric function theory. Here, we define these bi-univalent functions as
S(β) and impose constraints on the coefficients |an|. Our investigation provides the upper bounds
for the bi-univalent functions in this newly developed subclass, specifically for n = 2, 3, 4, and 5. We
then derive the third Hankel determinant for this particular class, which reveals several intriguing
scenarios. These findings contribute to the broader understanding of bi-univalent functions and their
potential applications in diverse mathematical contexts. Notably, the results obtained may serve as a
foundation for future investigations into the properties and applications of bi-univalent functions
and their subclasses.
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
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4
)), where 
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3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
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𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-
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A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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In 1967, Lewin [2] obtained a coefficient bound that is given by |a2| < 1.51 for all
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in D. In 1967, Clunie and Brannan [3] conjectured that |a2| ≤

√
2 for f ∈ ∑. After that,

Netanyahu [4] proved that |a2| = 4
3 . In 1985, Kedzierawski [5] stated that Brannan–Clunie

conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation estimates on
the initial coefficients |a2| as well as |a3| for functions in the classes of bi-starlike functions
of order ρ denoted by E∗

Ω (ρ) and bi-convex functions of order ρ symbolled by YΩ(ρ).
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For all of the function classes, E∗
Ω (ρ) and YΩ(ρ), non-sharp estimates on the first two

Taylor–Maclaurin coefficients were found in these subclasses (see [7–10]). Several authors
introduced initial Maclaurin coefficients bounds for subclasses of bi-univalent functions
(see [11,12]). Many researchers ([11,13,14]) have studied numerous curious subclasses
of the bi-univalent function class Ω and observed non-sharp bounds on the first two
Taylor–Maclaurin coefficients. As well as this, the coefficient problem for all of the Taylor–
Maclaurin coefficients |an|, n = 3,4,... is as yet an open problem ([2]). Also, let P represent
the class of analytic functions p that are normalized by the condition:

p(
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In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 
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. In 1985, Kedzierawski [5] stated that Brannan–
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fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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𝑛=2 , (ᶎ ∈ 𝐷). (1) 
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Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏
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. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-
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A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
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. In 1985, Kedzierawski [5] stated that Brannan–
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mates on the first two Taylor–Maclaurin coefficients were found in these subclasses (see 

[7–10]). Several authors introduced initial Maclaurin coefficients bounds for subclasses of 

bi-univalent functions (see [11,12]). Many researchers ([11,13,14]) have studied numerous 

curious subclasses of the bi-univalent function class Ω and observed non-sharp bounds 

on the first two Taylor–Maclaurin coefficients. As well as this, the coefficient problem for 

all of the Taylor–Maclaurin coefficients |𝑎𝑛|, n = 3,4,... is as yet an open problem ([2]). 

Also, let 𝒫 represent the class of analytic functions 𝓅 that are normalized by the condi-

tion: 

𝓅(ᶎ) = 1 + 𝓅1ᶎ + 𝓅2ᶎ
2 +⋯, 𝑅𝑒(𝓅(ᶎ)) > 0, ᶎ ∈ 𝐷.  

Noonan and Thomas [15] defined the 𝑞𝑡ℎ Hankel determinant of 𝑓, in 1976 for 𝑛 ≥

1 and 𝑞 ≥ 1 by 

Ⱨ𝒒(𝒏) = |

𝒂𝒏                     𝒂𝒏+𝟏     ⋯      𝒂𝒏+𝒒−𝟏  
𝒂𝒏+𝟏                 𝒂𝒏+𝟐     ⋯      𝒂𝒏+𝒒      

⋮                            ⋮                         ⋮      
𝒂𝒏+𝒒−𝟏             𝒂𝒏+𝒒     ⋯      𝒂𝒏+𝟐𝒒−𝟐

| , (𝒂𝟏 = 𝟏). 
 

For 𝑞 = 2  and  𝑛 = 1 , we know that the function Ⱨ2(1) = 𝑎3 − 𝑎2
2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
2| − |𝑎4||𝑎4 − 𝑎2𝑎3| + |𝑎5||𝑎3 − 𝑎2

2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

q(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣, (a1 = 1).

For q = 2 and n = 1, we know that the function
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operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  
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2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
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minant, these functions are studied by [16,24–26] functional, given by 
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2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

2(1) = a3 − a2
2. The second Hankel

determinant
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𝒂𝒏+𝒒−𝟏             𝒂𝒏+𝒒     ⋯      𝒂𝒏+𝟐𝒒−𝟐

| , (𝒂𝟏 = 𝟏). 
 

