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Abstract: There are some drawbacks to arithmetic and logic operations of general discrete fuzzy
numbers, which limit their application. For example, the result of the addition operation of general
discrete fuzzy numbers defined by the Zadeh’s extension principle may not satisfy the condition of
becoming a discrete fuzzy number. In order to solve these problems, special discrete fuzzy numbers
on countable sets are investigated in this paper. Since the representation theorem of fuzzy numbers
is the basic tool of fuzzy analysis, two kinds of representation theorems of special discrete fuzzy
numbers on countable sets are studied first. Then, the metrics of special discrete fuzzy numbers on
countable sets are defined, and the relationship between these metrics and the uniform Hausdorff
metric (i.e., supremum metric) of general fuzzy numbers is discussed. In addition, the triangular
norm and triangular conorm operations (t-norm and t-conorm for short) of special discrete fuzzy
numbers on countable sets are presented, and the properties of these two operators are proven. We
also prove that these two operators satisfy the basic conditions for closure of operation and present
some examples. Finally, the applications of special discrete fuzzy numbers on countable sets in image
fusion and aggregation of subjective evaluation are proposed.

Keywords: discrete fuzzy number; countable set; aggregation; image fusion; subjective evaluation

1. Introduction

Parameter uncertainty is often involved in the process of information system rep-
resentation and modeling and is usually described as a fuzzy number [1]. The general
fuzzy numbers are triangular, trapezoidal, and Gaussian fuzzy numbers, etc. The most
commonly used fuzzy number in engineering applications is the symmetrical triangular
fuzzy number. The theoretical and mathematical modeling process of continuous fuzzy
numbers and symmetric fuzzy numbers have been investigated extensively. As a powerful
tool to characterize and process discrete uncertain information, discrete fuzzy numbers [2]
have important theoretical value and a strong application background in fuzzy information
processing [3], image interpretation [4], multiple-attribute group decision making [5,6],
fuzzy transformation, and inversion.

In 2001, William Voxman [2] first put forward the discrete fuzzy numbers and con-
structed two kinds of canonical representations of general discrete fuzzy numbers. In
2005, the level set representation theorem of discrete fuzzy numbers was proven by Wang
Guixiang et al. [7]. On this basis, the addition and multiplication operations of discrete
fuzzy number space were defined. Using similar methods, Casasnovas and Riera [8,9]
researched the problem of the maximum and minimum values of discrete fuzzy numbers
and studied the triangular norms and triangular conorms to discrete fuzzy numbers in
2011. In the same year, Riera and Torrens [10] defined fuzzy implication functions on sets
of discrete fuzzy numbers. Using the above operations, Riera and Torrens [11] defined an
integration operator for discrete fuzzy numbers in 2012. Furthermore, Riera and Torrens
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investigated the coimplications [12] and residual implications [13] of discrete fuzzy num-
ber space. The two scholars further defined a pair of discrete aggregation functions on
discrete fuzzy numbers sets and applied them to language decision models [14]. In 2015,
Riera et al. [15,16] presented a fuzzy decision model and used discrete fuzzy numbers to
model complete and incomplete qualitative information; then, they gave an aggregation
method for this information.

In recent years, many achievements have been made in the theoretical and application
research of discrete fuzzy numbers. In 2019, Zhao Meng et al. [17] proposed a sort method
based on shape similarity, which used symbolic representation to construct the shape
of discrete fuzzy membership function and describe the subjective language preference
evaluation of experts. Ma Xiaoyu et al. [18] presented a semantic computing model based
on discrete fuzzy numbers and measured the group decision results based on the model
in order to reach a consensus. In 2021, Gong Zengtai et al. [4] defined the concept of
the three-dimensional generalized discrete fuzzy number (3-GDFN) and the similarity
of 3-GDFNs, which were applied to color image interpretation and color mathematical
morphology. Riera et al. [19] discussed the application of an admissible order of discrete
fuzzy number sets in decision problems in the same year. A new denoising method for
color images based on three-dimensional discrete fuzzy number was proposed by Qin Na
and Gong Zengtai [20] in 2023.

However, the general discrete fuzzy numbers have defects in arithmetic operations
and logical operations, such as the addition and multiplication operations defined by the
Zadeh’s extension principle [21] as the membership function of discrete fuzzy numbers
may not satisfy the closure. The difference operation and the measurement of discrete
fuzzy numbers especially cannot be reasonably defined, which limits the application of
discrete fuzzy numbers in some aspects.

In order to solve these problems, scholars have proposed extended addition and
multiplication operations that maintain the closure of discrete fuzzy numbers sets. The
discrete fuzzy numbers whose support set was an arithmetic sequence on the set of natural
numbers were defined in [22,23]. A closed-keeping addition operation for general discrete
fuzzy numbers was presented in [7]. Then, the concepts of generalized discrete fuzzy
numbers [24] and fuzzy integers [25] were proposed. In 2008, Wang Guixiang et al. [26]
defined a discrete fuzzy number on a fixed set whose support set was a countable set.
When the addition and subtraction operations on this countable set remained closed, the
corresponding addition and subtraction operations on discrete fuzzy number spaces were
also closed. Based on the definition of a special discrete fuzzy number proposed in [26], the
related conceptions and application of special discrete fuzzy numbers on countable sets are
researched in this article. The main contributions of this article are as follows:

1. The endpoints function representation theorem of special discrete fuzzy numbers on
countable sets is proven.

2. Two metrics of special discrete fuzzy numbers on countable sets are defined and compared.
3. The definitions and properties of t-norm operator and t-conorm operator of special

discrete fuzzy numbers on countable sets are proposed and proven. In addition, these
two operators are used in the practical application of image fusion and subjective
evaluation.

The rest of the article is organized as follows: In Section 2, we review some basic
concepts about discrete fuzzy numbers. In Section 3, the definition and representation
theorem of the special discrete fuzzy numbers on countable sets are investigated and proven.
In Section 4, we research the metrics of special discrete fuzzy numbers on countable sets
and compare them with the uniform Hausdorff metric of general fuzzy numbers. The
definitions of the t-norm operator and t-conorm operator of special discrete fuzzy numbers
on countable sets are presented in Section 5. In Section 6, the pixel values of gray-scale
images are represented by special discrete fuzzy numbers on countable sets. Furthermore,
the application of the t-norm operator and t-conorm operator defined in Section 5 in gray
image fusion is presented. The application of special discrete fuzzy numbers on countable
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sets in aggregation of subjective evaluation is proposed in Section 7. Finally, the conclusions
are described in Section 8.

2. Preliminaries

The conception and theorem related to discrete fuzzy numbers are briefly introduced
in this section. Firstly, the definition of fuzzy set [21] is given.