For 𝑞 = 2  and  𝑛 = 1 , we know that the function Ⱨ2(1) = 𝑎3 − 𝑎2
2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
2| − |𝑎4||𝑎4 − 𝑎2𝑎3| + |𝑎5||𝑎3 − 𝑎2

2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

2(2) is defined as |
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mates on the first two Taylor–Maclaurin coefficients were found in these subclasses (see 

[7–10]). Several authors introduced initial Maclaurin coefficients bounds for subclasses of 

bi-univalent functions (see [11,12]). Many researchers ([11,13,14]) have studied numerous 

curious subclasses of the bi-univalent function class Ω and observed non-sharp bounds 

on the first two Taylor–Maclaurin coefficients. As well as this, the coefficient problem for 

all of the Taylor–Maclaurin coefficients |𝑎𝑛|, n = 3,4,... is as yet an open problem ([2]). 

Also, let 𝒫 represent the class of analytic functions 𝓅 that are normalized by the condi-

tion: 

𝓅(ᶎ) = 1 + 𝓅1ᶎ + 𝓅2ᶎ
2 +⋯, 𝑅𝑒(𝓅(ᶎ)) > 0, ᶎ ∈ 𝐷.  

Noonan and Thomas [15] defined the 𝑞𝑡ℎ Hankel determinant of 𝑓, in 1976 for 𝑛 ≥

1 and 𝑞 ≥ 1 by 

Ⱨ𝒒(𝒏) = |

𝒂𝒏                     𝒂𝒏+𝟏     ⋯      𝒂𝒏+𝒒−𝟏  
𝒂𝒏+𝟏                 𝒂𝒏+𝟐     ⋯      𝒂𝒏+𝒒      

⋮                            ⋮                         ⋮      
𝒂𝒏+𝒒−𝟏             𝒂𝒏+𝒒     ⋯      𝒂𝒏+𝟐𝒒−𝟐

| , (𝒂𝟏 = 𝟏). 
 

For 𝑞 = 2  and  𝑛 = 1 , we know that the function Ⱨ2(1) = 𝑎3 − 𝑎2
2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
2| − |𝑎4||𝑎4 − 𝑎2𝑎3| + |𝑎5||𝑎3 − 𝑎2

2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

2(2)| =
∣∣a2a4 − a2

3

∣∣ for the classes of bi-starlike and
bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel determinant for
certain subclasses of bi-univalent functions. Also Atshan et al. [21], discussed the Hankel
determinant of m-fold symmetric bi-univalent functions using a new operator. Fekete and
Szegö [22] examined the Hankel determinant of f as
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mates on the first two Taylor–Maclaurin coefficients were found in these subclasses (see 

[7–10]). Several authors introduced initial Maclaurin coefficients bounds for subclasses of 

bi-univalent functions (see [11,12]). Many researchers ([11,13,14]) have studied numerous 

curious subclasses of the bi-univalent function class Ω and observed non-sharp bounds 

on the first two Taylor–Maclaurin coefficients. As well as this, the coefficient problem for 

all of the Taylor–Maclaurin coefficients |𝑎𝑛|, n = 3,4,... is as yet an open problem ([2]). 

Also, let 𝒫 represent the class of analytic functions 𝓅 that are normalized by the condi-

tion: 

𝓅(ᶎ) = 1 + 𝓅1ᶎ + 𝓅2ᶎ
2 +⋯, 𝑅𝑒(𝓅(ᶎ)) > 0, ᶎ ∈ 𝐷.  

Noonan and Thomas [15] defined the 𝑞𝑡ℎ Hankel determinant of 𝑓, in 1976 for 𝑛 ≥

1 and 𝑞 ≥ 1 by 

Ⱨ𝒒(𝒏) = |

𝒂𝒏                     𝒂𝒏+𝟏     ⋯      𝒂𝒏+𝒒−𝟏  
𝒂𝒏+𝟏                 𝒂𝒏+𝟐     ⋯      𝒂𝒏+𝒒      

⋮                            ⋮                         ⋮      
𝒂𝒏+𝒒−𝟏             𝒂𝒏+𝒒     ⋯      𝒂𝒏+𝟐𝒒−𝟐

| , (𝒂𝟏 = 𝟏). 
 

For 𝑞 = 2  and  𝑛 = 1 , we know that the function Ⱨ2(1) = 𝑎3 − 𝑎2
2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
2| − |𝑎4||𝑎4 − 𝑎2𝑎3| + |𝑎5||𝑎3 − 𝑎2

2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

2(1) =
∣∣∣∣a1 a2
a2 a3

∣∣∣∣ = a1a3 − a2
2.

They developed an earlier study for estimates of
∣∣a3 − µa2

2

∣∣, where a1 = 1 and µ ∈ R.
Furthermore, for example, for those of

∣∣a3 − µa2
2

∣∣ see [23], and third Hankel determinant,
these functions are studied by [16,24–26] functional, given by
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mates on the first two Taylor–Maclaurin coefficients were found in these subclasses (see 

[7–10]). Several authors introduced initial Maclaurin coefficients bounds for subclasses of 

bi-univalent functions (see [11,12]). Many researchers ([11,13,14]) have studied numerous 

curious subclasses of the bi-univalent function class Ω and observed non-sharp bounds 

on the first two Taylor–Maclaurin coefficients. As well as this, the coefficient problem for 

all of the Taylor–Maclaurin coefficients |𝑎𝑛|, n = 3,4,... is as yet an open problem ([2]). 

Also, let 𝒫 represent the class of analytic functions 𝓅 that are normalized by the condi-

tion: 

𝓅(ᶎ) = 1 + 𝓅1ᶎ + 𝓅2ᶎ
2 +⋯, 𝑅𝑒(𝓅(ᶎ)) > 0, ᶎ ∈ 𝐷.  

Noonan and Thomas [15] defined the 𝑞𝑡ℎ Hankel determinant of 𝑓, in 1976 for 𝑛 ≥

1 and 𝑞 ≥ 1 by 

Ⱨ𝒒(𝒏) = |

𝒂𝒏                     𝒂𝒏+𝟏     ⋯      𝒂𝒏+𝒒−𝟏  
𝒂𝒏+𝟏                 𝒂𝒏+𝟐     ⋯      𝒂𝒏+𝒒      

⋮                            ⋮                         ⋮      
𝒂𝒏+𝒒−𝟏             𝒂𝒏+𝒒     ⋯      𝒂𝒏+𝟐𝒒−𝟐

| , (𝒂𝟏 = 𝟏). 
 

For 𝑞 = 2  and  𝑛 = 1 , we know that the function Ⱨ2(1) = 𝑎3 − 𝑎2
2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
2| − |𝑎4||𝑎4 − 𝑎2𝑎3| + |𝑎5||𝑎3 − 𝑎2

2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣, (a1 = 1) and (n = 1, q = 3).

By applying triangle inequality for
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mates on the first two Taylor–Maclaurin coefficients were found in these subclasses (see 

[7–10]). Several authors introduced initial Maclaurin coefficients bounds for subclasses of 

bi-univalent functions (see [11,12]). Many researchers ([11,13,14]) have studied numerous 

curious subclasses of the bi-univalent function class Ω and observed non-sharp bounds 

on the first two Taylor–Maclaurin coefficients. As well as this, the coefficient problem for 

all of the Taylor–Maclaurin coefficients |𝑎𝑛|, n = 3,4,... is as yet an open problem ([2]). 

Also, let 𝒫 represent the class of analytic functions 𝓅 that are normalized by the condi-

tion: 

𝓅(ᶎ) = 1 + 𝓅1ᶎ + 𝓅2ᶎ
2 +⋯, 𝑅𝑒(𝓅(ᶎ)) > 0, ᶎ ∈ 𝐷.  

Noonan and Thomas [15] defined the 𝑞𝑡ℎ Hankel determinant of 𝑓, in 1976 for 𝑛 ≥

1 and 𝑞 ≥ 1 by 

Ⱨ𝒒(𝒏) = |

𝒂𝒏                     𝒂𝒏+𝟏     ⋯      𝒂𝒏+𝒒−𝟏  
𝒂𝒏+𝟏                 𝒂𝒏+𝟐     ⋯      𝒂𝒏+𝒒      

⋮                            ⋮                         ⋮      
𝒂𝒏+𝒒−𝟏             𝒂𝒏+𝒒     ⋯      𝒂𝒏+𝟐𝒒−𝟐

| , (𝒂𝟏 = 𝟏). 
 