Let R be the Euclidean space; a fuzzy set of R is a mapping u : R → [0, 1]. Let
[u]r = {x ∈ R : u(x) ≥ r} for any r ∈ (0, 1] be its r-level set. With the notation supp u,
we denote the support of u, i.e., supp u ={x ∈ R : u(x) > 0}. In addition, we denote the
closure of supp u with [u]0, i.e., [u]0 = {x ∈ R : u(x) > 0}.

As a generalization of the concepts of real numbers and interval numbers, the discrete
fuzzy numbers are special fuzzy sets that satisfy certain conditions.

Definition 1 ([2]). A fuzzy set u : R → [0, 1] is called a discrete fuzzy number if the sup-
port of u is finite, i.e., there exist x1, x2, . . . , xn ∈ R with x1 < x2 < · · · < xn such that
[u]0 = {x1, x2, . . . , xn}, and there exist the natural numbers s, t with 1 ≤ s ≤ t ≤ n such that

(1) u(xi) = 1 for any natural number i with s ≤ i ≤ t;
(2) u(xi) ≤ u(xj) for any natural numbers i, j with 1 ≤ i ≤ j ≤ s;
(3) u(xi) ≥ u(xj) for any natural numbers i, j with t ≤ i ≤ j ≤ n.

We denote the collection of all discrete fuzzy numbers with FD .

Remark 1. If the fuzzy set u is a discrete fuzzy number, then the support of u coincides with its
closure, i.e., supp u = [u]0.

The representation theorem of discrete fuzzy numbers is an important tool for the
theoretical study of fuzzy analysis.

Theorem 1 ([7]). Let u ∈ FD . Then, the following statements (1)–(4) hold:

(1) [u]r is a nonempty finite subset of R for any r ∈ [0, 1];
(2) [u]r2 ⊂ [u]r1 for any r1,r2 ∈ [0, 1] with r1 ≤ r2;
(3) For any r1,r2 ∈ [0, 1] with 0 ≤ r1 ≤ r2 ≤ 1, if x ∈ [u]r1 \ [u]r2 , we have x < y for all

y ∈ [u]r2 , or x > y for all y ∈ [u]r2 ;
(4) For any r0 ∈ (0, 1], there exists a real number r′0 with 0 < r′0 < r0 such that [u]r

′
0 = [u]r0

(i.e., [u]r = [u]r0 for any r ∈ [r′0, r0]).

Conversely, if for any r ∈ [0, 1] there exists Ar ⊂ R, satisfying the following conditions
(i)−(iv):

(i) Ar is nonempty and finite for any r ∈ [0, 1];
(ii) Ar2 ⊂ Ar1 for any r1,r2 ∈ [0, 1] with r1 ≤ r2;
(iii) For any r1,r2 ∈ [0, 1] with 0 ≤ r1 ≤ r2 ≤ 1, if x ∈ Ar1 \ Ar2 , then x < y for all y ∈ Ar2 ,

or x > y for all y ∈ Ar2 ;
(iv) For any r0 ∈ (0, 1], there exists a real number r′0 with 0 < r′0 < r0 such that Ar′0

= Ar0

(i.e., Ar = Ar0 for any r ∈ [r′0, r0]),

then, there exists a unique u ∈ FD such that [u]r = Ar for any r ∈ [0, 1].

Establishing proper measurement on discrete fuzzy number space FD is the basic start-
ing point of using fuzzy mathematics theory to analyze and deal with practical problems.
The definition of the supremum metric on FD space is proposed.

Definition 2. Let u, v ∈ FD , for any r ∈ [0, 1], the mapping D : FD ×FD → [0,+∞) is defined
as follow:

D(u, v) = sup
r∈[0,1]

max{| u(r)− v(r) |, | u(r)− v(r) |}. (1)
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Obviously, (FD , D) is a metric space with respect to this supremum metric D.

3. Special Discrete Fuzzy Numbers on Countable Sets

In 2008, the conception of discrete fuzzy numbers with finite support sets on fixed sets
was proposed by Wang Guixiang et al. [26]. The following definitions and discussion in
this paper are carried out on the countable subset C of the real number field R.

Definition 3 ([26]). Let C be a countable subset of real number field R. If a fuzzy set u : R → [0, 1]
satisfies the following conditions:

(1) [u]0 ⊂ C and [u]0 is finite;
(2) There exists x0 ∈ C such that u(x0) = 1;
(3) For any xs, xt ∈ C with xs ≤ xt ≤ x0, u(xs) ≤ u(xt) is tenable;
(4) For any xs, xt ∈ C with x0 ≤ xs ≤ xt, u(xs) ≥ u(xt) is tenable.

Then, u is a discrete fuzzy number on C, and we denote the collection of all discrete fuzzy
numbers with FDC . Obviously, FDC ⊂ FD .

Let C be a countable subset of real number field R; for any x′, y′ ∈ R with x′ ≤ y′,
we denote

[x′, y′]C = {z ∈ C : x′ ≤ z ≤ y′}.

The representation theorem of fuzzy numbers plays an important role in the basic
theory of fuzzy analysis. In order to study the operation of discrete fuzzy numbers, the level
sets representation theorem of discrete fuzzy numbers on a countable set C is presented
in [26].

Theorem 2 ([26]). Let C be a countable subset of real number field R and u ∈ FDC . Then,

(1) For any r ∈ [0, 1], there exist xr, yr ∈ C with xr ≤ yr, such that [u]r = [xr, yr]C, and
[x0, y0]C is finite;

(2) For any r1, r2 ∈ [0, 1] with 0 ≤ r1 ≤ r2 ≤ 1, [u]r2 ⊂ [u]r1 is tenable;
(3) For any r0 ∈ (0, 1], there exists a real number r′0 with 0 < r′0 < r0, such that [u]r

′
0 = [u]r0 ,

i.e., for any r ∈ [r′0, r0], [u]r = [u]r0 is tenable.

Conversely, if for any r ∈ [0, 1], there exists Ar ⊂ R satisfying

(i) There exist xr, yr ∈ C with xr ≤ yr, such that Ar = [xr, yr]C and [x0, y0]C is finite;
(ii) For any r1,r2 ∈ [0, 1] with 0 ≤ r1 ≤ r2 ≤ 1, Ar2 ⊂ Ar1 is tenable;
(iii) For any r0 ∈ (0, 1], there exists a real number r′0 with 0 < r′0 < r0, such that Ar′0

= Ar0 ,
i.e., for any r ∈ [r′0, r0], Ar = Ar0 is tenable.

Then, there exists a unique u ∈ FDC such that [u]r = Ar for any r ∈ [0, 1].

By means of Theorem 2, a discrete fuzzy number on countable sets can be regarded as
a family of nonempty closed intervals satisfying some specific conditions. Next, let us prove
the endpoints function representation theorem of special discrete fuzzy numbers on the
countable set C. For any u ∈ FDC , u can be represented by two real-valued functions on the
interval [0,1] that satisfy certain conditions. We denote u(r) = min[u]r and u(r) = max[u]r;
then, u(r) and u(r) have the following properties:

Theorem 3. If u ∈ FDC , then u(r) and u(r) are two functions on [0, 1], and they satisfy the
following conditions:

(1) u(r) is monotone nondecreasing left continuous;
(2) u(r) is monotone nonincreasing left continuous;
(3) u(r) ≤ u(r) for all r ∈ [0, 1];
(4) u(r) and u(r) are right continuous at r = 0.

Conversely, if for any r ∈ [0, 1], X(r) and Y(r) are two functions on [0, 1], and they satisfy
the following conditions:
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(i) X(r) is monotone nondecreasing left continuous;
(ii) Y(r) is monotone nonincreasing left continuous;
(iii) X(r) ≤ Y(r) for all r ∈ [0, 1];
(iv) X(r) and Y(r) are right continuous at r = 0.

Then, there exists a unique u ∈ FDC such that u(r) = X(r), u(r) = Y(r) for any r ∈ [0, 1].

Proof. At first, we prove that u ∈ FDC implies conditions (1)–(4) of this theorem.
Because u ∈ FDC , let [u]0 = {x1, x2, · · ·, xn} ⊂ C, x1 < x2 < · · · < xn, there exists

1 ≤ k ≤ n such that u(xk) = 1. When 1 ≤ i ≤ j ≤ k, u(xi) ≤ u(xj) is tenable, when
k ≤ i ≤ j ≤ n, u(xi) ≥ u(xj) is tenable.

From the definitions of u(r) and u(r), the u(r) and u(r) can only be taken on [u]0, and
the set [u]0 is finite, so u(r) and u(r) are the functions on [0, 1].

Let r1, r2 ∈ [0, 1] and r1 < r2. From Theorem 2 of the discrete fuzzy numbers on
countable sets, [u]r1 ⊃ [u]r2 is tenable, so we have u(r1) = min[u]r1 ≤ min[u]r2 = u(r2)
and u(r1) = max[u]r1 ≥ max[u]r2 = u(r2); then, u(r) is a monotone nondecreasing function
and u(r) is a monotone nonincreasing function. Next, we prove that u(r) and u(r) are left
continuous.

We denote Ai = u(xi), i = 1, 2, · · ·, k for any r0 ∈ (0, 1], if r0 ≤ A1, and because
u(r) = min[u]r, we know that when r ∈ [0, r0], u(r) = A1 holds. Therefore, u(r) is left
continuous at r0. If r0 > A1, then {Ai ≥ r0 : i = 1, 2, · · ·, k}, and {Ai < r0 : i = 1, 2, · · ·, k}
are nonempty, so we set a = min{Ai ≥ r0 : i = 1, 2, · · ·, k}, b = max{Ai < r0 : i =
1, 2, · · ·, k}. Obviously, there exists b < r0 ≤ a. Then, from u(r) = min[u]r, when r ∈ (b, r0],
u(r) = a holds; therefore, u(r) is left continuous at r0.

We denote Bi = u(xi), i = k, k + 1, · · ·, n for any r0 ∈ (0, 1], if r0 ≤ Bn, and because
u(r) = max[u]r, we know that when r ∈ [0, r0], u(r) = Bn holds. Therefore, u(r) is left
continuous at r0. If r0 > Bn, then {Bi ≥ r0 : i = 1, 2, · · ·, k} and {Bi < r0 : i = 1, 2, · · ·, k}
are nonempty. So, we set c = min{Bi ≥ r0 : i = k, k + 1, · · ·, n}, d = max{Bi < r0 : i =
k, k + 1, · · ·, n}. Obviously, there exists d < r0 ≤ c. Then, from u(r) = max[u]r, when
r ∈ (d, r0], u(r) = c holds; therefore, u(r) is left continuous at r0.

For any r ∈ [0, 1], u(r) ≤ u(1) = min[u]1 ≤ max[u]1 = u(1) ≤ u(r); then, u(r) ≤ u(r)
is tenable.

Then, because u(r) = A1 is tenable when r ∈ [0, A1], therefore u(r) is right continuous
at r = 0. Because u(r) = Bn is tenable when r ∈ [0, Bn], therefore u(r) is right continuous
at r = 0.

The proof of the first part of this theorem is completed. Secondly, we prove the next
part of the theorem.

Let Mr = {X(h) : r ≤ h ≤ 1}⋃{Y(h) : r ≤ h ≤ 1} for any r ∈ [0, 1]. Because X(r) and
Y(r) are two functions on [0, 1], Mr is nonempty and finite for any r ∈ [0, 1]. So, Mr satisfies
condition (i) of Theorem 2. According to the definition of Mr, it also satisfies condition (ii)
of Theorem 2.

Next, we prove that Mr satisfies condition (iii) of Theorem 2.
Let r0 ∈ (0, 1]. Because X(r) is a function on [0, 1] and left continuous, there exists

r′0 ∈ (0, r0) such that when r ∈ [r′0, r0], X(r) = X(r0) is tenable. Similarly, Y(r) is a
function on [0, 1] and left continuous, so there exists r′′0 ∈ (0, r0) such that when r ∈ [r′′0 , r0],
Y(r) = Y(r0) is tenable.

Let h0 = min(r′0, r′′0 ), when r ∈ [h0, r0], we have X(r) = X(r0) and Y(r) = Y(r0). So,
when r ∈ [h0, r0],

Mr = {X(h) : r ≤ h ≤ 1}
⋃
{Y(h) : r ≤ h ≤ 1}

= {X(h) : r0 ≤ h ≤ 1}
⋃
{Y(h) : r0 ≤ h ≤ 1}

= Mr0 ,

then, Mr satisfies condition (iii) of the Theorem 2.
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According to the Theorem 2, there is a unique u ∈ FDC such that [u]r = Mr is tenable
for any r ∈ [0, 1], i.e.,

u(r) = min[u]r = min Mr

= min({X(h) : r ≤ h ≤ 1}
⋃
{Y(h) : r ≤ h ≤ 1})

= min({X(h) : r ≤ h ≤ 1})
= X(r),

u(r) = max[u]r = max Mr

= max({X(h) : r ≤ h ≤ 1}
⋃
{Y(h) : r ≤ h ≤ 1})

= max({Y(h) : r ≤ h ≤ 1})
= Y(r).

We completed the proof of this theorem.

According to the level set representation theorem of the general discrete fuzzy numbers
in [7] and the Theorem 2 of the discrete fuzzy numbers on countable sets, the following
theorem can be obtained directly.

Theorem 4 ([26]). Let C be a countable subset of real number field R, and u, v ∈ FDC , k ∈ R.
Then, for any r ∈ [0, 1],

(1) [u + v]r = [u]r + [v]r;
(2) [ku]r = k[u]r;
(3) [uv]r = [u]r[v]r.