For 𝑞 = 2  and  𝑛 = 1 , we know that the function Ⱨ2(1) = 𝑎3 − 𝑎2
2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
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terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 
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with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 
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3(1)| ≤ |a3|
∣∣∣a2a4 − a2

3

∣∣∣− |a4||a4 − a2a3|+ |a5|
∣∣∣a3 − a2

2

∣∣∣. (3)

Our paper provides a subclass S(β) of bi-univalent functions within the open unit disk
region D. The objective of this class is to determine the bounds of the Hankel determinant
of order 3, (
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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represented as

p(z) = 1 +
∞

∑
n=1

pnzn, (4)

with Re(p(
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2. Main Results

Definition 1. A function f belonging to the class ∑, as defined by Equation (1) is considered to be
in the class S(β) if it fulfills the following requirement:
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The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
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4
)), where 
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3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
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. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 
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wg′(w)

g(w)
+ wg′′ (w) = β + (1 − β)q(w), (9)

where (0 ≤ β < 1;p, q ∈ P),
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, w ∈ D and g = f−1.
Assuming that there exists u, v : D → D and u(0) = v(0) = 0, |u(
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)| < 1, |v(w)| < 1
and let the functions p, q ∈ P, such that
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a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
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A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
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. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-
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In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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4, we get

3a2 = (1 − β)r1, (14)

8a3 − a2
2 = (1 − β)r2, (15)

15a4 − 3a2a3 + a3
2 = (1 − β)r3 (16)

and
24a5 − 4a2a4 + 4a3a2

2 − 2a2
3 − a4

2 = (1 − β)r4. (17)

Also comparing (11) and (13) with the coefficients of w, w2, w3 and w4, we get

−3a2 = (1 − β)s1, (18)

15a2
2 − 8a3 = (1 − β)s2, (19)

−
(

70a3
2 − 72a2a3 + 15a4

)
= (1 − β)s3 (20)

and
140a2a4 + 315a4

2 − 504a2a3 + 70a2
3 + 24a3a2

2 − 24a5 = (1 − β)s4. (21)

From (14) and (18), we have

(1 − β)r1

3
= a2 = − (1 − β)s1

3
, (22)

It follows that its
r1 = −s1 (23)

Subtracting (15) from (19) and (16) from (20), we get

a3 =
(1 − β)2r2

1
9

+
(1 − β)(r2 − s2)

16
(24)

and

a4 =
2(1 − β)3r3

1
405

+
5(1 − β)2r1(r2 − s2)

96
+

(1 − β)(r3 − s3)

30
. (25)

Thus, using (22), (24) and (25), we get

a2a4 − a2
3 =

1
288

(1 − β)3r2
1(r2 − s2)−

13
1215

(1 − β)
4
r4

1
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+
1

90
(1 − β)2r1(r3 − s3)−

1
256

(1 − β)2(r2 − s2)
2. (26)

According to Lemma 2 and r1 = −s1, we receive

r2 − s2 =
4 − r2

1
2

(x − y) (27)

and

r3 − s3 =
r3

1
2
+

(
4 − r2

1
)
r1

2
(x + y)−

(
4 − r2

1
)
r1

4

(
x2 + y2

)
+

4 − r2
1

2

[(
1 − |x|2

)
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(

1 − |y|2
)

w
]
, (28)

for some x, y,
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function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 
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. In 1985, Kedzierawski [5] stated that Brannan–
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bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
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and w with |x| ≤ 1, |y| ≤ 1 and |w| ≤ 1.
Given that p ∈ P, we have |r1| ≤ 2. Giving r1 = r, let us suppose, without loss of

generality, that r ∈ [0, 2]. Therefore, substituting the expressions (27) and (28) in (26), letting
τ = |x| ≤ 1 and η = |y| ≤ 1, we receive∣∣∣a2a4 − a2

3

∣∣∣ ≤ E1 + E2(τ + η) + E3

(
τ2 + η2

)
+ E4(τ + η)2 = E(τ, η),

where

E1 = E1(β, r) = (1 − β)2r4

[
13(1 − β)2

1215
+

1
180

]
≥ 0,

E2 = E2(β, r) =
(1 − β)2(4 − r2)r2

36

(
(1 − β)

16
+

1
5

)
≥ 0,

E3 = E3(β, r) =
(1 − β)2(4 − r2)r

180

( r
2
− 1

)
≤ 0

and

E4 = E4(β, r) =
(1 − β)2(4 − r2)2

1024
≥ 0.

Now, we need to maximize E(τ, η) within the closed square [0, 1]× [0, 1] for r ∈ [0, 2].
Since E3 ≤ 0 and E3 + 2 E2 ≥ 0, we conclude that r ∈ (0, 2), Fτ,τ Fη,η −

(
Fτ,η

)2
< 0.

Therefore, the function F cannot have a local maximum in the interior of a closed square.
Now, we investigate the maximum of F on the boundary of a closed square. When τ = 0
and 0 ≤ η ≤ 1, we have

F(0, η) = θ(η) = E1 + E2η + ( E3 + E4)η
2.

Next, we will address the following two cases:

Case 1. The inequality E3 + E4 ≥ 0 holds. For the given conditions of 0 ≤ η ≤ 1, with any
fixed r and 0 ≤ r < 2, it is evident that

θ′(η) = E2 + 2(E3 + E4)η > 0,

the function θ(η) is an increasing function. Therefore, for a fixed value of r ∈ [0, 2], the
maximum of θ(η) is found when η = 1 and

maxθ(η) = θ(1) = E1 + E2 + E3+E4.
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Case 2. Let E3 + E4 < 0. Since 2(E3 + E4) + E2 ≥ 0 for 0 < η < 1 with 0 < r < 2, it is clear
that 2(E3 + E4) + E2 < 2(E3 + E4)η + E2 < E2 and so θ(η) > 0. Hence the maximum of
θ(η) occurs at η = 1 and 0 ≤ η ≤ 1, we obtain

E(1, η) = φ(η) = ( E3 + E4)η
2 + (E2 + 2E4)η + E1 + E2 + E3 + E4.

so, from the cases of E3 + E4, we have

maxφ(η) = φ(1) = E1 + 2E2 + 2E3 + 4E4.

Since θ(1) ≤ φ(1), we get max(E(τ, η)) = E(1, 1) on the boundary of square [0, 1]× [0, 1].
The real function L on the interval (0,1) is defined as follows:

L(r) = max(E(τ, η)) = E(1, 1) = E1 + 2E2 + 2E3 + 4E4.

Now, putting E1, E2, E3 and E4 in the function L, we obtain

L(r) = (1 − β)2[K + M],

where

K =

[
13(1 − β)2

1215
+

1
180

]
r4

and

M =

[
r2

60
+

(1 − β)r2

288
− r

90
+

(
4 − r2)

256

](
4 − r2

)
.

By elementary calculations, it is found that L(r) is an increasing function of r. Hence,
the maximum of L(r) is obtained when r = 2 and

maxL(r) = L(2) = (1 − β)2
[

208
1215

(1 − β)2 +
8
90

]
.

This completes the proof. □

Theorem 2. Let f (
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In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
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. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-
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) ∈ S(β), 0 ≤ β < 1.Then, we have

|a2a3 − a4| ≤

8(1 − β)

[
13(1−β)2

405 + 1
60

]
, n ≤ r ≤ 2

2
15 (1 − β) , 0 ≤ r ≤ n,

(29)

where

n =
m3 ±

√
m2

3 − 12m2(m1 − m2)

3(m1 − m2)
,

m1 = (1 − β)

[
13(1 − β)2

405
+

1
60

]
,

m2 = (1 − β)

[
(1 − β)

16
+

1
20

]
and

m3 =
1

30
(1 − β).
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Proof. From (22), (24) and (25), we obtain

|a2a3 − a4| =
∣∣∣∣∣13(1 − β)3r3

1
405

− 3(1 − β)2r1(r2 − s2)

96
− (1 − β)(r3 − s3)

30

∣∣∣∣∣.
Lemma 2 implies that we can assume, without any restriction, that r ∈ [0, 2], where

r1 = r, thus for σ = |x| ≤ 1 and ρ = |y| ≤ 1, we have

|a2a3 − a4| ≤ D1 + D2(σ + ρ) + D3

(
σ2 + ρ2

)
= D(σ, ρ),

where

D1(β, r) = (1 − β)r3

[
13(1 − β)2

405
+

1
60

]
≥ 0,

D2(β, r) = (1 − β)
(

4 − r2
)

r
[
(1 − β)

32
+

1
60

]
≥ 0

and

D3(β, r) = (1 − β)
(

4 − r2
)[ r

120
+

1
60

]
≥ 0.

Applying the same approach as Theorem 2, we find that the maximum occur at σ = 1
and ρ = 1 within closed square [0, 2],

φ(r) = max(D(σ, ρ)) = D1 + 2(D2 + D3).

Substituting the value of D1, D2 and D3 in φ(r), we get

φ(r) = m1r3 + m2r
(

4 − r2
)
+ m3

(
4 − r2

)
,

where

m1 = (1 − β)

[
13(1 − β)2

405
+

1
60

]
,

m2 = (1 − β)

[
(1 − β)

16
+

1
20

]
and

m3 =
1

30
(1 − β).