The conditions of closure operations on FDC space are proven in Theorem 5; these
conditions cannot be omitted, and the corresponding example can be found in Example 3.1
and Remark 3.2 of [26].

Theorem 5 ([26]). Let C be a countable subset of real number field R. If u, v ∈ FDC , k ∈ R, then

(1) ku ∈ FDC if C satisfies kx ∈ C for any x ∈ C;
(2) u + v ∈ FDC if C preserves the closeness of the operations of addition and difference.

4. Metrics of Special Discrete Fuzzy Numbers on Countable Sets

Fuzzy numbers play an important role in applications in the fields of approximate
reasoning, fuzzy control, and fuzzy decision [6]. In order to solve problems in practical
application, it is necessary to research the properties of measurement in fuzzy number space
and analyze the relationship between various measurements. Likewise, the measurement
in fuzzy number space is also an important part of fuzzy analysis theory. In order to
develop and perfect the theory of fuzzy analysis, the measurement of special discrete fuzzy
numbers on countable sets is investigated in this section.

Because (FD , D) is a metric space and FDC ⊂ FD , D is also a metric on FDC space.
Considering the particularity of FDC space and the investigation on this space-related
theories and applications, two other definitions of metric on FDC space are proposed.

Definition 4. Let the mapping Ḋ : FDC ×FDC → [0,+∞) be defined as follows:
if [u]0 = [v]0, then

Ḋ : FDC ×FDC → [0,+∞) (2)

(u, v) → Ḋ(u, v) = sup
x∈C

| u(x)− v(x) | .
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Definition 5. Let the mapping D̂ : FDC ×FDC → [0,+∞) be defined as follows:

D̂ : FDC ×FDC → [0,+∞) (3)

(u, v) → D̂(u, v) = sup
r∈[0,1]

(
| u(r)− v(r) | + | u(r)− v(r) |

2
).

Next, the basic properties of the two metrics defined in Definitions 4 and 5 are proven.

Theorem 6. For any u, v, w ∈ FDC , k ∈ R, then Ḋ and D̂ satisfy:

(1) Ḋ(u, v) = Ḋ(v, u), D̂(u, v) = D̂(v, u);
(2) Ḋ(u, v) ≥ 0, D̂(u, v) ≥ 0;
(3) Ḋ(u, v) = 0 ⇔ u = v, D̂(u, v) = 0 ⇔ u = v;
(4) Ḋ(u, v) ≤ Ḋ(u, w) + Ḋ(w, v), D̂(u, v) ≤ D̂(u, w) + D̂(w, v);
(5) Ḋ(u + w, v + w) = Ḋ(u, v), D̂(u + w, v + w) = D̂(u, v);
(6) Ḋ(ku, kv) = |k|Ḋ(u, v), D̂(ku, kv) = |k|D̂(u, v).

Proof. Obviously, (1) and (2) of the theorem are true. Then, prove (3) of the theorem,
Ḋ(u, v) = 0 ⇔ u = v is tenable.

D̂(u, v) = 0

⇔ sup
r∈[0,1]

(
| u(r)− v(r) | + | u(r)− v(r) |

2
) = 0

⇔ | u(r)− v(r) |= 0 and | u(r)− v(r) |= 0

⇔ u(r) = v(r) and u(r) = v(r)

⇔ [u(r), u(r)]C = [v(r), v(r)]C
⇔ [u]r = [v]r

⇔ u = v.

The proof of (4) of the theorem is as follows:
If [u]0 = [v]0 = [w]0,

Ḋ(u, v) = sup
x∈C

| u(x)− v(x) |

= sup
x∈C

| u(x)− w(x) + w(x)− v(x) |

≤ sup
x∈C

{| u(x)− w(x) | + | w(x)− v(x) |}

≤ sup
x∈C

| u(x)− w(x) | + sup
x∈C

| w(x)− v(x) |

= Ḋ(u, w) + Ḋ(w, v).

For any u, v, w ∈ FDC ,

D̂(u, v) = sup
r∈[0,1]

(
| u(r)− v(r) | + | u(r)− v(r) |

2
)

= sup
r∈[0,1]

(
| u(r)− w(r) + w(r)− v(r) | + | u(r)− w(r) + w(r)− v(r) |

2
)

≤ sup
r∈[0,1]

(
| u(r)− w(r) | + | w(r)− v(r) | + | u(r)− w(r) | + | w(r)− v(r) |

2
)

≤ sup
r∈[0,1]

(
| u(r)− w(r) | + | w(r)− v(r) |

2
) + sup

r∈[0,1]
(
| u(r)− w(r) | + | w(r)− v(r) |

2
)

= D̂(u, w) + D̂(w, v).
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The proof of (5) of the theorem is as follows:
If [u]0 = [v]0 = [w]0,

Ḋ(u + w, v + w) = sup
x∈C

| (u + w)(x)− (v + w)(x) |

= sup
x∈C

| (u(x) + w(x))− (v(x) + w(x)) |

= sup
x∈C

| (u)(x)− (v)(x) |

= Ḋ(u, v).

For any u, v, w ∈ FDC ,

D̂(u + w, v + w) = sup
r∈[0,1]

(
| (u + w)(r)− (v + w)(r) | + | (u + w)(r)− (v + w)(r) |

2
)

= sup
r∈[0,1]

(
| u(r) + w(r)− v(r)− w(r) | + | u(r) + w(r)− v(r)− w(r) |

2
)

= sup
r∈[0,1]

(
| u(r)− v(r) | + | u(r)− v(r) |

2
)

= D̂(u, v).

Finally, the proof of (6) of the theorem is as follows:

Ḋ(ku, kv) = sup
x∈C

| ku(x)− kv(x) |

= sup
x∈C

|k| | u(x)− v(x) |

= |k| sup
x∈C

| u(x)− v(x) |

= |k|Ḋ(u, v).

D̂(ku, kv) = sup
r∈[0,1]

(
| ku(r)− kv(r) | + | ku(r)− kv(r) |

2
)

= sup
r∈[0,1]

(
|k| | u(r)− v(r) | +|k| | u(r)− v(r) |

2
)

= |k| sup
r∈[0,1]

(
| u(r)− v(r) | + | u(r)− v(r) |

2
)

= |k|D̂(u, v).

The proof of the theorem is complete.

Then, the relationship between the metric D̂ and D is proven. The metric D is intro-
duced in Definition 2. D is also a metric on FDC space because of FDC ⊂ FD .

Theorem 7. For any u, v ∈ FDC , the metric D̂ and D satisfy 1
2 D ≤ D̂ ≤ D, i.e.,

1
2

D(u, v) ≤ D̂(u, v) ≤ D(u, v).