We have
φ′(r) = 3(m1 − m2)r2 − 2m3r + 4m2,

φ′′ (r) = 6(m1 − m2)r − 2m3,

if m1 − m2 > 0, that is m1 > m2. Then we observe that φ′(r) > 0. Therefore, φ(r) is an
increasing function in the closed interval [0, 2]. Consequently, the function φ(r) gets the
maximum value when r = 2, meaning when

|a2a3 − a4| ≤ φ(2) = 8(1 − β)

[
13(1 − β)2

405
+

1
60

]
,

if m1 − m2 < 0, let φ′(r) = 0. Then we receive

r = n =
m3 ±

√
m2

3 − 12m2(m1 − m2)

3(m1 − m2)
,
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when n < r ≤ 2. Subsequently, we obtain φ′(r) > 0, which indicates that the function
on the closed interval is [0, 2]. Therefore, the function φ(r) gets the maximum value at
r = 2, which means the function φ(r) is an decreasing function on the closed interval [0, 2].
Therefore, φ(r) obtains the maximum value at r = 0. We receive

|a2a3 − a4| ≤ φ(0) =
2

15
(1 − β).

The proof is complete. □

Theorem 3. Let f (
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{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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) ∈ S(β), 0 ≤ β < 1. Then we have∣∣∣a3 − a2
2

∣∣∣ ≤ 1
4
(1 − β), (30)

|a3| ≤
4
9
(1 − β)2 +

1
4
(1 − β). (31)

Proof. By using (24) and Lemma 1, we obtain (31).
What follows the Fekete-Szegö functional is defined for µ ∈ C and f ∈ S(β),

a3 − µa2
2 =

(1 − β)2r2
1

9
(1 − µ) +

(1 − β)(r2 − s2)

16
.

By Lemma 1, we receive∣∣∣a3 − µa2
2

∣∣∣ ≤ 4
9
(1 − β)2(1 − µ) +

1
4
(1 − β),

for µ = 1, we obtain (30). □

Theorem 4. Let f (
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) ∈ S(β), 0 ≤ β < 1. Then, we have

|a4| ≤ (1 − β)

[
16

405
(1 − β)2 +

5
12

(1 − β) +
2
5

]
, (32)

|a5| ≤ (1 − β)2
[

98
12960

(1 − β)2 +
545
432

(1 − β) +
36173
122880

]
+

1
6
(1 − β). (33)

Proof. From (25) and by Lemma 1, we receive (32).
By subtracting (17) from (21), we have

48a5 = 144a2a4 + 20a3a2
2 + 72a2

3+316a4
2 − 504a2a3

+(1 − β)(r4 − s4).

By substituting properly (22), (24) and (25), we have

32a5 = 712
135 (1 − β)4r4

1 −
56
3 r3

1 −
21
2 (1 − β)2r1(r2 − s2) +

131
36 (1 − β)3r2

1(r2 − s2) +
8
5 (1 − β)2r1(r3 − s3)

+ 9
32 (1 − β)2(r2 − s2)

2 + (1 − β)(r4 − s4).

By applying Lemma 1, we obtain (33). □

Theorem 5. Let f (
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1. Introduction 

Let 𝐴 indicate the collection of functions 𝑓  analytic in the open unit disk 𝐷 =

{ᶎ: ᶎ ∈ ℂ and |ᶎ| < 1}. An analytic function 𝑓 ∈ 𝐴 has Taylor series expansion of the form: 

𝑓(ᶎ) = ᶎ + ∑ 𝑎𝑛ᶎ
𝑛∞

𝑛=2 , (ᶎ ∈ 𝐷). (1) 

The class of all functions in 𝐴 which are univalent in 𝐷 is denoted by 𝑆. The 

Koebe-One-Quarter Theorem [1] ensures that the image of 𝐷 under each 𝑓 ∈ 𝑆 contains 

a disk of radius 
𝟏

𝟒
. Obviously, for each 𝑓 ∈ 𝑆 there exists an inverse function 𝑓−1 satis-

fying 𝑓−1(𝑓(ᶎ)) = ᶎ and 𝑓(𝑓−1(𝑤)) = 𝑤, (|𝑤| < 𝑟°(𝑓), 𝑟°(𝑓) ≥
1

4
)), where 

𝑔(𝑤) = 𝑓−1(𝑤) = 𝑤 − 𝑎2𝑤
2 + (2𝑎2

2 − 𝑎3)𝑤
3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤
4 +⋯ , (𝑤 ∈ 𝐷) (2) 

A function 𝑓 ∈ ∑ is said to be bi-univalent in 𝐷 if both 𝑓(ᶎ) and 𝑓−1(ᶎ) are uni-

valent in 𝐷. 