Proof. For any u, v ∈ FDC and r ∈ [0, 1], from the definitions of D̂ and D, we have the
following equation:
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1
2

D(u, v) =
1
2

sup
r∈[0,1]

max{| u(r)− v(r) |, | u(r)− v(r) |}

=
1
2

sup
r∈[0,1]

(
| u(r)− v(r) | + | u(r)− v(r) | + | (| u(r)− v(r) | − | u(r)− v(r) |) |

2
)

≤ sup
r∈[0,1]

1
4
(| u(r)− v(r) | + | u(r)− v(r) | + | u(r)− v(r) | + | u(r)− v(r) |)

= sup
r∈[0,1]

1
2
(| u(r)− v(r) | + | u(r)− v(r) |)

= D̂(u, v)

≤ 1
2
(2 max{| u(r)− v(r) |, | u(r)− v(r) |})

= D(u, v).

From that, we can directly obtain the fact that for any u, v ∈ FDC , 1
2 D(u, v) ≤

D̂(u, v) ≤ D(u, v) is tenable.
The proof of the theorem is complete.

5. The Triangular Norm and Triangular Conorm Operations of Special Discrete Fuzzy
Numbers on Countable Sets

Propositional logic refers to a formula representing a “proposition” formed by a logical
operator combined with an atomic proposition [27]. In fuzzy logic, a logical proposition
is connected by fuzzy logic conjunctive words. In the process of a numerical operation,
the logical connectives’ “conjunctions” are realized by a triangular norm operator, while
the logical connectives’ “disjunction” are realized by a triangular conorm operator. In
this section, we mainly investigate the triangular norm and triangular conorm operations
of special discrete fuzzy numbers on countable sets and their properties. Firstly, some
definitions and results of the triangular norm and triangular conorm operations on posets
are reviewed; then, the discrete triangular norm operator T and triangular conorm operator
S on FDC space are defined.

Let (P,≤) be a nontrivial bounded partially ordered set with a maximum element “m”
and a minimum element “e”.

If T (or S) is a triangular norm operator on the bounded countable set C ⊂ R, then
we can define the binary operation T (or S) on the FDC space. The following theorems
illustrate the fundamental properties of the triangular norm operator and the triangular
conorm operator.

Definition 6 ([28]). Let the triangular norm operator T : P × P → P be a binary operation on
the poset P; for any x, y, z, x′, y′ ∈ P, the following axioms are satisfied:

(1) Commutativity: T(x, y) = T(y, x);
(2) Associativity: T(T(x, y), z) = T(x, T(y, z));
(3) Monotonicity: T(x, y) ≤ T(x′, y′) when x ≤ x′, y ≤ y′;
(4) Boundary condition: T(x, m) = x.

Definition 7 ([28]). Let the triangular conorm operator S : P × P → P be a binary operation on
the poset P; for any x, y, z, x′, y′ ∈ P, the following axioms are satisfied:

(1) Commutativity: S(x, y) = S(y, x);
(2) Associativity: S(S(x, y), z) = S(x, S(y, z));
(3) Monotonicity: S(x, y) ≤ S(x′, y′) when x ≤ x′, y ≤ y′;
(4) Boundary condition: T(x, e) = x.

Generally speaking, when the algebraic operation or lattice operation is extended to
the fuzzy number space, the membership function of the fuzzy number can be directly
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used for calculation based on the Zadeh expansion principle [21] or the equivalent level set
representation can be used for calculation. However, the result of the calculation may not
be a discrete fuzzy number in FD space [9].

Now, we consider the FDC space of special discrete fuzzy numbers on countable
sets; for any u, v ∈ FDC , there exist xr

u, yr
u, xr

v, yr
v ∈ C and xr

u ≤ yr
u, xr

v ≤ yr
v such that

[u]r = [xr
u, yr

u]C, [v]r = [xr
v, yr

v]C.

Definition 8. For any r ∈ [0, 1], let us consider the set

T([u]r, [v]r) = {T(x, y) | x ∈ [u]r, y ∈ [v]r}
= {T(x, y) | x ∈ [xr

u, yr
u]C, y ∈ [xr

v, yr
v]C},

where [u]0 = supp u, [v]0 = supp v.

Proposition 1. For any r ∈ [0, 1], if any x, y ∈ C satisfy T(x, y) ∈ C, then T([u]r, [v]r) satisfies
conditions (1), (2), and (3) in Theorem 2.

Proof. (1) For any r ∈ [0, 1], [u]r and [v]r are nonempty and finite, then T([u]r, [v]r) is
nonempty and finite, and T([u]0, [v]0) is finite.

(2) For any r1, r2 ∈ [0, 1] and 0 ≤ r1 ≤ r2 ≤ 1, [u]r2 ⊂ [u]r1 and [v]r2 ⊂ [v]r1 are tenable;
therefore, xr1

u ≤ xr2
u , yr2

u ≤ yr1
u , xr1

v ≤ xr2
v , yr2

v ≤ yr1
v , because T satisfies monotonicity,

T(xr1
u , xr1

v ) ≤ T(xr2
u , xr2

v ),

T(yr2
u , yr2

v ) ≤ T(yr1
u , yr1

v ),

T(xr2
u , xr2

v ) ≤ T(yr2
u , yr2

v ).

These three inequalities are combined:

T(xr1
u , xr1

v ) ≤ T(xr2
u , xr2

v ) ≤ T(yr2
u , yr2

v ) ≤ T(yr1
u , yr1

v ).

Therefore,
T([u]r2 , [v]r2) ⊂ T([u]r1 , [v]r1).

(3) Because u, v ∈ FDC , then for any r0 ∈ [0, 1], there exist r′1, r′2 ∈ R that satisfy
0 < r′1 < r0 and 0 < r′2 < r0 such that [u]r

′
1 = [u]r0 and [v]r

′
2 = [v]r0 are tenable,

i.e., [u]α1 = [u]r0 is tenable for any α1 ∈ [r′1, r0], and [u]α2 = [u]r0 is tenable for any
α2 ∈ [r′2, r0]. Therefore, if α = α1 ∨ α2 then

T([u]α, [v]α) = T([u]r0 , [v]r0).

The proof of the theorem is complete.

Theorem 8. There exists a unique discrete fuzzy number on countable set C denoted T(u, v) such
that for any r ∈ [0, 1], the r-level set [T(u, v)]r is defined by T([u]r, [v]r), and

T(u, v)(z) = sup{r ∈ [0, 1]| z ∈ T([u]r, [v]r)}

is tenable.

Proof. Derived from Proposition 1 and Theorem 2.

Similarly, the following propositions and theorems can be proven.
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Definition 9. For any r ∈ [0, 1], let us consider the set

S([u]r, [v]r) = {S(x, y) | x ∈ [u]r, y ∈ [v]r}
= {S(x, y) | x ∈ [xr

u, yr
u]C, y ∈ [xr

v, yr
v]C},

where [u]0 = supp u, [v]0 = supp v.

Proposition 2. For any r ∈ [0, 1], if any x, y ∈ C satisfy S(x, y) ∈ C, then S([u]r, [v]r) satisfies
conditions (1), (2), and (3) in Theorem 2.

Theorem 9. There exist unique discrete fuzzy numbers on countable sets denoted by S(u, v), whose
r-level set [S(u, v)]r is defined by S([u]r, [v]r) for any r ∈ [0, 1], and

S(u, v)(z) = sup{r ∈ [0, 1] | z ∈ S([u]r, [v]r)}

is tenable.

Remark 2. According to the above results, if T is a triangular norm operator on the bounded
countable set C ⊂ R, then we can define the binary operation T on the FDC space,

T : FDC ×FDC → FDC

(u, v) → T(u, v).

The T is called the triangular norm operator of discrete fuzzy numbers on FDC .
Similarly, we define the triangular conorm operator of discrete fuzzy numbers, denoted as S.

Remark 3. Generally speaking, the condition “for any x, y ∈ C satisfy T(x, y) ∈ C” in Proposition
1 and the condition “for any x, y ∈ C satisfy S(x, y) ∈ C” in Proposition 2 cannot be omitted. The
following examples can be used to illustrate.

Example 1. Let C = {0, 2, 3, 4, 5}. u, v ∈ FDC are defined by

u = {0.2/0, 0.5/2, 1/3, 0.8/5},

v = {0.8/3, 1/4, 0.6/5}.

The Lukasiewicz triangular norm operator is TL = max{0, x + y − 5}; according to the
above definition and theorem, TL(u, v) can be calculated as follows:

(1) When r = 0.2, [u]0.2 = {0, 2, 3, 5}, and [v]0.2 = {3, 4, 5}, then TL([u]0.2, [v]0.2) =
{0, 1, 2, 3, 4, 5},

(2) When r = 0.5, [u]0.5 = {2, 3, 5}, and [v]0.5 = {3, 4, 5}, then TL([u]0.5, [v]0.5) = {0, 1, 2, 3, 4, 5},
(3) When r = 0.6, [u]0.6 = {3, 5}, and [v]0.6 = {3, 4, 5}, then TL([u]0.6, [v]0.6) = {1, 2, 3, 4, 5},
(4) When r = 0.8, [u]0.8 = {3, 5}, and [v]0.8 = {3, 4}, then TL([u]0.8, [v]0.8) = {1, 2, 3, 4},
(5) When r = 1, [u]1 = {3}, and [v]1 = {4}, then TL([u]1, [v]1) = {2}.

Finally, we obtain

TL(u, v) = {0.5/0, 0.8/1, 1/2, 0.8/3, 0.8/4, 0.6/5},

then [TL(u, v)]0 is not a subset of C. According to Theorem 2, TL(u, v) /∈ FDC , and it is not
a discrete fuzzy number on the countable set C. So, the condition “for any x, y ∈ C satisfy
T(x, y) ∈ C” in Proposition 1 cannot be omitted.

Now, some examples of operations using discrete triangular norm and triangular
conorm operator are presented.
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Example 2. Let C = {0, 1, 2, 3, 4, 5}. u, v ∈ FDC are defined by:

u = {0.2/0, 0.5/2, 1/3, 0.8/5},

v = {0.1/1, 0.8/3, 1/4, 0.6/5}.

The Lukasiewicz triangular norm operator TL = max{0, x + y − 5}, according to the above
definition and theorem:

TL(u, v) = {0.5/0, 0.8/1, 1/2, 0.8/3, 0.8/4, 0.6/5},

then TL(u, v) ∈ FDC .

Example 3. Let C = {0, 1, 2, 3, 4, 5}. u, v ∈ FDC are defined by:

u = {0.2/0, 0.5/2, 1/3, 0.8/5},

v = {0.1/1, 0.8/3, 1/4, 0.6/5}.

The Lukasiewicz triangular conorm operator SL = min{5, x + y}, according to the above
definition and theorem:

SL(u, v) = {0.1/1, 0.1/2, 0.2/3, 0.2/4, 1/5},

then SL(u, v) ∈ FDC .

Example 4. Let C = {0, 1, 2, 3, 4, 5}. u, v ∈ FDC are defined by:

u = {0.2/0, 0.5/2, 1/3, 0.8/5},

v = {0.1/1, 0.8/3, 1/4, 0.6/5}.

The Min triangular norm operator TMin = min{x, y}, according to the above definition and
theorem:

TMin(u, v) = {0.2/0, 0.2/1, 0.5/2, 1/3, 0.8/4, 0.6/5},

then TMin(u, v) ∈ FDC .

Example 5. Let C = {0, 1, 2, 3, 4, 5}. u, v ∈ FDC are defined by:

u = {0.2/0, 0.5/2, 1/3, 0.8/5},

v = {0.1/1, 0.8/3, 1/4, 0.6/5}.

The Max triangular conorm operator SMax = max{x, y}, according to the above definition
and theorem:

SMax(u, v) = {0.1/1, 0.1/2, 0.8/3, 1/4, 0.6/5},

then SMax(u, v) ∈ FDC .

Some properties of the triangular norm and triangular conorm of special discrete fuzzy
numbers on countable sets are investigated below.

Proposition 3. Let the triangular norm T : P× P → P and the triangular conorm S : P× P → P
be binary operators on poset P; for any x, y, z ∈ P, the following properties hold:

(1) Commutativity:
T(x, y) = T(y, x),

S(x, y) = S(y, x).
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(2) Associativity:
T(T(x, y), z) = T(x, T(y, z)),

S(S(x, y), z) = S(x, S(y, z)).

Proof. Straightforward. It can be obtained directly from the definitions of the triangular
norm T and the triangular conorm S.

Theorem 10. Let T : FDC ×FDC → FDC be a triangular norm operator and S : FDC ×FDC →
FDC be a triangular conorm operator; for any u, v, w ∈ FDC , the following properties hold:

(1) Commutativity:
T(u, v) = T(v, u),

S(u, v) = S(v, u).

(2) Associativity:
T(T(u, v), w) = T(u,T(v, w)),

S(S(u, v), w) = S(u,S(v, w)).

Proof. We only prove the property of T; the proof of S is similar.
Let the r-level sets of u, v, w ∈ FDC be [u]r = [xr

u, yr
u]C, [v]r = [xr

v, yr
v]C, [w]r =

[xr
w, yr

w]C for any r ∈ [0, 1], respectively.

(1) In order to prove T(u, v) = T(v, u), we need to prove that for any r ∈ [0, 1], both
sides of the equation have the same r-level set.

[T(u, v)]r = T([u]r, [v]r)

= {T(x, y) | x ∈ [u]r, y ∈ [v]r}
= {T(y, x) | y ∈ [v]r, x ∈ [u]r}
= T([v]r, [u]r)

= [T(v, u)]r.

(2) In order to prove T(T(u, v), w) = T(u,T(v, w)), we need to prove that for any
r ∈ [0, 1], both sides of the equation have the same r-level set.