In 1967, Lewin [2] obtained a coefficient bound that is given by |𝑎2| < 1.51 for all 

function 𝑓 ∈ ∑ of the form (1), and he looked at the class ∑ of bi-univalent functions in 

𝐷. In 1967, Clunie and Brannan [3] conjectured that |𝑎2| ≤ √2 for 𝑓 ∈ ∑. After that, 

Netanyahu [4] proved that |𝑎2| =
 4

3
. In 1985, Kedzierawski [5] stated that Brannan–

Clunie conjectured for bi-starlike function. Brannan and Taha [6] gained evaluation es-

timates on the initial coefficients |𝑎2| as well as |𝑎3| for functions in the classes of 

bi-starlike functions of order 𝜌 denoted by 𝐸Ω
∗  (𝜌) and bi-convex functions of order 𝜌 

symbolled by 𝑌Ω(𝜌). For all of the function classes, 𝐸Ω
∗  (𝜌) and 𝑌Ω(𝜌), non-sharp esti-
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mates on the first two Taylor–Maclaurin coefficients were found in these subclasses (see 

[7–10]). Several authors introduced initial Maclaurin coefficients bounds for subclasses of 

bi-univalent functions (see [11,12]). Many researchers ([11,13,14]) have studied numerous 

curious subclasses of the bi-univalent function class Ω and observed non-sharp bounds 

on the first two Taylor–Maclaurin coefficients. As well as this, the coefficient problem for 

all of the Taylor–Maclaurin coefficients |𝑎𝑛|, n = 3,4,... is as yet an open problem ([2]). 

Also, let 𝒫 represent the class of analytic functions 𝓅 that are normalized by the condi-

tion: 

𝓅(ᶎ) = 1 + 𝓅1ᶎ + 𝓅2ᶎ
2 +⋯, 𝑅𝑒(𝓅(ᶎ)) > 0, ᶎ ∈ 𝐷.  

Noonan and Thomas [15] defined the 𝑞𝑡ℎ Hankel determinant of 𝑓, in 1976 for 𝑛 ≥

1 and 𝑞 ≥ 1 by 

Ⱨ𝒒(𝒏) = |

𝒂𝒏                     𝒂𝒏+𝟏     ⋯      𝒂𝒏+𝒒−𝟏  
𝒂𝒏+𝟏                 𝒂𝒏+𝟐     ⋯      𝒂𝒏+𝒒      

⋮                            ⋮                         ⋮      
𝒂𝒏+𝒒−𝟏             𝒂𝒏+𝒒     ⋯      𝒂𝒏+𝟐𝒒−𝟐

| , (𝒂𝟏 = 𝟏). 
 

For 𝑞 = 2  and  𝑛 = 1 , we know that the function Ⱨ2(1) = 𝑎3 − 𝑎2
2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
2| − |𝑎4||𝑎4 − 𝑎2𝑎3| + |𝑎5||𝑎3 − 𝑎2

2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

3(1)| ≤

 MM1 −M2

(
8(1 − β)

[
13(1−β)2

405 + 1
60

])
+M3M4, n ≤ r ≤ 2

MM1 − 2
15 (1 − β)M2 +M3M4, 0 ≤ r ≤ n,

(34)
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where M,M1,M2,M3,M4 and n are given by (31), (7), (32), (33), and (30), respectively.

Proof. Since

|

Symmetry 2024, 16, 239 2 of 10 
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2 . The second 

Hankel determinant Ⱨ𝟐(𝟐)  is defined as |Ⱨ2(2)| = |𝑎2𝑎4 − 𝑎3
2|  for the classes of 

bi-starlike and bi-convex ([16–19]). Al-Ameedee et al. [20], studied the second Hankel 

determinant for certain subclasses of bi-univalent functions. Also Atshan et al. [21], dis-

cussed the Hankel determinant of m-fold symmetric bi-univalent functions using a new 

operator. Fekete and Szegö [22] examined the Hankel determinant of 𝑓 as  

Ⱨ𝟐(𝟏) = |
𝒂𝟏 𝒂𝟐
𝒂𝟐 𝒂𝟑

| = 𝒂𝟏𝒂𝟑 − 𝒂𝟐
𝟐.  