[T(T(u, v), w)]r = T([T(u, v)]r, [w]r)

= T(T([u]r, [v]r), [w]r)

= {T(T(x, y), z) | x ∈ [u]r, y ∈ [v]r, z ∈ [w]r}
= {T(x, T(y, z)) | x ∈ [u]r, y ∈ [v]r, z ∈ [w]r}
= T([u]r, T([v]r, [w]r))

= [T(u,T(v, w))]r.

The proof of the theorem is complete.

6. Application to Image Fusion

In this section, we apply the above-investigated special discrete fuzzy numbers on
countable sets in the image fusion field [29–31]. Firstly, an interpretation of a gray image as
a special discrete fuzzy numbers on countable sets is introduced.

The gray image is modeled as functions f : D f ⊂ R2 → τ ⊂ R, where D f is the
domain of the gray image, and τ is the corresponding gray-scale value space. We normalize
the corresponding gray-scale value to the value in the interval [0,1].

6.1. Interpretation of Gray Image as Special Discrete Fuzzy Numbers on Countable Sets

After the following steps, a gray image is represented by the special discrete fuzzy
numbers on countable sets.
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(1) Let a gray image with 256 grayscale levels, i.e., {0, 1, . . . , 255}, be I, and the size of I is
M × N. I(x, y) represents a gray-scale value of (x, y) in I, where
x ∈ {1, 2, . . . , M}, y ∈ {1, 2, . . . , N}.

(2) We take a point (x0, y0), x0 ∈ {2, 3, . . . , M − 1}, y0 ∈ {2, 3, . . . , N − 1} in I as the
center and use the neighboring pixels around (x0, y0) to form a rectangle, we call
this rectangle W. The size of W is nW × nW . When nW = 3, the points of W are
represented as (x0 + i, y0 + j), i, j = {−1, 0, 1} and the corresponding pixel value can
be expressed as I(x0 + i, y0 + j), i, j = {−1, 0, 1}.

(3) In order to represent the gray-scale pixel value, the mean value W and standard
deviation S of W are calculated.

W =
∑1

i=−1 ∑1
j=−1 I(x0 + i, y0 + j)

3 × 3
, (4)

S =

√
∑1

i=−1 ∑1
j=−1(I(x0 + i, y0 + j)− W)2

3 × 3 − 1
. (5)

(4) We construct Gaussian discrete fuzzy numbers for I(x0, y0).
u : R → [0, 1] is defined by:

u(I(x, y)) =

exp(− (I(x,y)−W)2

2S2 ), if (x, y) ∈ W

0, otherwise.
(6)

Then, u is the special discrete fuzzy numbers on countable sets with [u]0 = {I(x0 +
i, y0 + j) : i, j = {−1, 0, 1}}. In this case, the countable set is C = {0, 1, . . . , 255}.

The above steps are shown in Figure 1.
In different gray image processing environments, the other sizes and shapes of W can

be selected to construct special discrete fuzzy numbers on countable sets.

Figure 1. The steps of using the special discrete fuzzy numbers on countable sets to represent pixel
value of gray images.
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Example 6. Let image I be a gray image with 256 grayscale levels, i.e., {0, 1, . . . , 255}. Let the
point (x0, y0) be a center and take its eight neighboring pixels to form a rectangle W. The size of W
is nW × nW and nW = 3. The different objects I, I(x0, y0) and the corresponding special discrete
fuzzy numbers on countable sets are shown in Figure 2. When I(x0, y0) = 122, its special discrete
fuzzy numbers on countable set representation is shown in Figure 2.

In this case, the countable set is C = {0, 1, . . . , 255} and u is the special discrete fuzzy numbers
on countable sets with [u]0 = {83, 109, 110, 111, 117, 122, 132, 137, 148}. The corresponding
membership degree is expressed as follows:

u = {0.17/83, 0.88/109, 0.90/110, 0.92/111, 1.00/117, 0.98/122, 0.78/132, 0.63/137, 0.31/148}.

Figure 2. Using the special discrete fuzzy numbers on countable sets to represent pixel value of
gray images.

6.2. Gray Image Fusion by Means of the Triangular Norm and Triangular Conorm Operations of
Special Discrete Fuzzy Numbers on Countable Sets

In order to construct the fusion algorithm of two gray-scale images, we first give a
definition of the mass center of special discrete fuzzy numbers on countable sets.

Definition 10. Let w be a special discrete fuzzy number on countable sets, [w]0 = {x1, x2, . . . , xn}.
The mass center of w is defined as follows:

M(w) =
∑n

i=1 w(xi)xi

∑n
i=1 w(xi)

. (7)

The mass center of special discrete fuzzy numbers on countable sets is a crisp number.
When we use the special discrete fuzzy numbers on countable sets to represent the pixel
value of gray images, the mass center is an approximation of the corresponding pixel value
of gray images.

The image fusion algorithm of two gray-scale images will be given below. Let the two
gray images be f and g with same size, and the size of them is M × N. f (x, y) is used to
express the pixel gray value at the point (x, y) in f , and g(x′, y′) is used to express the pixel
gray value at the point (x′, y′) in f , where x ∈ {1, . . . , M}, x′ ∈ {1, . . . , M}, y ∈ {1, . . . , N},
y′ ∈ {1, . . . , N}.
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(1) Let the point (x, y) of f be the center and interpret it as special discrete fuzzy numbers
on countable sets; this discrete fuzzy number is denoted as u( f (x, y)). Similarly, let
the point (x′, y′) of g be the center and interpret it as special discrete fuzzy numbers
on countable sets; this discrete fuzzy number is denoted as v(g(x′, y′)).

(2) By using the triangular norm T or triangular conorm S defined in Section 5, two
discrete fuzzy numbers u( f (x, y)) and v(g(x′, y′)) at corresponding positions are
operated, and a new discrete fuzzy number T(u, v) or S(u, v) is obtained.

(3) The mass center of the new discrete fuzzy number is calculated according to
Equation (7) as the pixel gray value of the fused image.

(4) Change the points (x, y) and (x′, y′) to the same position and skip to step (1) until
the points (x, y) and (x′, y′) traverse the image f and g, respectively.

After the above steps, images f and g are fused into a new image. The flowchart of
the gray-scale image fusion algorithm is shown in Figure 3.

Figure 3. The flowchart of gray-scale image fusion algorithm.

To demonstrate the effectiveness of the above algorithm, an example of the fusion of
the thermal image and the visible light image is presented. We conducted the experiments
with the TNO Image Fusion Dataset the original thermal image and visible light image are
shown in Figure 4.
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Figure 4. The original images. (a) The thermal image. (b) The visible light image.

The fusion of the thermal image and the visible light image can not only reflect the
military target but also have a certain ability of texture expression [32]. The corresponding
experimental results are given in Figure 5. The software environment is Microsoft Windows
10 Home Edition and MATLAB R2018a. The hardware environment is a PC with an Intel(R)
Core(TM)i5-8250U@1.60GHz CPU and 8.00 GB dual-channel DDR4 RAM.

Figure 5. The results of the fusion of thermal image and visible light image. (a) TMin. (b) SMax.
(c) TL . (d) SL.

According to the experimental results in Figure 5, the different image fusion effects
can be obtained by means of different aggregation operators defined in Section 5. For
example, in Figure 5a, the texture and details of the road and leaves are clearer, while
the outline of the pedestrian and roof is more pronounced in Figure 5b. In Figure 5c, the
position of the person is more prominently displayed. The texture of the fence and grass in
Figure 5d is more clearly distinguishable. Furthermore, the results of Figure 5a,b show that
the aggregate result of the TMin operator makes the overall image brightness low, while the
aggregate result of SMax operator has relatively high image brightness, which is consistent
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with the basic characteristics of these two operators. In practical applications, different
aggregation operators can be selected according to different image fusion requirements.

7. Application to Aggregation of Subjective Evaluation

Scholars use discrete fuzzy numbers to describe human fuzzy language information,
which can be applied to the realistic scenes such as group decision making, expert evalu-
ation, or intelligent recommendation. The application of special discrete fuzzy numbers
on countable sets to aggregation of subjective evaluation is proposed in this section. The
specific steps of how to aggregate the subjective evaluations of multiple experts into a
decision result are as follows:

The first step is to consider the semantic model L = {VB, B, MB, F, MG, G, VG} where
the letters refer to the linguistic terms “Very Bad”, “Bad”, “More or Less Bad”, “Fair”, “More
or Less Good”, “Good”, and “Very Good”; they are arranged in ascending order:

VB ≺ B ≺ MB ≺ F ≺ MG ≺ G ≺ VG.

In order to facilitate the representation and operation of the special discrete fuzzy
numbers on countable sets, the semantic pattern L = {VB, B, MB, F, MG, G, VG} can be
represented as the countable set C = {0, 1, 2, 3, 4, 5, 6}. In this case, the elements of set C
correspond in a one-to-one manner with the elements of set L.

In the second step, the experts give subjective evaluation results based on the semantic
pattern L. Ei is used to represent the subjective evaluation results of each expert, where
i = 1, 2, 3. Each Ei is a special discrete fuzzy number on countable sets with semantic
pattern L as its support set. Moreover, let us consider the importance of each expert and
use the weight ω1, ω2, ω3 ∈ FDC to describe. E1, E2, E3, ω1, ω2, ω3 ∈ FDC are defined
as follows:

E1 = {0.3/1, 0.4/2, 0.7/3, 1/4, 0.8/5, 0.6/6},

E2 = {0.2/0, 0.4/1, 1/2, 0.4/3, 0.2/4},

E3 = {0.5/2, 0.6/3, 0.7/4, 1/5, 0.7/6},

ω1 = {0.6/1, 0.8/2, 1/3, 0.7/4},

ω2 = {0.4/2, 0.6/3, 1/4, 0.8/5},

ω3 = {0.4/3, 0.6/4, 1/5, 0.8/6}.

In the third step, based on triangular norm and triangular conorm operations of special
discrete fuzzy numbers on countable sets defined before, let us aggregate the subjective
evaluations of multiple experts into a decision result. The final group consensus subjective
evaluation results are still represented by special discrete fuzzy numbers on countable sets
and can be interpreted directly.

Example 7. Let C = {0, 1, 2, 3, 4, 5, 6}, E1, E2, E3, ω1, ω2, ω3 ∈ FDC , the Lukasiewicz trian-
gular norm operator TL = max{0, x + y − 6}, and Lukasiewicz triangular conorm operator
SL = min{6, x + y}; according to the above definition and theorem in Section 5, we can calculate:

b1 = TL(E1, ω1) = {0.8/0, 1/1, 0.8/2, 0.7/3, 0.6/4},

b2 = TL(E2, ω2) = {1/0, 0.8/1, 0.4/2, 0.2/3},

b3 = TL(E3, ω3) = {0.5/0, 0.6/1, 0.6/2, 0.7/3, 1/4, 0.8/5, 0.7/6},

then, b1, b2, b3 ∈ FDC .
Next, we calculate the SL for b1, b2, b3,

SL(b1,SL(b2, b3)) = {0.5/0, 0.6/1, 0.6/2, 0.7/3, 0.8/4, 1/5, 0.8/6}.
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SL(b1,SL(b2, b3)) are discrete fuzzy numbers on countable set C. According to the semantic
pattern L = {VB, B, MB, F, MG, G, VG}, the membership of "Very Bad” is 0.5, the membership
of “Bad” is 0.6, the membership of "More or Less Bad” is 0.6, the membership of “Fair” is 0.7, the
membership of “More or Less Good” is 0.8, the membership of “Good” is 1, and the membership of
"Very Good" is 0.8. Therefore, the final group consensus subjective evaluation result is “Good”.

Example 8. Let C = {0, 1, 2, 3, 4, 5, 6}, E1, E2, E3, ω1, ω2, ω3 ∈ FDC . The triangular norm
operator TMin = min{x, y} and triangular conorm operator SMax = max{x, y},

d1 = TMin(E1, ω1) = {0.6/1, 0.8/2, 1/3, 0.7/4},

d2 = TMin(E2, ω2) = {0.2/0, 0.4/1, 1/2, 0.4/3, 0.2/4},

d3 = TMin(E3, ω3) = {0.5/2, 0.6/3, 0.7/4, 1/5, 0.7/6},

then d1, d2, d3 ∈ FDC .
Next, we calculate the SMax for d1, d2, d3,

SMax(d1,SMax(d2, d3)) = {0.5/2, 0.6/3, 0.7/4, 1/5, 0.7/6}.

Similarly, the final group consensus subjective evaluation result is still “Good”.

8. Conclusions

In order to solve the problem in which the arithmetic operations and logic operations
of general discrete fuzzy numbers do not satisfy the closure, a representation theorem
in the form of endpoint functions of discrete fuzzy numbers defined on countable sets
is proven in this paper. To overcome the defect that it is hard to define the measure
of discrete fuzzy numbers reasonably in practical application, two different metrics are
defined, and the relationship between them and the supremum metric (also called the
uniform Hausdorff metric) of general fuzzy numbers is discussed. Further, the triangular
norm and triangular conorm operations for discrete fuzzy numbers on countable sets are
presented, and the properties of these two operators are investigated. We point out the
conditions for maintaining the closure on FDC space of these two operators, which is a
good property in specific applications. Finally, application examples of image fusion and
group consensus opinion based on triangular norm and triangular conorm operations of
special discrete fuzzy numbers on countable sets are given. In the near future, we want to
extend to multi-dimensional discrete fuzzy numbers on countable sets and investigate their
applications in the modeling and processing of multi-dimensional discrete uncertain data.
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