They developed an earlier study for estimates of |𝑎3 − 𝜇𝑎2
2|, where 𝑎1 = 1 and 𝜇 ∈

ℝ. Furthermore, for example, for those of |𝑎3 − 𝜇𝑎2
2| see [23], and third Hankel deter-

minant, these functions are studied by [16,24–26] functional, given by 

Ⱨ𝟑(𝟏) = |

𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒂𝟑 𝒂𝟒 𝒂𝟓

|,   (𝒂𝟏 = 𝟏) and (𝒏 = 𝟏, 𝒒 = 𝟑).  

By applying triangle inequality for Ⱨ𝟑(𝟏), we have 

|Ⱨ3(1)| ≤ |𝑎3||𝑎2𝑎4 − 𝑎3
2| − |𝑎4||𝑎4 − 𝑎2𝑎3| + |𝑎5||𝑎3 − 𝑎2

2|.  (3) 

Our paper provides a subclass 𝒮(𝛽) of bi-univalent functions within the open unit 

disk region 𝐷. The objective of this class is to determine the bounds of the Hankel de-

terminant of order 3, (Ⱨ3(1)). In this study, new constraints for the estimates of the third 

Hankel determinant for the class 𝒮(𝛽) are presented. 

The subsequent lemmas are important for establishing our results: 

Lemma 1 ([1]). Consider the class 𝒫, which consists of all analytic functions 𝓅(ᶎ) which can be 

represented as 

𝓹(𝒛) = 𝟏 +∑𝓹𝒏𝒛
𝒏,   

∞

𝒏=𝟏

 (4) 

with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

3(1)| = a3

(
a2a4 − a2

3

)
− a4(a4 − a2a3) + a5

(
a3 − a2

2

)
,

By utilizing the triangle inequality, we receive the result (3).
Substituting |a3| ≤ 4

9 (1 − β)2 + 1
4 (1 − β),∣∣∣a2a4 − a2

3

∣∣∣ ≤ (1 − β)2
[

208
1215

(1 − β)2 +
8

90

]
,

|a4| ≤ (1 − β)

[
16

405
(1 − β)2 +

5
12

(1 − β) +
2
5

]
,

∣∣∣a3 − a2
2

∣∣∣ ≤ 1
4
(1 − β)

and ∣∣∣a3 − a2
2

∣∣∣ ≤ 1
4
(1 − β)

in
|
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with 𝑅𝑒(𝓅(ᶎ)) > 0 for every ᶎ ∈ 𝐷. Then |𝓅𝑛| ≤ 2, for every 𝑛 = 1,2,⋯. 

Lemma 2 ([27]). If a function 𝓅 ∈ 𝒫 is given by (4), then  

𝟐𝓹𝟐 = 𝓹𝟏
𝟐 + (𝟒 − 𝓹𝟏

𝟐)𝒙  

𝟒𝓹𝟑 = 𝓹𝟏
𝟑 + 𝟐𝓹𝟏(𝟒 − 𝓹𝟏

𝟐)𝒙 − 𝓹𝟏(𝟒 − 𝓹𝟏
𝟐)𝒙𝟐 + 𝟐(𝟒 − 𝓹𝟏

𝟐)(𝟏 − |𝒙|𝟐)ᶎ,  

3(1)| ≤ |a3|
∣∣∣a2a4 − a2

3

∣∣∣− |a4||a4 − a2a3|+ |a5|
∣∣∣a3 − a2

2

∣∣∣,
we obtain (34).

The proof is complete. □

3. Conclusions

This article presented a comprehensive investigation of the third Hankel determinant
H3(1) for a certain subclass of bi-univalent functions, S(β). This subclass is of significant
interest in various mathematical fields, including complex analysis and geometric function
theory. We defined the bi-univalent functions S(β) and imposed constraints on the coeffi-
cients |an|. Our findings provided the upper bounds for the bi-univalent functions in this
newly developed subclass, specifically for n = 2, 3, 4, and 5. Furthermore, we advanced
the understanding of these functions by deriving the third Hankel determinant for this
particular class, which revealed several intriguing scenarios. This achievement led to the
improvement of the bound of the third Hankel determinant for the class of bi-univalent
functions S(β). Our study contributes to the broader understanding of bi-univalent func-
tions, their subclasses, and their potential applications in diverse mathematical contexts.
The results obtained may serve as a foundation for future investigations into the properties
and applications of bi-univalent functions and their subclasses. Future research endeavors
could explore further refinements of the bounds, as well as examine other subclasses of
bi-univalent functions to uncover novel insights into their characteristics and potential ap-
plications. Ultimately, this study paves the way for a deeper exploration of the fascinating
world of bi-univalent functions and their role in the realm of mathematics.
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